Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Solid Lipid Nanoparticles for Topical Drug Delivery: Mechanisms, Dosage Form Perspectives, and Translational Status

Author(s): Mengyang Liu, Jingyuan Wen and Manisha Sharma*

Volume 26, Issue 27, 2020

Page: [3203 - 3217] Pages: 15

DOI: 10.2174/1381612826666200526145706

Price: $65

Abstract

Solid lipid nanoparticles (SLNs) have shown potential as a novel lipid-based drug delivery system for the topical applications of innumerable therapeutic compounds. However, the mechanisms governing the absorption and cellular uptake of SLNs through topical route, along with the mechanism of drug release from SLNs are still ambiguous, and require further investigation. In addition, the selection of an appropriate dosage form/formulation base is essential for ease of application of SLNs and to enhance dermal and transdermal delivery. Upscaling and regulatory approvals are other challenges that may impede the clinical translation of SLNs. Therefore, this review focusses on different mechanisms involved in skin penetration and cellular uptake of SLNs. This is followed by a comprehensive discussion on the physicochemical properties of SLNs including various formulation and dosage form factors, which might influence the absorption of SLNs through the skin. Finally, translational status with respect to scale-up and regulatory aspects are also discussed. This review will be useful to researchers with an interest in topical applications of SLNs for the efficient delivery of drugs and cosmetics.

Keywords: Solid lipid nanoparticles, topical delivery, skin penetration, cellular uptake, endocytosis, drug release mechanism, formulation factors.

[1]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[2]
Sigmundsdottir, H. Improving topical treatments for skin diseases. Trends Pharmacol. Sci., 2010, 31(6), 239-245.
[http://dx.doi.org/10.1016/j.tips.2010.03.004] [PMID: 20413166]
[3]
Menon, G.K.; Dryer, L.; Kalafsky, R. Approaches to the Development of Cosmetic Products to Counter the Effects of Skin Aging; Skin Aging Handbook, 2009.
[http://dx.doi.org/10.1016/B978-0-8155-1584-5.50015-6]
[4]
Engebretsen, K.A.; Johansen, J.D.; Kezic, S.; Linneberg, A.; Thyssen, J.P. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J. Eur. Acad. Dermatol. Venereol., 2016, 30(2), 223-249.
[http://dx.doi.org/10.1111/jdv.13301] [PMID: 26449379]
[5]
Aljuffali, I.A.; Hsu, C.Y.; Lin, Y.K.; Fang, J.Y. Cutaneous delivery of natural antioxidants: the enhancement approaches. Curr. Pharm. Des., 2015, 21(20), 2745-2757.
[http://dx.doi.org/10.2174/1381612821666150428125428] [PMID: 25925121]
[6]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv, 2012, 64, 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021]
[7]
Uner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[PMID: 18019829]
[8]
Garcês, A.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci., 2018, 112, 159-167.
[http://dx.doi.org/10.1016/j.ejps.2017.11.023] [PMID: 29183800]
[9]
Singhvi, G.; Patil, S.; Girdhar, V.; Dubey, S.K. Nanocarriers for Topical Drug Delivery: Approaches and Advancements. Nanosci. Nanotechnol. Asia, 2019, 9(3), 329-336.
[http://dx.doi.org/10.2174/2210681208666180320122534]
[10]
Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release, 2016, 240, 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[11]
Kurakula, M.; Ahmed, O.A.A.; Fahmy, U.A.; Ahmed, T.A. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J. Liposome Res., 2016, 26(4), 288-296.
[http://dx.doi.org/10.3109/08982104.2015.1117490] [PMID: 26784833]
[12]
Cho, H.; Park, J.W.; Yoon, I.; Kim, D. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake. Int. J. Nanomedicine, 2014, 9, 495-504.
[13]
Li, R.; Jiang, S.; Liu, D. A potential new therapeutic system for glaucoma: solid lipid nanoparticles containing methazolamide. J. Microencapsul., 2011, 28(2), 134-141.
[http://dx.doi.org/10.3109/02652048.2010.539304] [PMID: 21142697]
[14]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[15]
Attama, A.A. SLN, NLC, LDC: state of the art in drug and active delivery. Recent Pat. Drug Deliv. Formul., 2011, 5(3), 178-187.
[http://dx.doi.org/10.2174/187221111797200524] [PMID: 21834777]
[16]
Woo, J.O.; Misran, M.; Lee, P.F.; Tan, L.P. Development of a controlled release of salicylic acid loaded stearic acid-oleic acid nanoparticles in cream for topical delivery. ScientificWorldJournal, 2014, 2014, 205703-205707.
[http://dx.doi.org/10.1155/2014/205703] [PMID: 24578624]
[17]
Schäfer-Korting, M.; Mehnert, W.; Korting, H.C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv. Drug Deliv. Rev., 2007, 59(6), 427-443.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[18]
Shrotriya, S.; Ranpise, N.; Satpute, P.; Vidhate, B. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol., 2018, 46(7), 1471-1482.
[http://dx.doi.org/10.1080/21691401.2017.1373659] [PMID: 28884598]
[19]
Jain, S.K.; Chourasia, M.K.; Masuriha, R. Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery. Drug Deliv., 2005, 12(4), 207-215.
[http://dx.doi.org/10.1080/10717540590952591] [PMID: 16036715]
[20]
Soliman, G.M. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. Int. J. Pharm., 2017, 523(1), 15-32.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.019] [PMID: 28323096]
[21]
El-Housiny, S.; Shams Eldeen, M.A.; El-Attar, Y.A. Fluconazole loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv., 2018, 25(1), 78-90.
[http://dx.doi.org/10.1080/10717544.2017.1413444] [PMID: 29239242]
[22]
Puglia, C.; Offerta, A.; Tirendi, G.G. Design of solid lipid nanoparticles for caffeine topical administration. Drug Deliv., 2016, 23(1), 36-40.
[http://dx.doi.org/10.3109/10717544.2014.903011] [PMID: 24735249]
[23]
Khallaf, R.A.; Salem, H.F.; Abdelbary, A. 5-Fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv., 2016, 23(9), 3452-3460.
[http://dx.doi.org/10.1080/10717544.2016.1194498] [PMID: 27240935]
[24]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[25]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain Chem Pharm, 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[26]
Nanoparticles, L. (Solid Lipid Nanoparticles and Nanostructured Lipid Carriers) for Cosmetic, Dermal, and Transdermal Applications Nanoparticulate Drug Delivery Systems; CRC Press, 2007, pp. 241-262.
[27]
Souto, E.B.; Müller, R.H. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb. Exp. Pharmacol., 2010, (197), 115-141.
[http://dx.doi.org/10.1007/978-3-642-00477-3_4] [PMID: 20217528]
[28]
Khalil, R.M.; El-Bary, A.A.; Kassem, M.A.; Ghorab, M.M.; Ahmed, M.B. Solid lipid nanoparticles for topical delivery of meloxicam: development and in vitro characterization. Eur. Sci. J., 2013, 9(21)
[29]
Shah, P.P.; Desai, P.R.; Channer, D.; Singh, M. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers. J. Control. Release, 2012, 161(3), 735-745.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.011] [PMID: 22617521]
[30]
Butani, D.; Yewale, C.; Misra, A. Topical Amphotericin B solid lipid nanoparticles: Design and development. Colloids Surf. B Biointerfaces, 2016, 139, 17-24.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.032] [PMID: 26700229]
[31]
Tan, Y.J.; Lee, C.S.; Er, H.M.; Lim, W.H.; Wong, S.F. In-vitro evaluation of griseofulvin loaded lipid nanoparticles for topical delivery. J. Drug Deliv. Sci. Technol., 2016, 31, 1-10.
[http://dx.doi.org/10.1016/j.jddst.2015.11.002]
[32]
Vaghasiya, H.; Kumar, A.; Sawant, K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci., 2013, 49(2), 311-322.
[http://dx.doi.org/10.1016/j.ejps.2013.03.013] [PMID: 23557842]
[33]
Ghanbarzadeh, S.; Hariri, R.; Kouhsoltani, M.; Shokri, J.; Javadzadeh, Y.; Hamishehkar, H. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf. B Biointerfaces, 2015, 136, 1004-1010.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.041] [PMID: 26579567]
[34]
Montenegro, L.; Sinico, C.; Castangia, I.; Carbone, C.; Puglisi, G. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: in vitro evaluation. Int. J. Pharm., 2012, 434(1-2), 169-174.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.046] [PMID: 22659127]
[35]
Jenning, V.; Gysler, A.; Schäfer-Korting, M.; Gohla, S.H. Vitamin A loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm., 2000, 49(3), 211-218.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[36]
Chen-yu, G; Chun-fen, Y; Qi-lu, L; Qi, T; Yan-wei, X; Wei-na, L Development of a Quercetin-loaded nanostructured lipid carrier formulation for topical delivery, 2012, 430(1), 292-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042]
[37]
Jain, A.K.; Jain, A.; Garg, N.K. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf. B Biointerfaces, 2014, 121, 222-229.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.041] [PMID: 25016424]
[38]
Fang, J.Y.; Fang, C.L.; Liu, C.H.; Su, Y.H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm., 2008, 70(2), 633-640.
[http://dx.doi.org/10.1016/j.ejpb.2008.05.008] [PMID: 18577447]
[39]
Zamarioli, C.M.; Martins, R.M.; Carvalho, E.C.; Freitas, L.A.P. Nanoparticles containing curcuminoids (Curcuma longa): development of topical delivery formulation. Rev. Bras. Farmacogn., 2015, 25(1), 53-60.
[http://dx.doi.org/10.1016/j.bjp.2014.11.010]
[40]
Jain, D.; Bajaj, A.; Maskare, R.; Braroo, P.; Babul, N.; Kao, H. Design of solid lipid nanoparticles of the NSAID dexflurbiprofen for topical delivery. J. Pain Res., 2013, 14(4), S86.
[http://dx.doi.org/10.1016/j.jpain.2013.01.680]
[41]
Kheradmandnia, S.; Vasheghani-Farahani, E.; Nosrati, M.; Atyabi, F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine (Lond.), 2010, 6(6), 753-759.
[http://dx.doi.org/10.1016/j.nano.2010.06.003] [PMID: 20599527]
[42]
Khurana, S.; Bedi, P.M.S.; Jain, N.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids, 2013, 175-176, 65-72.
[http://dx.doi.org/10.1016/j.chemphyslip.2013.07.010] [PMID: 23994283]
[43]
Sánchez-Rodríguez, J.; Vacas-Córdoba, E.; Gómez, R.; De La Mata, F.J.; Muñoz-Fernández, M.Á. Nanotech-derived topical microbicides for HIV prevention: the road to clinical development. Antiviral Res., 2015, 113, 33-48.
[http://dx.doi.org/10.1016/j.antiviral.2014.10.014] [PMID: 25446339]
[44]
Ansari, H.; Singh, P. Formulation and in-vivo Evaluation of Novel Topical Gel of Lopinavir for Targeting HIV. Curr. HIV Res., 2018, 16(4), 270-279.
[http://dx.doi.org/10.2174/1570162X16666180924101650] [PMID: 30246641]
[45]
Kong, X.; Zhao, Y.; Quan, P.; Fang, L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J Pharm Sci, 2016, 11(2), 248-254.
[http://dx.doi.org/10.1016/j.ajps.2015.07.005]
[46]
Mardhiah Adib, Z.; Ghanbarzadeh, S.; Kouhsoltani, M.; Yari Khosroshahi, A.; Hamishehkar, H. The Effect of Particle Size on the Deposition of Solid Lipid Nanoparticles in Different Skin Layers: A Histological Study. Adv. Pharm. Bull., 2016, 6(1), 31-36.
[http://dx.doi.org/10.15171/apb.2016.06] [PMID: 27123415]
[47]
Maia, C.S.; Mehnert, W.; Schäfer-Korting, M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int. J. Pharm., 2000, 196(2), 165-167.
[http://dx.doi.org/10.1016/S0378-5173(99)00413-5] [PMID: 10699710]
[48]
Ruso, J.M.; Taboada, P.; Martínez-Landeira, P.; Prieto, G.; Sarmiento, F. A Comparative Study of the Interaction between Nafcillin and Catalase by Equilibrium Dialysis and ζ-Potential Measurements. J. Phys. Chem. B, 2001, 105(13), 2644-2648.
[http://dx.doi.org/10.1021/jp003404m]
[49]
Mahale, N.B.; Thakkar, P.D.; Mali, R.G.; Walunj, D.R.; Chaudhari, S.R. Niosomes: novel sustained release nonionic stable vesicular systems-an overview. Adv. Colloid Interface Sci., 2012, 183, 46-54.
[http://dx.doi.org/10.1016/j.cis.2012.08.002] [PMID: 22947187]
[50]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[51]
Honary, S.; Zahir, F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2). Trop. J. Pharm. Res., 2013, 12(2)
[52]
Uchechi, O; Ogbonna, JDN; Attama, AA Nanoparticles for Dermal and Transdermal Drug Delivery Application of Nanotechnology in Drug Delivery, 2014.
[http://dx.doi.org/10.5772/58672]
[53]
Gonçalez, M.L.; Rigon, R.B.; Pereira-da-Silva, M.A.; Chorilli, M. Curcumin-loaded cationic solid lipid nanoparticles as a potential platform for the treatment of skin disorders. Pharmazie, 2017, 72(12), 721-727.
[PMID: 29441956]
[54]
Noor, N.M.; Sheikh, K.; Somavarapu, S.; Taylor, K.M.G. Preparation and characterization of dutasteride-loaded nanostructured lipid carriers coated with stearic acid-chitosan oligomer for topical delivery. Eur. J. Pharm. Biopharm., 2017, 117, 372-384.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.012] [PMID: 28412472]
[55]
Danaei, M.; Dehghankhold, M.; Ataei, S. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 2018, 10(2), 57.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[56]
Elimelech, M; Gregory, J; Jia, X; Williams, RA CHAPTER 6 - Modelling of aggregation processes 1995, 157-202.
[57]
Salminen, H.; Gömmel, C.; Leuenberger, B.H.; Weiss, J. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems. Food Chem., 2016, 190, 928-937.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.054] [PMID: 26213058]
[58]
Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives Front Pharmacol 2015, 6; 9- 30.
[http://dx.doi.org/10.3389/fphar.2015.00219]
[59]
Bouwstra, J.A.; Honeywell-Nguyen, P.L.; Gooris, G.S.; Ponec, M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res., 2003, 42(1), 1-36.
[http://dx.doi.org/10.1016/S0163-7827(02)00028-0] [PMID: 12467638]
[60]
Kirjavainen, M.; Mönkkönen, J.; Saukkosaari, M.; Valjakka-Koskela, R.; Kiesvaara, J.; Urtti, A. Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J. Control. Release, 1999, 58(2), 207-214.
[http://dx.doi.org/10.1016/S0168-3659(98)00152-7] [PMID: 10053193]
[61]
Gide, P.S.; Gidwani, S.K.; Kothule, K.U. Enhancement of transdermal penetration and bioavailability of poorly soluble acyclovir using solid lipid nanoparticles incorporated in gel cream. Indian J. Pharm. Sci., 2013, 75(2), 138-142.
[PMID: 24019560]
[62]
Jensen, L.B.; Petersson, K.; Nielsen, H.M. In vitro penetration properties of solid lipid nanoparticles in intact and barrier-impaired skin. Eur. J. Pharm. Biopharm., 2011, 79(1), 68-75.
[http://dx.doi.org/10.1016/j.ejpb.2011.05.012] [PMID: 21664463]
[63]
Küchler, S.; Radowski, M.R.; Blaschke, T. Nanoparticles for skin penetration enhancement-a comparison of a dendritic core multishell-nanotransporter and solid lipid nanoparticles. Eur. J. Pharm. Biopharm., 2009, 71(2), 243-250.
[http://dx.doi.org/10.1016/j.ejpb.2008.08.019] [PMID: 18796329]
[64]
Kato, A.; Ishibashi, Y.; Miyake, Y. Effect of egg yolk lecithin on transdermal delivery of bunazosin hydrochloride. J. Pharm. Pharmacol., 1987, 39(5), 399-400.
[http://dx.doi.org/10.1111/j.2042-7158.1987.tb03407.x] [PMID: 2886592]
[65]
El Maghraby, G.M.; Williams, A.C. Vesicular systems for delivering conventional small organic molecules and larger macromolecules to and through human skin. Expert Opin. Drug Deliv., 2009, 6(2), 149-163.
[http://dx.doi.org/10.1517/17425240802691059] [PMID: 19239387]
[66]
Liu, J.; Hu, W.; Chen, H.; Ni, Q.; Xu, H.; Yang, X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm., 2007, 328(2), 191-195.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.007] [PMID: 16978810]
[67]
Aboud, H.M.; El Komy, M.H.; Ali, A.A.; El Menshawe, S.F.; Abd Elbary, A. Development, Optimization, and Evaluation of Carvedilol Loaded Solid Lipid Nanoparticles for Intranasal Drug Delivery. AAPS PharmSciTech, 2016, 17(6), 1353-1365.
[http://dx.doi.org/10.1208/s12249-015-0440-8] [PMID: 26743643]
[68]
Vijayan, V.; Aafreen, S.; Sakthivel, S.; Reddy, K.R. Formulation and characterization of solid lipid nanoparticles loaded Neem oil for topical treatment of acne. J. Acute Dis., 2013, 2(4), 282-286.
[http://dx.doi.org/10.1016/S2221-6189(13)60144-4]
[69]
Puglia, C.; Bonina, F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin. Drug Deliv., 2012, 9(4), 429-441.
[http://dx.doi.org/10.1517/17425247.2012.666967] [PMID: 22394125]
[70]
Ricci, M.; Puglia, C.; Bonina, F.; Di Giovanni, C.; Giovagnoli, S.; Rossi, C. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies. J. Pharm. Sci., 2005, 94(5), 1149-1159.
[http://dx.doi.org/10.1002/jps.20335] [PMID: 15793804]
[71]
Wissing, S.A.; Müller, R.H. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity-in vivo study. Eur. J. Pharm. Biopharm., 2003, 56(1), 67-72.
[http://dx.doi.org/10.1016/S0939-6411(03)00040-7] [PMID: 12837483]
[72]
DE VRINGER T. AnonymousTopical preparation containing a suspension of solid lipid particles. European Patent Office EP0506197A1 1992.
[73]
Brian, C. Palmer, Lisa A. DeLouise. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules, 2016, 21(12)
[74]
Zhai, Y.; Zhai, G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J. Control. Release, 2014, 193, 90-99.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.054] [PMID: 24939745]
[75]
Jain, S.; Mittal, A.; Jain, A.K. Enhanced Topical Delivery of Cyclosporin-A Using PLGA Nanoparticles as Carrier. Curr. Nanosci., 2011, 7(4), 524-530.
[http://dx.doi.org/10.2174/157341311796196835]
[76]
Rhoades, R.; Bell, D.R. Medical physiology: principles for clinical medicine; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, 2013.
[77]
Harde, H; Agrawal, AK; Katariya, M; Kale, D; Jain, S Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability RSC Adv, 2015, 5(55), 43917-29..
[http://dx.doi.org/10.1039/C5RA06047H]
[78]
Desai, P.; Patlolla, R.R.; Singh, M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol. Membr. Biol., 2010, 27(7), 247-259.
[http://dx.doi.org/10.3109/09687688.2010.522203] [PMID: 21028936]
[80]
Escobar-Chávez, JJ; Rodríguez-Cruz, IM; Domínguez-Delgado, CL; Torres, RD; Revilla-Vázquez, AL; Aléncaster, NC Nanocarrier Systems for Transdermal Drug Delivery, 2012.
[81]
Hadgraft, J. Skin deep. Eur. J. Pharm. Biopharm., 2004, 58(2), 291-299.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.002] [PMID: 15296956]
[82]
Moser, K.; Kriwet, K.; Naik, A.; Kalia, Y.N.; Guy, R.H. Passive skin penetration enhancement and its quantification in vitro. Eur. J. Pharm. Biopharm., 2001, 52(2), 103-112.
[http://dx.doi.org/10.1016/S0939-6411(01)00166-7] [PMID: 11522474]
[83]
Scheuplein, RJ.; Blank, I.H. Permeability of the skin. Physiol. Rev., 1971, 51(4), 702-47.
[http://dx.doi.org/10.1152/physrev.1971.51.4.702] [PMID: 4940637]
[84]
Dragicevic, N.; Maibach, H.I. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Drug Manipulation Strategies and Vehicle Effects. In; Berlin, Heidelberg; Springer, 2015.
[85]
Patzelt, A.; Richter, H.; Knorr, F. Selective follicular targeting by modification of the particle sizes.J. Control. Release 2011, 150(1), 45-48.
[http://dx.doi.org/10.1016/j.jconrel.2010.11.015] [PMID: 21087645]
[86]
Shah, R.M.; Rajasekaran, D.; Ludford-Menting, M.; Eldridge, D.S.; Palombo, E.A.; Harding, I.H. Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells. Colloids Surf. B Biointerfaces, 2016, 140, 204-212.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.029] [PMID: 26764103]
[87]
Zhao, F.; Zhao, Y.; Liu, Y.; Chang, X.; Chen, C.; Zhao, Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 2011, 7(10), 1322-1337.
[http://dx.doi.org/10.1002/smll.201100001] [PMID: 21520409]
[88]
Alonso, M.J. Nanomedicines for overcoming biological barriers. Biomed. Pharmacother., 2004, 58(3), 168-172.
[http://dx.doi.org/10.1016/j.biopha.2004.01.007] [PMID: 15082339]
[89]
Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release, 2010, 145(3), 182-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[90]
Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci., 2009, 66(17), 2873-2896.
[http://dx.doi.org/10.1007/s00018-009-0053-z] [PMID: 19499185]
[91]
Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol., 1999, 17, 593-623.
[http://dx.doi.org/10.1146/annurev.immunol.17.1.593] [PMID: 10358769]
[92]
Rabinovitch, M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol., 1995, 5(3), 85-87.
[http://dx.doi.org/10.1016/S0962-8924(00)88955-2] [PMID: 14732160]
[93]
Gu, Y.; Yang, M.; Tang, X. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. J. Nanobiotechnology, 2018, 16(1), 68.
[http://dx.doi.org/10.1186/s12951-018-0389-3] [PMID: 30217198]
[94]
Conner, S.D.; Schmid, S.L. Regulated portals of entry into the cell. Nature, 2003, 422(6927), 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[95]
Doherty, G.J.; McMahon, H.T. Mechanisms of endocytosis. Annu. Rev. Biochem., 2009, 78, 857-902.
[http://dx.doi.org/10.1146/annurev.biochem.78.081307.110540] [PMID: 19317650]
[96]
Pucadyil, T.J.; Schmid, S.L. Conserved functions of membrane active GTPases in coated vesicle formation. Science, 2009, 325(5945), 1217-1220.
[http://dx.doi.org/10.1126/science.1171004] [PMID: 19729648]
[97]
Nagai, N.; Ogata, F.; Ishii, M.; Fukuoka, Y.; Otake, H.; Nakazawa, Y. Involvement of Endocytosis in the Transdermal Penetration Mechanism of Ketoprofen Nanoparticles Int J Mol Sci, 2018, 19(7)
[http://dx.doi.org/10.3390/ijms19072138]]
[98]
Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 31-39.
[http://dx.doi.org/10.1038/35036052] [PMID: 11413487]
[99]
Nabi, I.R. Cavin fever: regulating caveolae. Nat. Cell Biol., 2009, 11(7), 789-791.
[http://dx.doi.org/10.1038/ncb0709-789]
[100]
Schnitzer, J.E.; Liu, J.; Oh, P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J. Biol. Chem., 1995, 270(24), 14399-14404.
[http://dx.doi.org/10.1074/jbc.270.24.14399] [PMID: 7782301]
[101]
Guo, T.; Zhang, Y.; Zhao, J.; Zhu, C.; Feng, N. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology, 2015, 13(1), 47.
[http://dx.doi.org/10.1186/s12951-015-0107-3] [PMID: 26156035]
[102]
Oh, P.; Borgström, P.; Witkiewicz, H. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat. Biotechnol., 2007, 25(3), 327-337.
[http://dx.doi.org/10.1038/nbt1292] [PMID: 17334358]
[103]
Mercer, J.; Helenius, A. Virus entry by macropinocytosis. Nat. Cell Biol., 2009, 11(5), 510-520.
[http://dx.doi.org/10.1038/ncb0509-510] [PMID: 19404330]
[104]
Kerr, M.C.; Teasdale, R.D. Defining macropinocytosis. Traffic, 2009, 10(4), 364-371.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00878.x] [PMID: 19192253]
[105]
Jones, A.T. Macropinocytosis: searching for an endocytic identity and role in the uptake of cell penetrating peptides. J. Cell. Mol. Med., 2007, 11(4), 670-684.
[106]
Swanson, J.A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol., 2008, 9(8), 639-649.
[http://dx.doi.org/10.1038/nrm2447] [PMID: 18612320]
[107]
Sahay, G.; Batrakova, E.V.; Kabanov, A.V. Different internalization pathways of polymeric micelles and unimers and their effects on vesicular transport. Bioconjug. Chem., 2008, 19(10), 2023-2029.
[http://dx.doi.org/10.1021/bc8002315] [PMID: 18729494]
[108]
Zhang, J.; Purdon, C.H.; Smith, E.W. Solid Lipid Nanoparticles for Topical Drug Delivery. Am. J. Drug Deliv., 2006, 4(4), 215-220.
[http://dx.doi.org/10.2165/00137696-200604040-00004]
[109]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[110]
zur Mühlen, A.; Schwarz, C.; Mehnert, W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm., 1998, 45(2), 149-155.
[http://dx.doi.org/10.1016/S0939-6411(97)00150-1] [PMID: 9704911]
[111]
Schwarz, C.; Mehnert, W.; Lucks, J.S.; Müller, R.H. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J. Control. Release, 1994, 30(1), 83-96.
[http://dx.doi.org/10.1016/0168-3659(94)90047-7]
[112]
Baviskar, A. Influence of Various Process Variables and Formulation Excipients on the Engineering of Sertaconazole Solid Lipid Nanoparticles. IOSR J Pharm, 2016, 6(7), 51-63. [IOSRPHR]
[http://dx.doi.org/10.9790/3013-06715163]
[113]
Ebrahimi, H.A.; Javadzadeh, Y.; Hamidi, M.; Jalali, M.B. Repaglinide loaded solid lipid nanoparticles: effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles. Daru, 2015, 23(1), 46.
[http://dx.doi.org/10.1186/s40199-015-0128-3] [PMID: 26392174]
[114]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv., 2016, 23(6), 1912-1925.
[PMID: 25544602]
[115]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[116]
Sinko, P.J. Martin’s physical pharmacy and pharmaceutical sciences; Lippincott Williams & Wilkins: Philadelphia, 2006.
[117]
Zhao, Y; Xu, X; Wen, N; Song, R; Meng, Q; Guan, Y A Drug Carrier for Sustained Zero-Order Release of Peptide Therapeutics Sci Rep, 2017, 7(7)(1), 1-9.
[http://dx.doi.org/10.1038/s41598-017-05898-6]
[118]
Schwartz, J.B.; Simonelli, A.P.; Higuchi, W.I. Drug release from wax matrices. I. Analysis of data with first-order kinetics and with the diffusion-controlled model. J. Pharm. Sci., 1968, 57(2), 274-277.
[http://dx.doi.org/10.1002/jps.2600570206] [PMID: 5641671]
[119]
England, C.G.; Miller, M.C.; Kuttan, A.; Trent, J.O.; Frieboes, H.B. Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur. J. Pharm. Biopharm., 2015, 92, 120-129.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.017] [PMID: 25753197]
[120]
Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52(12), 1145-1149.
[http://dx.doi.org/10.1002/jps.2600521210] [PMID: 14088963]
[121]
Pardeshi, C.; Rajput, P.; Belgamwar, V. Solid lipid based nanocarriers: an overview. Acta Pharm., 2012, 62(4), 433-472.
[http://dx.doi.org/10.2478/v10007-012-0040-z] [PMID: 23333884]
[122]
Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. ‎. Int. J. Pharm., 1983, 15(1), 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]
[123]
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 1987, 5(1), 23-36.
[http://dx.doi.org/10.1016/0168-3659(87)90034-4]
[124]
Essaghraoui, A.; Belfkira, A.; Hamdaoui, B.; Nunes, C.; Lima, S.A.C.; Reis, S. Improved Dermal Delivery of Cyclosporine A Loaded in Solid Lipid Nanoparticles. Nanomaterials (Basel), 2019, 9(9), 1204.
[http://dx.doi.org/10.3390/nano9091204] [PMID: 31461853]
[125]
Ferreira, M.; Chaves, L.L.; Lima, S.A.C.; Reis, S. Optimization of nanostructured lipid carriers loaded with methotrexate: A tool for inflammatory and cancer therapy. Int. J. Pharm., 2015, 492(1-2), 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.013] [PMID: 26169145]
[126]
Emami, J. In vitro - in vivo correlation: from theory to applications. J. Pharm. Sci., 2006, 9(2), 169-189.
[PMID: 16959187]
[127]
Shen, J.; Burgess, D.J. In vitro-in vivo correlation for complex non-oral drug products: Where do we stand? J. Control. Release, 2015, 219, 644-651.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.052] [PMID: 26419305]
[128]
Wissing, S.A.; Müller, R.H. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J. Control. Release, 2002, 81(3), 225-233.
[http://dx.doi.org/10.1016/S0168-3659(02)00056-1] [PMID: 12044563]
[129]
Lippacher, A.; Müller, R.H.; Mäder, K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int. J. Pharm., 2001, 214(1-2), 9-12.
[http://dx.doi.org/10.1016/S0378-5173(00)00623-2] [PMID: 11282228]
[130]
Deshkar, S.S.; Bhalerao, S.G.; Jadhav, M.S.; Shirolkar, S.V. Formulation and Optimization of Topical Solid Lipid Nanoparticles based Gel of Dapsone Using Design of Experiment. Pharm. Nanotechnol., 2018, 6(4), 264-275.
[http://dx.doi.org/10.2174/2211738506666181105141522] [PMID: 30394227]
[131]
Yang, H.; Leffler, C.T. Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J. Ocul. Pharmacol. Ther., 2013, 29(2), 166-172.
[http://dx.doi.org/10.1089/jop.2012.0197] [PMID: 23249385]
[132]
Rostamkalaei, S.S.; Akbari, J.; Saeedi, M.; Morteza-Semnani, K.; Nokhodchi, A. Topical gel of Metformin solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Colloids Surf. B Biointerfaces, 2019, 175, 150-157.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.072] [PMID: 30530000]
[133]
Becker Peres, L.; Becker Peres, L.; de Araújo, P.H.H.; Sayer, C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf. B Biointerfaces, 2016, 140, 317-323.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.033] [PMID: 26764112]
[134]
Kopecek, J. Hydrogel biomaterials: a smart future? Biomaterials, 2007, 28(34), 5185-5192.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.044] [PMID: 17697712]
[135]
Carafa, M.; Marianecci, C.; Di Marzio, L. A new vesicle-loaded hydrogel system suitable for topical applications: preparation and characterization. J. Pharm. Pharm. Sci., 2011, 14(3), 336-346.
[http://dx.doi.org/10.18433/J3160B] [PMID: 21903019]
[136]
Gao, W.; Vecchio, D.; Li, J. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano, 2014, 8(3), 2900-2907.
[http://dx.doi.org/10.1021/nn500110a] [PMID: 24483239]
[137]
Rattanaruengsrikul, V.; Pimpha, N.; Supaphol, P. In vitro efficacy and toxicology evaluation of silver nanoparticle-loaded gelatin hydrogel pads as antibacterial wound dressings. J Appl Polym, 2012, 124(2), 1668-1682.
[http://dx.doi.org/10.1002/app.35195]
[138]
Raj, R.; Mongia, P.; Ram, A.; Jain, N.K. Enhanced skin delivery of aceclofenac via hydrogel-based solid lipid nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1434-1439.
[PMID: 25919063]
[139]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current Trends and Challenges in the Clinical Translation of Nanoparticulate Nanomedicines: Pathways for Translational Development and Commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[140]
Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials, 2003, 24(23), 4283-4300.
[http://dx.doi.org/10.1016/S0142-9612(03)00331-4] [PMID: 12853260]
[141]
Battaglia, L.; Gallarate, M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin. Drug Deliv., 2012, 9(5), 497-508.
[http://dx.doi.org/10.1517/17425247.2012.673278] [PMID: 22439808]
[142]
Mishra, D.K.; Shandilya, R.; Mishra, P.K. Lipid based nanocarriers: a translational perspective. Nanomedicine (Lond.), 2018, 14(7), 2023-2050.
[http://dx.doi.org/10.1016/j.nano.2018.05.021] [PMID: 29944981]
[143]
Marengo, E.; Cavalli, R.; Caputo, O.; Rodriguez, L.; Gasco, M.R. Scale-up of the preparation process of solid lipid nanospheres. Part I. Int. J. Pharm., 2000, 205(1-2), 3-13.
[http://dx.doi.org/10.1016/S0378-5173(00)00471-3] [PMID: 11000537]
[144]
Kakkar, V.; Kaur, I.P. Preparation, characterization and scale-up of sesamol loaded solid lipid nanoparticles. Nanotechnology Development, 2012, 2(1), 8.
[http://dx.doi.org/10.4081/nd.2012.e8]
[145]
Dingler, A.; Gohla, S. Production of solid lipid nanoparticles (SLN): scaling up feasibilities. J. Microencapsul., 2002, 19(1), 11-16.
[http://dx.doi.org/10.1080/02652040010018056] [PMID: 11811752]
[146]
El-Harati, A.A.; Charcosset, C.; Fessi, H. Influence of the formulation for solid lipid nanoparticles prepared with a membrane contactor. Pharm. Dev. Technol., 2006, 11(2), 153-157.
[http://dx.doi.org/10.1080/10837450600561182] [PMID: 16749525]
[147]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[148]
Djuris, J.; Djuric, Z. Modeling in the quality by design environment: Regulatory requirements and recommendations for design space and control strategy appointment. Int. J. Pharm., 2017, 533(2), 346-356.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.070] [PMID: 28579542]
[149]
Talluri, S.V.; Kuppusamy, G.; Karri, V.V. Application of quality-by-design approach to optimize diallyl disulfide-loaded solid lipid nanoparticles. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 474-488.
[http://dx.doi.org/10.3109/21691401.2016.1173046] [PMID: 27112220]
[150]
Agarwal, S.; Murthy, R.S.R.; Harikumar, S.L.; Garg, R. Quality by Design Approach for Development and Characterisation of Solid Lipid Nanoparticles of Quetiapine Fumarate. Curr Comput Aided Drug Des, 2020, 16(1), 73-91.
[http://dx.doi.org/10.2174/1573409915666190722122827] [PMID: 31429691]
[151]
Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv., 2017, 14(7), 851-864.
[http://dx.doi.org/10.1080/17425247.2016.1244187] [PMID: 27730820]
[152]
Rainer, H. Muller, Ranjita Shegokar, Cornelia M. Keck. 20 Years of Lipid Nanoparticles (SLN & NLC): Present State of Development & Industrial Applications. Curr. Drug Discov. Technol., 2011, 8(3), 207-227.
[http://dx.doi.org/10.2174/157016311796799062] [PMID: 21291409]
[155]
Ugazio, E.; Cavalli, R.; Gasco, M.R. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int. J. Pharm., 2002, 241(2), 341-344.
[http://dx.doi.org/10.1016/S0378-5173(02)00268-5] [PMID: 12100861]
[156]
Elnaggar, Y.S.; El-Massik, M.A.; Abdallah, O.Y. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles. Int. J. Nanomedicine, 2011, 6, 3195-3205.
[http://dx.doi.org/10.2147/IJN.S25825] [PMID: 22238508]
[157]
Tan, M; He, C; Jiang, W; Zeng, C; Yu, N; Huang, W Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia-reperfusion injury in rats Int J Nanomedicine 2017, 4-19(12), 3253-65..
[158]
Wiedenmann, V.; Oehlke, K.; van der Schaaf, U.; Koivula, H.M.; Mikkonen, K.S.; Karbstein, H.P. Emulsifier Composition of Solid Lipid Nanoparticles (SLN) Affects Mechanical and Barrier Properties of SLN-Protein Composite Films. J. Food Sci., 2019, 84(12), 3642-3652.
[http://dx.doi.org/10.1111/1750-3841.14950] [PMID: 31774560]
[159]
Qian, C.; Decker, E.A.; Xiao, H.; McClements, D.J. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int., 2013, 52(1), 342-349.
[http://dx.doi.org/10.1016/j.foodres.2013.03.035]
[160]
Trotta, M.; Debernardi, F.; Caputo, O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm., 2003, 257(1-2), 153-160.
[http://dx.doi.org/10.1016/S0378-5173(03)00135-2] [PMID: 12711170]
[161]
Wang, Y.; Wong, J.F.; Teng, X.; Lin, X.Z.; Yang, H. "Pulling" Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin. Nano Lett., 2003, 3(11), 1555-1559.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy