Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

PCF Based Formalin Detection by Exploring the Optical Properties in THz Regime

Author(s): Abdullah A.M. Bulbul*, Rayhan H. Jibon, Sumon K. Das, Tonmoy Roy, Avijit Saha and Mohammad B. Hossain

Volume 11, Issue 3, 2021

Published on: 25 May, 2020

Page: [314 - 321] Pages: 8

DOI: 10.2174/2210681210999200525171303

Price: $65

Abstract

Introduction: Ongoing amelioration of semiconductor nano-crystal in chemical sensing applications has led the Photonic Crystal Fiber (PCF) as the most appropriate candidate for chemical sensing. A PCF based sensor model has been proposed in this paper.

Objective: The aim of this model is to detect formalin at a high level of sensitivity.

Methods: This sensor model has been designed and simulated in COMSOL multiphysics to analyze the sensing performance based on the optical parameters such as relative sensitivity, confinement loss, and effective material loss. Formalin solution is placed into the core, and then the simulation is performed in the THz regime ranging from 1 to 2 THz to carry out the optical properties. Simulation data collected from COMSOL are used in Matlab to carry out the graphical representation of the optical parameters.

Results: Simulation results demonstrate that the sensor model inherits high relative sensitivity of approximately 77.71% at 1.8 THz. In addition to that, the proposed sensor exhibits zero confinement loss above 1.3 THz and very low effective material loss in the THz regime for the optimum model.

Conclusion: All the optical parameters maintain standard and desirable values in the THz regime. Besides, the flexible fabrication of the proposed model is feasible using existing fabrication methods. Simulation results validate the high performance of this proposed model in formalin detection.

Keywords: Confinement loss, formalin detection, PCF based detection, relative sensitivity, EML, optical properties.

Graphical Abstract

[1]
Iglesias, J.E.; Crampsie, S.; Strand, C.; Tachrount, M.; Thomas, D.L.; Holton, J.L. Effect of fluorinert on the histological properties of formalin-fixed human brain tissue. J. Neuropathol. Exp. Neurol., 2018, 77(12), 1085-1090.
[http://dx.doi.org/10.1093/jnen/nly098] [PMID: 30364998]
[2]
Abdu, H.; Kinfu, Y.; Agalu, A. Toxic effects of formaldehyde on the nervous system. Int. J. Anat. Physiol, 2014, 3, 50-59.
[3]
Hossain, M.B.; Hossain, M.M.; Rahaman, M.E.; Ali, M.Y.; Shekhar, H. Dual-Core liquid filled photonic crystal fiber coupler. IACSIT Int. J. Eng. Technol., 2017, 7(4), 5712-5719.
[4]
Podder, E.; Hossain, M.B.; Jibon, R.H.; Bulbul, A.A.M.; Mondal, H.S. Chemical sensing through photonic crystal fiber: Sulfuric acid detection. Front Optoelectron., 2019, 2019, 1-10.
[http://dx.doi.org/10.1007/s12200-019-0903-8]
[5]
Hossain, M.B.; Bulbul, A.A.M.; Mukit, M.A.; Podder, E. Analysis of optical properties for square, circular and hexagonal photonic crystal fiber. Opt. Photonics J., 2017, 7(11), 235-243.
[http://dx.doi.org/10.4236/opj.2017.711021]
[6]
Kumar, P.; Kumar, V.; Roy, J.S. Design of quad core photonic crystal fibers with flattened zero dispersion. AEU Int. J. Electron. Commun., 2019, 98, 265-272.
[http://dx.doi.org/10.1016/j.aeue.2018.11.014 ]
[7]
Kumar, C.S.; Anbazhagan, R. Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core. AEU Int. J. Electron. Commun., 2017, 72, 40-45.
[http://dx.doi.org/10.1016/j.aeue.2016.11.018]
[8]
Tameh, T.A.; Isfahani, B.M.; Granpayeh, N.; Javan, A.M. Improving the performance of all-optical switching based on nonlinear photonic crystal microring resonators. AEU Int. J. Electron. Commun., 2011, 65(4), 281-287.
[http://dx.doi.org/10.1016/j.aeue.2010.03.013]
[9]
Fini, J.M. Microstructure fibres for optical sensing in gases and liquids. Meas. Sci. Technol., 2004, 15(6), 1120.
[http://dx.doi.org/10.1088/0957-0233/15/6/011]
[10]
Wang, X.D.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2013-2015). Anal. Chem., 2016, 88(1), 203-227.
[http://dx.doi.org/10.1021/acs.analchem.5b04298] [PMID: 26575527]
[11]
Monro, T.M.; Richardson, D.J.; Bennett, P.J. Developing holey fibres for evanescent field devices. Electron. Lett., 1999, 35(14), 1188-1189.
[http://dx.doi.org/10.1049/el:19990780]
[12]
Otupiri, R.; Akowuah, E.K.; Haxha, S.; Ademgil, H.; AbdelMalek, F.; Aggoun, A. A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics J., 2014, 6(4), 1-11.
[http://dx.doi.org/10.1109/JPHOT.2014.2335716]
[13]
Podder, E.; Hossain, M.B.; Bulbul, A.A.M.; Mondal, H.S. Ethanol Detection Through Photonic Crystal Fiber. Proceedings of International Joint Conference on Computational Intelligence, 2020, pp. 175-182.
[http://dx.doi.org/10.1007/978-981-13-7564-4_15]
[14]
Saitoh, K.; Koshiba, M. Single-polarization single-mode photonic crystal fibers. IEEE Photonics Technol. Lett., 2003, 15(10), 1384-1386.
[http://dx.doi.org/10.1109/LPT.2003.818215]
[15]
Yamanari, M.; Makita, S.; Madjarova, V.D.; Yatagai, T.; Yasuno, Y. Fiber-based polarization-sensitive fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt. Express, 2006, 14(14), 6502-6515.
[http://dx.doi.org/10.1364/OE.14.006502] [PMID: 19516828]
[16]
Hossain, M.B.; Kabir, M.A.; Bulbul, A.A.M.; Podder, E.; Hossen, M.K. Optical parameters analysis of photonic crystal fiber with rectangular lattice geometry. J. Sci. Res. Rep., 2017, 2017, 1-8.
[http://dx.doi.org/10.9734/JSRR/2017/38510]
[17]
Ademgil, H. Highly sensitive octagonal photonic crystal fiber based sensor. Optik (Stuttg.), 2014, 125(20), 6274-6278.
[http://dx.doi.org/10.1016/j.ijleo.2014.08.018]
[18]
Asaduzzaman, S.; Ahmed, K.; Bhuiyan, T.; Farah, T. Hybrid photonic crystal fiber in chemical sensing. Springerplus, 2016, 5(1), 748.
[http://dx.doi.org/10.1186/s40064-016-2415-y] [PMID: 27386231]
[19]
Yang, X.; Lu, Y.; Liu, B.; Yao, J. Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics, 2017, 12(2), 489-496.
[http://dx.doi.org/10.1007/s11468-016-0289-z]
[20]
Cordeiro, C.M.; Franco, M.A.; Chesini, G.; Barretto, E.C.; Lwin, R.; Brito Cruz, C.H.; Large, M.C. Microstructured-core optical fibre for evanescent sensing applications. Opt. Express, 2006, 14(26), 13056-13066.
[http://dx.doi.org/10.1364/OE.14.013056] [PMID: 19532201]
[21]
Arif, M.F.H.; Biddut, M.J.H.; Ahmed, K.; Asaduzzaman, S. Simulation based analysis of formalin detection through photonic crystal fiber. In: 5th International Conference on Informatics, Electronics and Vision (ICIEV); IEEE, 2016; pp. 776-779.
[22]
Pinto, A.M.; Lopez-Amo, M. Photonic crystal fibers for sensing applications. J. Sensors, 2012, 2012, 598178.
[http://dx.doi.org/10.1155/2012/598178]
[23]
Sultana, J.; Islam, M.S.; Ahmed, K.; Dinovitser, A.; Ng, B.W.H.; Abbott, D. Terahertz detection of alcohol using a photonic crystal fiber sensor. Appl. Opt., 2018, 57(10), 2426-2433.
[http://dx.doi.org/10.1364/AO.57.002426] [PMID: 29714225]
[24]
Rana, S.; Kandadai, N.; Subbaraman, H. A highly sensitive, polarization maintaining photonic crystal fiber sensor operating in the THz regime.In Photonics, 2018, 5(4), 40.
[http://dx.doi.org/10.3390/photonics5040040]
[25]
Islam, M.S.; Sultana, J.; Dinovitser, A.; Ahmed, K.; Ng, B.W.H.; Abbott, D. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt. Commun., 2018, 426, 341-347.
[http://dx.doi.org/10.1016/j.optcom.2018.05.030]
[26]
Ahmed, K.; Ahmed, F.; Roy, S.; Paul, B.K.; Aktar, M.N.; Vigneswaran, D.; Islam, M.S. Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens. J., 2019, 19(9), 3368-3375.
[http://dx.doi.org/10.1109/JSEN.2019.2895166]
[27]
Bikash, K.P.; Md Shadidul, I.; Kawsar, A.; Sayed, A. Alcohol sensing over O+ E+ S+ C+ L+ U transmission band based on porous cored octagonal photonic crystal fiber. Photonic Sens., 2017, 7(2), 123-130.
[http://dx.doi.org/10.1007/s13320-017-0376-6]
[28]
Hossain, M.B.; Podder, E.; Bulbul, A.A.M.; Mondal, H.S. Bane chemicals detection through photonic crystal fiber in THz regime. Opt. Fiber Technol., 2020, 54, 102102.
[http://dx.doi.org/10.1016/j.yofte.2019.102102]
[29]
Yang, T.; Ding, C.; Ziolkowski, R.W.; Guo, Y.J. Circular hole ENZ photonic crystal fibers exhibit high birefringence. Opt. Express, 2018, 26(13), 17264-17278.
[http://dx.doi.org/10.1364/OE.26.017264] [PMID: 30119540]
[30]
Yu, Y.; Li, X.; Hong, X.; Deng, Y.; Song, K.; Geng, Y.; Wei, H.; Tong, W. Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling. Opt. Express, 2010, 18(15), 15383-15388.
[http://dx.doi.org/10.1364/OE.18.015383] [PMID: 20720916]
[31]
Cárdenas-Sevilla, G.A.; Finazzi, V.; Villatoro, J.; Pruneri, V. Photonic crystal fiber sensor array based on modes overlapping. Opt. Express, 2011, 19(8), 7596-7602.
[http://dx.doi.org/10.1364/OE.19.007596] [PMID: 21503068]
[32]
Hasan, M.M.; Sen, S.; Rana, M.J.; Paul, B.K.; Habib, M.A.; Daiyan, G.M.; Ahmed, K. Heptagonal photonic crystal fiber based chemical sensor in THz Regime. In: Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR); IEEE, 2019; pp. 40-44.
[http://dx.doi.org/10.1109/ICIEV.2019.8858555]
[33]
Wooster, G.A.; Martinez, C.M.; Bowser, P.R.; O’Hara, D.S. Human health risks associated with formalin treatments used in aquaculture: initial study. N. Am. J. Aquaculture, 2005, 67(2), 111-113.
[http://dx.doi.org/10.1577/A04-026.1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy