Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Expression and Purification of Tetanus Toxin Fragment C in Escherichia coli BL21(DE3)

Author(s): Pengdi Chai, Xiuying Pu, Jianqiang Li*, Xiaoyu Xia, Jun Ge, Amiao Luo, Hui Su, Weijie Zhang and Jianzhong Ma

Volume 27, Issue 11, 2020

Page: [1132 - 1140] Pages: 9

DOI: 10.2174/0929866527666200528113327

Price: $65

Abstract

Background: Tetanus is an infectious disease caused by Clostridium secreting tetanus toxin in anaerobic environment. The fragment C of Tetanus toxin (TTc) has been widely studied as a candidate vaccine to replace the existing tetanus toxoid vaccine.

Objective: In this study, we established a simple method to purify recombinant protein TTc with ion-exchange chromatography from Escherichia coli expression systems.

Methods: The TTc gene sequence was cloned into pET26b (+) vector and transferred to E. coli BL21 (DE3) for expression. The fermentation conditions (IPTG concentration, Induction temperature, Induction time) were optimized to obtain more soluble proteins. The soluble proteins were purified by Anion exchange chromatography and Cation exchange chromatography. The sequence of columns in the purification process was discussed. Finally, the stability of purified TTc protein were determined, the secondary structure of the purified TTc protein was determined by circular dichroism. The molecular weight of the purified TTc protein was determined by liquid chromatograph- mass spectrometer. Furthermore, we verified the immunogenicity of the purified protein in mice.

Results: The purity of TTc improved from 34% to 88% after the first anion exchange column, and the final yield of recombinant TTc (purity > 95%) can reach 84.79% after the following cation exchange chromatography. The recombinant TTc had a molecular weight of 51.737 KDa, was stable at 4 °C and weak alkaline environment, was a β-sheet secondary structure, and had strong immunogenicity.

Conclusion: The purification method we developed might be an efficient method for the industrial production of tetanus recombinant TTc vaccine.

Keywords: Tetanus, the fragment C, tetanus toxin, purification, molecular weight, immunogenicity.

Graphical Abstract

[1]
Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol., 1998, 5(10), 898-902.[http://dx.doi.org/10.1038/2338] [PMID: 9783750]
[2]
Bardenheier, B.; Prevots, D.R.; Khetsuriani, N.; Wharton, M. Tetanus surveillance--United States, 1995-1997. MMWR CDC Surveill. Summ., 1998, 47(2), 1-13.[PMID: PMID: 9665156]
[3]
Trujillo, M.H.; Castillo, A.; España, J.; Manzo, A.; Zerpa, R. Impact of intensive care management on the prognosis of tetanus. Analysis of 641 cases. Chest, 1987, 92(1), 63-65.[http://dx.doi.org/10.1378/chest.92.1.63] [PMID: 3595250]
[4]
World Health Organization. Global Vaccine Action Plan 2011-2020. 2012, 31 (suppl 2), B5-B31.
[5]
Alpar, H.O.; Eyles, J.E.; Williamson, E.D.; Somavarapu, S. Intranasal vaccination against plague, tetanus and diphtheria. Adv. Drug Deliv. Rev., 2001, 51(1-3), 173-201.[http://dx.doi.org/10.1016/S0169-409X(01)00166-1
] [PMID: 11516788]
[6]
Matsuda, M.; Yoneda, M. Dissociation of tetanus neurotoxin into two polypeptide fragments. Biochem. Biophys. Res. Commun., 1974, 57(4), 1257-1262.[http://dx.doi.org/10.1016/0006-291X(74)90831-6] [PMID: 4208570]
[7]
Lacy, D.B.; Stevens, R.C. Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol., 1999, 291(5), 1091-1104.[http://dx.doi.org/10.1006/jmbi.1999.2945] [PMID: 10518945]
[8]
Emsley, P. The structures of the HC fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J. Biol. Chem., 275(12), 8889-8894.[http://dx.doi.org/10.1074/jbc.275.12.8889]
[9]
Fotinou, C.; Emsley, P.; Black, I.; Ando, H.; Ishida, H.; Kiso, M.; Sinha, K.A.; Fairweather, N.F.; Isaacs, N.W. The crystal structure of tetanus toxin Hc fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J. Biol. Chem., 2001, 276(34), 32274-32281.[http://dx.doi.org/10.1074/jbc.M103285200] [PMID: 11418600]
[10]
Sinha, K.; Box, M.; Lalli, G.; Schiavo, G.; Schneider, H.; Groves, M.; Siligardi, G.; Fairweather, N. Analysis of mutants of tetanus toxin Hc fragment: Ganglioside binding, cell binding and retrograde axonal transport properties. Mol. Microbiol., 2000, 37(5), 1041-1051.[http://dx.doi.org/10.1046/j.1365-2958.2000.02091.x
] [PMID: 10972823]
[11]
Yu, R.; Fang, T.; Liu, S.; Song, X.; Yu, C.; Li, J.; Fu, L.; Hou, L.; Xu, J.; Chen, W. Comparative immunogenicity of the tetanus toxoid and recombinant tetanus vaccines in mice, rats, and cynomolgus monkeys. Toxins (Basel), 2016, 8(7), E194.[http://dx.doi.org/10.3390/toxins8070194] [PMID: 27348002]
[12]
Yu, R.; Hou, L.; Liu, S.; Yu, C.; Zhang, X.; Liu, Y.; Chen, W. Production and immunogenicity analysis of conformation-stable fragment-C mutant of tetanus toxin. Sheng Wu Gong Cheng Xue Bao, 2011, 27(2), 226-232.[PMID: PMID: 21650047]
[13]
Xi, H.; Yu, J.; Sun, Q.; Lu, J.; Gu, T.; Guo, X.; Li, B.; Chen, X.; Zhang, K.; Kong, W.; Wu, Y. Expression and purification of pneumococcal surface protein a of clade 4 in Escherichia coli using hydroxylapatite and ion-exchange column chromatography. Protein Expr. Purif., 2018, 151, 56-61.[http://dx.doi.org/10.1016/j.pep.2018.06.008] [PMID: 29908315]
[14]
Ribas, A.V.; Ho, P.L.; Tanizaki, M.M.; Raw, I.; Nascimento, A.L. High-level expression of tetanus toxin fragment C-thioredoxin fusion protein in Escherichia coli. Biotechnol. Appl. Biochem., 2000, 31(2), 91-94.[http://dx.doi.org/10.1042/BA19990084] [PMID: 10744952]
[15]
Lee, S.; Belitsky, B.R.; Brown, D.W.; Brinker, J.P.; Kerstein, K.O.; Herrmann, J.E.; Keusch, G.T.; Sonenshein, A.L.; Tzipori, S. Efficacy, heat stability and safety of intranasally administered Bacillus subtilis spore or vegetative cell vaccines expressing tetanus toxin fragment C. Vaccine, 2010, 28(41), 6658-6665.[http://dx.doi.org/10.1016/j.vaccine.2010.08.016] [PMID: 20709005]
[16]
Michoux, F.; Ahmad, N.; McCarthy, J.; Nixon, P.J. Contained and high-level production of recombinant protein in plant chloroplasts using a temporary immersion bioreactor. Plant Biotechnol. J., 2011, 9(5), 575-584.[http://dx.doi.org/10.1111/j.1467-7652.2010.00575.x
] [PMID: 21105992]
[17]
Zhu, S.; Gong, C.; Ren, L.; Li, X.; Song, D.; Zheng, G. A simple and effective strategy for solving the problem of inclusion bodies in recombinant protein technology: His-tag deletions enhance soluble expression. Appl. Microbiol. Biotechnol., 2013, 97(2), 837-845.[http://dx.doi.org/10.1007/s00253-012-4630-y] [PMID: 23250226]
[18]
Rueda, F.; Cano-Garrido, O.; Mamat, U.; Wilke, K.; Seras-Franzoso, J.; García-Fruitós, E.; Villaverde, A. Production of functional inclusion bodies in endotoxin-free Escherichia coli. Appl. Microbiol. Biotechnol., 2014, 98(22), 9229-9238.[http://dx.doi.org/10.1007/s00253-014-6008-9] [PMID: 25129611]
[19]
Singh, S.M.; Panda, A.K. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng., 2005, 99(4), 303-310.[http://dx.doi.org/10.1263/jbb.99.303] [PMID: 16233795]
[20]
Hannig, G.; Makrides, S.C. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol., 1998, 16(2), 54-60.[http://dx.doi.org/10.1016/S0167-7799(97)01155-4
] [PMID: 9487731]
[21]
Rani, S.; Gogoi, P.; Kumar, S. Spectrum of Newcastle disease virus stability in gradients of temperature and pH. Biologicals, 2014, 42(6), 351-354.[http://dx.doi.org/10.1016/j.biologicals.2014.08.006
] [PMID: 25284348]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy