Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Systematic Review Article

A Systematic Literature Review of Curcumin with Promising Antileishmanial Activity

Author(s): Reza Saberi, Mahdi Fakhar*, Shabnam Asfaram , Javad Akhtari, Maryam Nakhaei and Masoud Keighobadi*

Volume 21, Issue 3, 2021

Published on: 24 May, 2020

Page: [363 - 369] Pages: 7

DOI: 10.2174/1871526520666200525013458

Price: $65

Abstract

Background: Curcumin (CUR) is a bright yellow chemical and it is used as an additive in foods. Recently CUR and its associated bioactive compounds have received much attention in the literature review. The aim of this systematic review is to overview the antileishmanial properties of CUR and its mechanism; perhaps the results of this study will be used for therapeutic and preventive purposes.

Methods: Following the PRISMA guidelines, international databases were systematically searched for studies published until September 2019. Articles related to the subject were selected and included in this systematic review.

Results: A total of 15 articles met our eligibility criteria. Then, the effect of CUR and its associated bioactive compounds on Leishmania species was evaluated. In most studies, CUR/derivatives were tested on L. major and in vitro condition. Most investigations were conducted on the promastigote rather than the more relevant intracellular amastigote stage. Our results showed that CUR overcomes the inhibitory effect of nitric oxide (NO) on Leishmania parasites.

Conclusion: This review indicated that CUR derivatives, instead of CUR alone showed a high potential to serve as an effective herbal drug against leishmaniasis. Moreover, we concluded that the antileishmanial activity of CUR/bioactive compounds is mostly due to increased oxidative stress and apoptosis.

Keywords: Leishmania, curcumin, herbal medicine, nanoparticle, systematic review, antileishmanial.

Graphical Abstract

[1]
Roberts, M.T. Current understandings on the immunology of leishmaniasis and recent developments in prevention and treatment. Br. Med. Bull., 2006, 75-76(1), 115-130.
[http://dx.doi.org/10.1093/bmb/ldl003] [PMID: 16847165]
[2]
Desjeux, P. Leishmaniasis. Public health aspects and control. Clin. Dermatol., 1996, 14(5), 417-423.
[http://dx.doi.org/10.1016/0738-081X(96)00057-0] [PMID: 8889319]
[3]
World Health Organization. Available from: http://www.who.int/mediacentre/factsheets/fs375/en/ (accessed 15 May 2018).
[4]
Berman, J.D. Treatment of New World cutaneous and mucosal leishmaniases. Clin. Dermatol., 1996, 14(5), 519-522.
[http://dx.doi.org/10.1016/0738-081X(96)00048-X] [PMID: 8889330]
[5]
Calderon, L.D.; Silva-Jardim, I.; Zuliani, J.P.; Ciancaglini, P.; Silva, L.H.; Stábeli, R.G. Amazonian biodiversity: a view of drug development for leishmaniasis and malaria. J BRAZIL CHEM SOC., 2009, 20(6), 1011-1023.
[http://dx.doi.org/10.1590/S0103-50532009000600003]
[6]
Seidi, Z. The evaluation of herbal medicine efficacy on cutaneous leishmaniasis. Rev Clin Med., 2014, 1(3), 109-114.
[7]
Chaturvedi, T.P. Uses of turmeric in dentistry: an update. Indian J. Dent. Res., 2009, 20(1), 107-109.
[http://dx.doi.org/10.4103/0970-9290.49065] [PMID: 19336870]
[8]
Chattopadhyay, I.; Biswas, K.; Bandyopadhyay, U.; Banerjee, R.K. Turmeric and CUR: Biological actions and medicinal applications. Curr., 2004, 87, 44-53.
[9]
Selvam, R.; Subramanian, L.; Gayathri, R.; Angayarkanni, N. The anti-oxidant activity of turmeric (Curcuma longa). J. Ethnopharmacol., 1995, 47(2), 59-67.
[http://dx.doi.org/10.1016/0378-8741(95)01250-H] [PMID: 7500637]
[10]
Yadav, R.P.; Tarun, G. Versatility of turmeric: A review the golden spice of life. J Pharmacogn Phytochem., 2017, 6(1), 41-46.
[11]
Madane, R.G.; Mahajan, H.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv., 2016, 23(4), 1326-1334.
[PMID: 25367836]
[12]
Feng, J.Y.; Liu, Z.Q. Phenolic and enolic hydroxyl groups in curcumin: which plays the major role in scavenging radicals? J. Agric. Food Chem., 2009, 57(22), 11041-11046.
[http://dx.doi.org/10.1021/jf902244g] [PMID: 19736944]
[13]
Bairwa, K.; Grover, J.; Kania, M.; Jachak, S.M. Recent developments in chemistry and biology of CUR analogues. RSC Advances, 2014, 4(27), 13946-13978.
[http://dx.doi.org/10.1039/c4ra00227j]
[14]
Shen, L.; Ji, H.F. The pharmacology of curcumin: is it the degradation products? Trends Mol. Med., 2012, 18(3), 138-144.
[http://dx.doi.org/10.1016/j.molmed.2012.01.004] [PMID: 22386732]
[15]
Jeenger, M.K.; Shrivastava, S.; Yerra, V.G.; Naidu, V.G.; Ramakrishna, S.; Kumar, A. Curcumin: a pleiotropic phytonutrient in diabetic complications. Nutrition, 2015, 31(2), 276-282.
[http://dx.doi.org/10.1016/j.nut.2014.06.015] [PMID: 25441584]
[16]
Mwangi, V.I.; Mumo, R.M.; Nyachieo, A.; Onkoba, N. Herbal medicine in the treatment of poverty associated parasitic diseases: A case of sub-Saharan Africa. J. Herb. Med., 2017, 10, 1-7.
[http://dx.doi.org/10.1016/j.hermed.2017.03.002]
[17]
Araujo, C.A.; Alegrio, L.V.; Gomes, D.C.; Lima, M.E.; Gomes-Cardoso, L.; Leon, L.L. Studies on the effectiveness of diarylheptanoids derivatives against Leishmania amazonensis. Mem. Inst. Oswaldo Cruz, 1999, 94(6), 791-794.
[http://dx.doi.org/10.1590/S0074-02761999000600015] [PMID: 10585657]
[18]
Saleheen, D.; Ali, S.A.; Ashfaq, K.; Siddiqui, A.A.; Agha, A.; Yasinzai, M.M. Latent activity of curcumin against leishmaniasis in vitro. Biol. Pharm. Bull., 2002, 25(3), 386-389.
[http://dx.doi.org/10.1248/bpb.25.386] [PMID: 11913540]
[19]
Gomes, Dde.C.; Alegrio, L.V.; Leon, L.L.; de Lima, M.E. Total synthesis and anti-leishmanial activity of some curcumin analogues. Arzneimittelforschung, 2002, 52(9), 695-698.
[PMID: 12404885]
[20]
Koide, T.; Nose, M.; Ogihara, Y.; Yabu, Y.; Ohta, N. Leishmanicidal effect of curcumin in vitro. Biol. Pharm. Bull., 2002, 25(1), 131-133.
[http://dx.doi.org/10.1248/bpb.25.131] [PMID: 11824543]
[21]
Alves, L.V.; Temporal, R.M.; Cysne-Finkelstein, L.; Leon, L.L. Efficacy of a diarylheptanoid derivative against Leishmania amazonensis. Mem. Inst. Oswaldo Cruz, 2003, 98(4), 553-555.
[http://dx.doi.org/10.1590/S0074-02762003000400024] [PMID: 12937773]
[22]
Chan, M.M.; Adapala, N.S.; Fong, D. Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania. Parasitol. Res., 2005, 96(1), 49-56.
[http://dx.doi.org/10.1007/s00436-005-1323-9] [PMID: 15772867]
[23]
Das, R.; Roy, A.; Dutta, N.; Majumder, H.K. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis, 2008, 13(7), 867-882.
[http://dx.doi.org/10.1007/s10495-008-0224-7] [PMID: 18506627]
[24]
Bahrami, A.M. Antileishmanial effects of traditional herbal extracts against cutaneous leishmaniosis in vivo. Adv. Environ. Biol., 2011, 5(10), 3188-3195.
[25]
Fouladvand, M.; Barazesh, A.; Tahmasebi, R. Evaluation of in vitro antileishmanial activity of CUR and its derivatives “gallium CUR.; indium CUR and diacethyle CUR”. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(24), 3306-3308.
[PMID: 24379060]
[26]
Amaral, A.C.; Gomes, L.A.; Silva, J.R.; Ferreira, J.L.; Ramos, Ade.S.; Rosa, Mdo.S.; Vermelho, A.B.; Rodrigues, I.A. Liposomal formulation of turmerone-rich hexane fractions from Curcuma longa enhances their antileishmanial activity. BioMed Res. Int., 2014, 2014, 694934.
[http://dx.doi.org/10.1155/2014/694934] [PMID: 25045693]
[27]
Tiwari, B.; Pahuja, R.; Kumar, P.; Rath, S.K.; Gupta, K.C.; Goyal, N. Nanotized CUR and miltefosine.; a potential combination for treatment of experimental visceral leishmaniasis. Antimicrob. Agents Chemother., 2017, 61(3), e01169-e16.
[http://dx.doi.org/10.1128/AAC.01169-16] [PMID: 28031196]
[28]
Pinto, J.G.; Fontana, L.C.; de Oliveira, M.A.; Kurachi, C.; Raniero, L.J.; Ferreira-Strixino, J. in vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis. Lasers Med. Sci., 2016, 31(5), 883-890.
[http://dx.doi.org/10.1007/s10103-016-1928-5] [PMID: 27056699]
[29]
Chaubey, P.; Mishra, B.; Mudavath, S.L.; Patel, R.R.; Chaurasia, S.; Sundar, S.; Suvarna, V.; Monteiro, M. Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. Int. J. Biol. Macromol., 2018, 111, 109-120.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.143] [PMID: 29307805]
[30]
Khanra, S.; Kumar, Y.P.; Dash, J.; Banerjee, R. In vitro screening of known drugs identified by scaffold hopping techniques shows promising leishmanicidal activity for suramin and netilmicin. BMC Res. Notes, 2018, 11(1), 319.
[http://dx.doi.org/10.1186/s13104-018-3446-y] [PMID: 29784022]
[31]
Chauhan, I.S.; Rao, G.S.; Shankar, J.; Chauhan, L.K.S.; Kapadia, G.J.; Singh, N. Chemoprevention of Leishmaniasis: In-vitro antiparasitic activity of dibenzalacetone, a synthetic curcumin analog leads to apoptotic cell death in Leishmania donovani. Parasitol. Int., 2018, 67(5), 627-636.
[http://dx.doi.org/10.1016/j.parint.2018.06.004] [PMID: 29913255]
[32]
Soosaraei, M.; Fakhar, M.; Hosseini Teshnizi, S.; Ziaei Hezarjaribi, H.; Banimostafavi, E.S. Medicinal plants with promising antileishmanial activity in Iran: a systematic review and meta-analysis. Ann. Med. Surg. (Lond.), 2017, 21, 63-80.
[http://dx.doi.org/10.1016/j.amsu.2017.07.057] [PMID: 28794869]
[33]
Ponte-Sucre, A.; Gamarro, F.; Dujardin, J.C.; Barrett, M.P.; López-Vélez, R.; García-Hernández, R.; Pountain, A.W.; Mwenechanya, R.; Papadopoulou, B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neg Trop Dis, 2017, 11(12), e0006052.
[34]
Alvar, J.; Croft, S.; Olliaro, P. Chemotherapy in the treatment and control of leishmaniasis. Adv. Parasitol., 2006, 61, 223-274.
[http://dx.doi.org/10.1016/S0065-308X(05)61006-8] [PMID: 16735166]
[35]
Kedzierski, L.; Sakthianandeswaren, A.; Curtis, J.M.; Andrews, P.C.; Junk, P.C.; Kedzierska, K. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr. Med. Chem., 2009, 16(5), 599-614.
[http://dx.doi.org/10.2174/092986709787458489] [PMID: 19199925]
[36]
Ramadan, G.; Al-Kahtani, M.A.; El-Sayed, W.M. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis. Inflammation, 2011, 34(4), 291-301.
[http://dx.doi.org/10.1007/s10753-010-9278-0] [PMID: 21120596]
[37]
Ali, S.; Sotheeswaran, S.; Tuiwawa, M.; Smith, R.M. Comparison of the composition of the essential oils of Alpinia and Hedychium species—essential oils of Fijian plants, part 1. J. Essent. Oil Res., 2002, 14(6), 409-411.
[http://dx.doi.org/10.1080/10412905.2002.9699904]
[38]
Changtam, C.; de Koning, H.P.; Ibrahim, H.; Sajid, M.S.; Gould, M.K.; Suksamrarn, A. Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species. Eur. J. Med. Chem., 2010, 45(3), 941-956.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.035] [PMID: 20004045]
[39]
Umerska, A.; Gaucher, C.; Oyarzun-Ampuero, F.; Fries-Raeth, I.; Colin, F.; Villamizar-Sarmiento, M.G.; Maincent, P.; Sapin-Minet, A. Polymeric nanoparticles for increasing oral bioavailability of curcumin. Antioxidants, 2018, 7(4), 46.
[http://dx.doi.org/10.3390/antiox7040046] [PMID: 29587350]
[40]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[41]
Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Anasane, N.; Santos, C.A.D. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev. Anti Infect. Ther., 2020, 18(4), 367-379.
[http://dx.doi.org/10.1080/14787210.2020.1730815] [PMID: 32067524]
[42]
Nagajyothi, F.; Zhao, D.; Weiss, L.M.; Tanowitz, H.B. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol. Res., 2012, 110(6), 2491-2499.
[http://dx.doi.org/10.1007/s00436-011-2790-9] [PMID: 22215192]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy