Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Insights into Transdermal Drug Delivery: Approaches for Redressal of a Burgeoning Issue of Osteoporosis

Author(s): Foziyah Zakir, Kanchan Kohli*, Farhan J. Ahmad, Zeenat Iqbal and Adil Ahmad

Volume 20, Issue 10, 2020

Page: [1682 - 1695] Pages: 14

DOI: 10.2174/1871530320666200520100327

Price: $65

Abstract

Osteoporosis is a progressive bone disease that remains unnoticed until a fracture occurs. It is more predominant in the older age population, particularly in females due to reduced estrogen levels and ultimately limited calcium absorption. The cost burden of treating osteoporotic fractures is too high, therefore, primary focus should be treatment at an early stage. Most of the marketed drugs are available as oral delivery dosage forms. The complications, as well as patient non-compliance, limit the use of oral therapy for prolonged drug delivery. Transdermal delivery systems seem to be a promising approach for the delivery of anti-osteoporotic active moieties. One of the confronting barriers is the passage of drugs through the SC layers followed by penetration to deeper dermal layers. The review focuses on how anti-osteoporotic drugs can be molded through different approaches so that they can be exploited for the skin to systemic delivery. Insights into the various challenges in transdermal delivery and how the novel delivery system can be used to overcome these have also been detailed.

Keywords: Drug delivery, nanotechnology, osteoporosis, skin, transdermal drug delivery system, burgeoning issue.

Graphical Abstract

[1]
Gullberg, B.; Johnell, O.; Kanis, J.A. World-wide projections for hip fracture. Osteoporos. Int., 1997, 7(5), 407-413.
[http://dx.doi.org/10.1007/PL00004148] [PMID: 9425497]
[2]
Sözen, T.; Özışık, L.; Başaran, N.C. An overview and management of osteoporosis. Eur. J. Rheumatol., 2017, 4(1), 46-56.
[http://dx.doi.org/10.5152/eurjrheum.2016.048] [PMID: 28293453]
[3]
Khajuria, D.K.; Razdan, R.; Mahapatra, D.R. Drugs for the management of osteoporosis: a review. Rev. Bras. Reumatol., 2011, 51(4), 365-371, 379-382.
[PMID: 21779712]
[4]
Hadjidakis, D.J.; Androulakis, I.I. Bone remodeling. Ann. N. Y. Acad. Sci., 2006, 1092, 385-396.
[http://dx.doi.org/10.1196/annals.1365.035] [PMID: 17308163]
[5]
Caetano-Lopes, J.; Canhão, H.; Fonseca, J.E. Osteoblasts and bone formation. Acta Reumatol. Port., 2007, 32(2), 103-110.
[PMID: 17572649]
[6]
Tanaka, Y.; Nakayamada, S.; Okada, Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy, 2005, 4(3), 325-328.
[http://dx.doi.org/10.2174/1568010054022015] [PMID: 16101541]
[7]
Itzstein, C.; Coxon, F.P.; Rogers, M.J. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases, 2011, 2(3), 117-130.
[http://dx.doi.org/10.4161/sgtp.2.3.16453] [PMID: 21776413]
[8]
Capulli, M.; Paone, R.; Rucci, N. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys., 2014, 561, 3-12.
[http://dx.doi.org/10.1016/j.abb.2014.05.003] [PMID: 24832390]
[9]
Gruber, H.E.; Ivey, J.L.; Thompson, E.R.; Chesnut, C.H., III; Baylink, D.J. Osteoblast and osteoclast cell number and cell activity in postmenopausal osteoporosis. Miner. Electrolyte Metab., 1986, 12(4), 246-254.
[PMID: 3762511]
[10]
Martin, T.J.; Sims, N.A. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol. Med., 2005, 11(2), 76-81.
[http://dx.doi.org/10.1016/j.molmed.2004.12.004] [PMID: 15694870]
[11]
Sims, N.A.; Gooi, J.H. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol., 2008, 19(5), 444-451.
[http://dx.doi.org/10.1016/j.semcdb.2008.07.016] [PMID: 18718546]
[12]
Mundy, G.R.; Mundy, M.D. Pathogenesis of osteoporosis and challenges for drug delivery. Adv. Drug Deliv. Rev., 2000, 42(3), 165-173.
[http://dx.doi.org/10.1016/S0169-409X(00)00060-0] [PMID: 10963834]
[13]
Seeman, E. Invited Review: Pathogenesis of osteoporosis. J. Appl. Physiol., 2003, 95(5), 2142-2151.
[http://dx.doi.org/10.1152/japplphysiol.00564.2003] [PMID: 14555675]
[14]
Rogers, M.J.; Gordon, S.; Benford, H.L.; Coxon, F.P.; Luckman, S.P.; Monkkonen, J.; Frith, J.C. Cellular and molecular mechanisms of action of bisphosphonates. Cancer, 2000, 88(Suppl. 12), 2961-2978.
[http://dx.doi.org/ 10.1002/1097-0142(20000615)88:12+<2961:aid-cncr12>3.3.co;2-c] [PMID: 10898340]
[15]
Russell, R.G.G.; Watts, N.B.; Ebetino, F.H.; Rogers, M.J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos. Int., 2008, 19(6), 733-759.
[http://dx.doi.org/10.1007/s00198-007-0540-8] [PMID: 18214569]
[16]
Zhang, Y.; Dusad, A.; Ren, K. Drug delivery strategies for treating osteoporosis. Orthopedic Muscul. Sys, 2014, S2-003.
[17]
Cramer, J.A.; Gold, D.T.; Silverman, S.L.; Lewiecki, E.M. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos. Int., 2007, 18(8), 1023-1031.
[http://dx.doi.org/10.1007/s00198-006-0322-8] [PMID: 17308956]
[18]
Green, J.; Czanner, G.; Reeves, G.; Watson, J.; Wise, L.; Beral, V. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case-control analysis within a UK primary care cohort. BMJ, 2010, 341, c4444.
[http://dx.doi.org/10.1136/bmj.c4444] [PMID: 20813820]
[19]
Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc., 2008, 83(9), 1032-1045.
[http://dx.doi.org/10.4065/83.9.1032] [PMID: 18775204]
[20]
Novack, D.V. Estrogen and bone: osteoclasts take center stage. Cell Metab., 2007, 6(4), 254-256.
[http://dx.doi.org/10.1016/j.cmet.2007.09.007] [PMID: 17908554]
[21]
Dobbs, M.B.; Buckwalter, J.; Saltzman, C. Osteoporosis: The increasing role of the orthopaedist. Iowa Orthop. J., 1999, 19, 43-52.
[PMID: 10847516]
[22]
Marcelli, C. Reasonable osteoporosis prevention: hormone replacement therapy, SERM, or bisphosphonate? Joint Bone Spine, 2000, 67(6), 579-581.
[http://dx.doi.org/10.1016/S1297-319X(00)00209-8] [PMID: 11195328]
[23]
Crook, D. The metabolic consequences of treating postmenopausal women with non-oral hormone replacement therapy. Br. J. Obstet. Gynaecol., 1997, 104(Suppl. 16), 4-13.
[http://dx.doi.org/10.1111/j.1471-0528.1997.tb11561.x] [PMID: 9389777]
[24]
Scott, J.A.; Da Camara, C.C.; Early, J.E. Raloxifene: A selective estrogen receptor modulator. Am. Fam. Physician, 1999, 60(4), 1131-1139.
[PMID: 10507743]
[25]
An, K.C. Selective estrogen receptor modulators. Asian Spine J., 2016, 10(4), 787-791.
[http://dx.doi.org/10.4184/asj.2016.10.4.787] [PMID: 27559463]
[26]
Muñoz-Torres, M.; Alonso, G.; Raya, M.P. Calcitonin therapy in osteoporosis. Treat. Endocrinol., 2004, 3(2), 117-132.
[http://dx.doi.org/10.2165/00024677-200403020-00006] [PMID: 15743107]
[27]
Lee, Y.H.; Sinko, P.J. Oral delivery of salmon calcitonin. Adv. Drug Deliv. Rev., 2000, 42(3), 225-238.
[http://dx.doi.org/10.1016/S0169-409X(00)00063-6] [PMID: 10963837]
[28]
Pappa, H.M.; Saslowsky, T.M.; Filip-Dhima, R.; DiFabio, D.; Hassani Lahsinoui, H.; Akkad, A.; Grand, R.J.; Gordon, C.M. Efficacy and harms of nasal calcitonin in improving bone density in young patients with inflammatory bowel disease: A randomized, placebo-controlled, double-blind trial. Am. J. Gastroenterol., 2011, 106(8), 1527-1543.
[http://dx.doi.org/10.1038/ajg.2011.129] [PMID: 21519359]
[29]
Cheng, M.L.; Gupta, V. Teriparatide - Indications beyond osteoporosis. Indian J. Endocrinol. Metab., 2012, 16(3), 343-348.
[http://dx.doi.org/10.4103/2230-8210.95661] [PMID: 22629497]
[30]
Bodenner, D.; Redman, C.; Riggs, A. Teriparatide in the management of osteoporosis. Clin. Interv. Aging, 2007, 2(4), 499-507.
[PMID: 18225450]
[31]
Jia, Z.; Zhang, Y.; Chen, Y.H.; Dusad, A.; Yuan, H.; Ren, K.; Li, F.; Fehringer, E.V.; Purdue, P.E.; Goldring, S.R.; Daluiski, A.; Wang, D. Simvastatin prodrug micelles target fracture and improve healing. J. Control. Release, 2015, 200, 23-34.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.028] [PMID: 25542644]
[32]
Ponnapakkam, T.; Katikaneni, R.; Sakon, J.; Stratford, R.; Gensure, R.C. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discov. Today, 2014, 19(3), 204-208.
[http://dx.doi.org/10.1016/j.drudis.2013.07.015] [PMID: 23932952]
[33]
Borba, V.Z.C.; Mañas, N.C.P. The use of PTH in the treatment of osteoporosis. Arq. Bras. Endocrinol. Metabol, 2010, 54(2), 213-219.
[http://dx.doi.org/10.1590/S0004-27302010000200018] [PMID: 20485911]
[34]
Carroll, M.F.; Schade, D.S. A practical approach to hypercalcemia. Am. Fam. Physician, 2003, 67(9), 1959-1966.
[PMID: 12751658]
[35]
Min, H.; Morony, S.; Sarosi, I.; Dunstan, C.R.; Capparelli, C.; Scully, S.; Van, G.; Kaufman, S.; Kostenuik, P.J.; Lacey, D.L.; Boyle, W.J.; Simonet, W.S. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med., 2000, 192(4), 463-474.
[http://dx.doi.org/10.1084/jem.192.4.463] [PMID: 10952716]
[36]
Asafo-Adjei, T.A.; Chen, A.J.; Najarzadeh, A.; Puleo, D.A. Advances in controlled drug delivery for treatment of osteoporosis. Curr. Osteoporos. Rep., 2016, 14(5), 226-238.
[http://dx.doi.org/10.1007/s11914-016-0321-4] [PMID: 27502334]
[37]
Romeo, V.D.; deMeireles, J.; Sileno, A.P.; Pimplaskar, H.K.; Behl, C.R. Effects of physicochemical properties and other factors on systemic nasal drug delivery. Adv. Drug Deliv. Rev., 1998, 29(1-2), 89-116.
[http://dx.doi.org/10.1016/S0169-409X(97)00063-X] [PMID: 10837582]
[38]
Isaac, M.; Holvey, C. Transdermal patches: the emerging mode of drug delivery system in psychiatry. Ther. Adv. Psychopharmacol., 2012, 2(6), 255-263.
[http://dx.doi.org/10.1177/2045125312458311] [PMID: 23983984]
[39]
Wiedersberg, S.; Guy, R.H. Transdermal drug delivery: 30+ years of war and still fighting! J. Control. Release, 2014, 190, 150-156.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.022] [PMID: 24852092]
[40]
Chandrashekar, N.S.; Shobha Rani, R.H. Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian J. Pharm. Sci., 2008, 70(1), 94-96.
[http://dx.doi.org/10.4103/0250-474X.40340] [PMID: 20390089]
[41]
Posadowska, U.; Parizek, M.; Filova, E.; Wlodarczyk-Biegun, M.; Kamperman, M.; Bacakova, L.; Pamula, E. Injectable nanoparticle-loaded hydrogel system for local delivery of sodium alendronate. Int. J. Pharm., 2015, 485(1-2), 31-40.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.003] [PMID: 25747455]
[42]
Graziottin, A. Safety, efficacy and patient acceptability of the combined estrogen and progestin transdermal contraceptive patch: A review. Patient Prefer. Adherence, 2008, 2, 357-367.
[http://dx.doi.org/10.2147/PPA.S3233] [PMID: 19920983]
[43]
Kretsos, K.; Kasting, G.B. A geometrical model of dermal capillary clearance. Math. Biosci., 2007, 208(2), 430-453.
[http://dx.doi.org/10.1016/j.mbs.2006.10.012] [PMID: 17303187]
[44]
Isoniemi, H.; Appelberg, J.; Nilsson, C.G.; Mäkelä, P.; Risteli, J.; Höckerstedt, K. Transdermal oestrogen therapy protects postmenopausal liver transplant women from osteoporosis. A 2-year follow-up study. J. Hepatol., 2001, 34(2), 299-305.
[http://dx.doi.org/10.1016/S0168-8278(00)00067-2] [PMID: 11281560]
[45]
Yang, L.; Wu, L.; Wu, D.; Shi, D.; Wang, T.; Zhu, X. Mechanism of transdermal permeation promotion of lipophilic drugs by ethosomes. Int. J. Nanomedicine, 2017, 12, 3357-3364.
[http://dx.doi.org/10.2147/IJN.S134708] [PMID: 28490875]
[46]
Chen, J.; Jiang, Q.D.; Chai, Y.P.; Zhang, H.; Peng, P.; Yang, X.X. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules, 2016, 21(12)E1709
[http://dx.doi.org/10.3390/molecules21121709] [PMID: 27973428]
[47]
Marwah, H.; Garg, T.; Goyal, A.K.; Rath, G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv., 2016, 23(2), 564-578.
[http://dx.doi.org/10.3109/10717544.2014.935532] [PMID: 25006687]
[48]
Ng, K.W. Penetration enhancement of topical formulations. Pharmaceutics, 2018, 10(2)E51
[http://dx.doi.org/10.3390/pharmaceutics10020051] [PMID: 29673184]
[49]
Kusamori, K.; Katsumi, H.; Abe, M.; Ueda, A.; Sakai, R.; Hayashi, R.; Hirai, Y.; Quan, Y.S.; Kamiyama, F.; Sakane, T.; Yamamoto, A. Development of a novel transdermal patch of alendronate, a nitrogen-containing bisphosphonate, for the treatment of osteoporosis. J. Bone Miner. Res., 2010, 25(12), 2582-2591.
[http://dx.doi.org/10.1002/jbmr.147] [PMID: 20533374]
[50]
Choi, A.; Gang, H.; Chun, I.; Gwak, H. The effects of fatty acids in propylene glycol on the percutaneous absorption of alendronate across the excised hairless mouse skin. Int. J. Pharm., 2008, 357(1-2), 126-131.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.050] [PMID: 18329198]
[51]
Chauhan, I.; Bajpa, M. Formulation and evaluation of transdermal drug delivery of raloxifene hydrochloride. IJPSR, 2010, 1(12), 72-79.
[52]
Nam, S.H.; Xu, Y.J.; Nam, H.; Jin, G.W.; Jeong, Y.; An, S.; Park, J.S. Ion pairs of risedronate for transdermal delivery and enhanced permeation rate on hairless mouse skin. Int. J. Pharm., 2011, 419(1-2), 114-120.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.027] [PMID: 21807082]
[53]
Pasqualone, M.; Andreetta, H.A.; Cortizo, M.S. Risedronate transdermal delivery system based on a fumaric copolymer for therapy of osteoporosis. Mater. Sci. Eng. C, 2017, 76, 652-658.
[http://dx.doi.org/10.1016/j.msec.2017.03.147] [PMID: 28482575]
[54]
Shifren, J.L.; Desindes, S.; McIlwain, M.; Doros, G.; Mazer, N.A. A randomized, open-label, crossover study comparing the effects of oral versus transdermal estrogen therapy on serum androgens, thyroid hormones, and adrenal hormones in naturally menopausal women. Menopause, 2007, 14(6), 985-994.
[http://dx.doi.org/10.1097/gme.0b013e31803867a] [PMID: 17507833]
[55]
Lufkin, E.G.; Wahner, H.W.; O’Fallon, W.M.; Hodgson, S.F.; Kotowicz, M.A.; Lane, A.W.; Judd, H.L.; Caplan, R.H.; Riggs, B.L. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med., 1992, 117(1), 1-9. Kopper, N.W.; Gudeman, J.; Thompson, D.J. Transdermal hormone therapy in postmenopausal women: A review of metabolic effects and drug delivery technologies. Drug Des. Devel. Ther., 2008, 2, 193-202.
[56]
Kopper, N.W.; Gudeman, J.; Thompson, D.J. Transdermal hormone therapy in postmenopausal women: a review of metabolic effects and drug delivery technologies. Drug Des. Devel. Ther., 2009, 2, 193-202.
[PMID: 19920906]
[57]
Liu, B. Is transdermal menopausal hormone therapy a safer option than oral therapy? CMAJ, 2013, 185(7), 549-550.
[http://dx.doi.org/10.1503/cmaj.130004] [PMID: 23509132]
[58]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[59]
Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: history, development and pharmacology. Br. J. Pharmacol., 2015, 172(9), 2179-2209.
[http://dx.doi.org/10.1111/bph.13059] [PMID: 25560046]
[60]
Rawat, S.; Vengurlekar, S.; Rakesh, B.; Jain, S.; Srikarti, G. Transdermal delivery by iontophoresis. Indian J. Pharm. Sci., 2008, 70(1), 5-10.
[http://dx.doi.org/10.4103/0250-474X.40324] [PMID: 20390073]
[61]
Dhote, V.; Bhatnagar, P.; Mishra, P.K.; Mahajan, S.C.; Mishra, D.K. Iontophoresis: a potential emergence of a transdermal drug delivery system. Sci. Pharm., 2012, 80(1), 1-28.
[http://dx.doi.org/10.3797/scipharm.1108-20] [PMID: 22396901]
[62]
Park, D.; Park, H.; Seo, J.; Lee, S. Sonophoresis in transdermal drug deliverys. Ultrasonics, 2014, 54(1), 56-65.
[http://dx.doi.org/10.1016/j.ultras.2013.07.007] [PMID: 23899825]
[63]
Mitragotri, S. Sonophoresis: Ultrasound-Mediated Transdermal Drug Delivery. Percutaneous Penetration Enhancers Physical Methods in Penetration Enhancement; Dragicevic N., I; Maibach, H., Ed.; Springer, 2017, pp. 3-14.
[http://dx.doi.org/10.1007/978-3-662-53273-7_1]
[64]
Merino, G.; Kalia, Y.N.; Delgado-Charro, M.B.; Potts, R.O.; Guy, R.H. Frequency and thermal effects on the enhancement of transdermal transport by sonophoresis. J. Control. Release, 2003, 88(1), 85-94.
[http://dx.doi.org/10.1016/S0168-3659(02)00464-9] [PMID: 12586506]
[65]
Collis, J.; Manasseh, R.; Liovic, P.; Tho, P.; Ooi, A.; Petkovic-Duran, K.; Zhu, Y. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics, 2010, 50(2), 273-279.
[http://dx.doi.org/10.1016/j.ultras.2009.10.002] [PMID: 19896683]
[66]
Wu, J.; Nyborg, W.L. Ultrasound, cavitation bubbles and their interaction with cells. Adv. Drug Deliv. Rev., 2008, 60(10), 1103-1116.
[http://dx.doi.org/10.1016/j.addr.2008.03.009] [PMID: 18468716]
[67]
Gehl, J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand., 2003, 177(4), 437-447.
[http://dx.doi.org/10.1046/j.1365-201X.2003.01093.x] [PMID: 12648161]
[68]
da Costa, R.P.; Han, S.W.; Pochini, A.C.; Reginato, R.D. Gene therapy for osteoporosis. Acta Ortop. Bras., 2011, 19(1), 52-57.
[69]
Duarah, S.; Sharma, M.; Wen, J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm., 2019, 136, 48-69.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.005] [PMID: 30633972]
[70]
Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[71]
Yun, Y.H.; Lee, B.K.; Park, K. Controlled drug delivery: Historical perspective for the next generation. J. Control. Release, 2015, 219, 2-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.005] [PMID: 26456749]
[72]
El Maghraby, G.M.; Barry, B.W.; Williams, A.C. Liposomes and skin: From drug delivery to model membranes. Eur. J. Pharm. Sci., 2008, 34(4-5), 203-222.
[http://dx.doi.org/10.1016/j.ejps.2008.05.002] [PMID: 18572392]
[73]
Solanki, A.; Parikh, J.; Parikh, R.; Patel, R. Evaluation of different compositions of niosomes to optimize aceclofenac transdermal delivery. Asian J. Pharm. Sci., 2010, 5, 87-95.
[74]
Dubey, V.; Mishra, D.; Nahar, M.; Jain, V.; Jain, N.K. Enhanced transdermal delivery of an anti-HIV agent via ethanolic liposomes. Nanomedicine (Lond.), 2010, 6(4), 590-596.
[http://dx.doi.org/10.1016/j.nano.2010.01.002] [PMID: 20093197]
[75]
Celia, C.; Cilurzo, F.; Trapasso, E.; Cosco, D.; Fresta, M.; Paolino, D. Ethosomes® and transfersomes® containing linoleic acid: physicochemical and technological features of topical drug delivery carriers for the potential treatment of melasma disorders. Biomed. Microdevices, 2012, 14(1), 119-130.
[http://dx.doi.org/10.1007/s10544-011-9590-y] [PMID: 21960035]
[76]
Rai, V.K.; Mishra, N.; Yadav, K.S.; Yadav, N.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J. Control. Release, 2018, 270, 203-225.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[77]
Bakshi, P.; Jiang, Y.; Nakata, T.; Akaki, J.; Matsuoka, N.; Banga, A.K. Formulation development and characterization of nanoemulsion-based formulation for topical delivery of heparinoid. J. Pharm. Sci., 2018, 107(11), 2883-2890.
[http://dx.doi.org/10.1016/j.xphs.2018.07.015] [PMID: 30055224]
[78]
Palmer, B.C.; DeLouise, L.A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules, 2016, 21(12)E1719
[http://dx.doi.org/10.3390/molecules21121719] [PMID: 27983701]
[79]
Abdel-Hafez, S.M.; Hathout, R.M.; Sammour, O.A. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int. J. Biol. Macromol., 2018, 108, 753-764.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.170] [PMID: 29104049]
[80]
Wake, P.S.; Kshirsagar, M. Design and characterization of solid lipid nanoparticle based transdermal drug delivery system. Asian J. Res. Pharm. Sci., 2017, 7(2), 8791.
[http://dx.doi.org/10.5958/2231-5659.2017.00013.3]
[81]
Ita, K.B. Prodrugs for transdermal drug delivery - trends and challenges. J. Drug Target., 2016, 24(8), 671-678.
[http://dx.doi.org/10.3109/1061186X.2016.1154562] [PMID: 26878159]
[82]
Yerramreddy, T.R.; Milewski, M.; Penthala, N.R.; Stinchcomb, A.L.; Crooks, P.A. Novel 3-O-pegylated carboxylate and 3-O-pegylated carbamate prodrugs of naltrexone for microneedle-enhanced transdermal delivery. Bioorg. Med. Chem. Lett., 2010, 20(11), 3280-3283.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.049] [PMID: 20451376]
[83]
Subbiah, N.; Campagna, J.; Spilman, P.; Alam, M.P.; Sharma, S.; Hokugo, A.; Nishimura, I.; John, V. Deformable nanovesicles synthesized through an adaptable microfluidic platform for enhanced localized transdermal drug delivery. J. Drug Deliv., 2017.20174759839
[http://dx.doi.org/10.1155/2017/4759839] [PMID: 28480080]
[84]
Mahmood, S.; Taher, M.; Mandal, U.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int. J. Nanomedicine, 2014, 9, 4331-4346.
[PMID: 25246789]
[85]
Thakkar, H.P.; Savsani, H.; Kumar, P. Ethosomal hydrogel of raloxifene HCl: Statistical optimization & ex vivo permeability evaluation across microporated pig ear skin. Curr. Drug Deliv., 2016, 13(7), 1111-1122.
[http://dx.doi.org/10.2174/1567201813666160120151816] [PMID: 26787414]
[86]
Schindeler, A.; Little, D.G. Bisphosphonate action: revelations and deceptions from in vitro studies. J. Pharm. Sci., 2007, 96(8), 1872-1878.
[http://dx.doi.org/10.1002/jps.20904] [PMID: 17518363]
[87]
Katsumi, H.; Liu, S.; Tanaka, Y.; Hitomi, K.; Hayashi, R.; Hirai, Y.; Kusamori, K.; Quan, Y.S.; Kamiyama, F.; Sakane, T.; Yamamoto, A. Development of a novel self-dissolving microneedle array of alendronate, a nitrogen-containing bisphosphonate: Evaluation of transdermal absorption, safety, and pharmacological effects after application in rats. J. Pharm. Sci., 2012, 101(9), 3230-3238.
[http://dx.doi.org/10.1002/jps.23136] [PMID: 22467424]
[88]
Chang, S.L.; Hofmann, G.A.; Zhang, L.; Deftos, L.J.; Banga, A.K. Transdermal iontophoretic delivery of salmon calcitonin. Int. J. Pharm., 2000, 200(1), 107-113.
[http://dx.doi.org/10.1016/S0378-5173(00)00351-3] [PMID: 10845691]
[89]
Nakamura, K.; Katagai, K.; Mori, K.; Higo, N.; Sato, S.; Yamamoto, K. Transdermal administration of salmon calcitonin by pulse depolarization-iontophoresis in rats. Int. J. Pharm., 2001, 218(1-2), 93-102.
[http://dx.doi.org/10.1016/S0378-5173(01)00615-9] [PMID: 11337153]
[90]
Chang, S.L.; Hofmann, G.A.; Zhang, L.; Deftos, L.J.; Banga, A.K. The effect of electroporation on iontophoretic transdermal delivery of calcium regulating hormones. J. Control. Release, 2000, 66(2-3), 127-133.
[http://dx.doi.org/10.1016/S0168-3659(99)00262-X] [PMID: 10742574]
[91]
Medi, B.M.; Singh, J. Electronically facilitated transdermal delivery of human parathyroid hormone (1-34). Int. J. Pharm., 2003, 263(1-2), 25-33.
[http://dx.doi.org/10.1016/S0378-5173(03)00337-5] [PMID: 12954177]
[92]
Tomoda, K.; Watanabe, A.; Suzuki, K.; Inagi, T.; Terada, H.; Makino, K. Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloids Surf. B Biointerfaces, 2012, 97, 84-89.
[http://dx.doi.org/10.1016/j.colsurfb.2012.04.002] [PMID: 22609586]
[93]
Takeuchi, I.; Fukuda, K.; Kobayashi, S.; Makino, K. Transdermal delivery of estradiol-loaded PLGA nanoparticles using iontophoresis for treatment of osteoporosis. Biomed. Mater. Eng., 2016, 27(5), 475-483.
[http://dx.doi.org/10.3233/BME-161601] [PMID: 27885995]
[94]
Takeuchi, I.; Kobayashi, S.; Hida, Y.; Makino, K. Estradiol-loaded PLGA nanoparticles for improving low bone mineral density of cancellous bone caused by osteoporosis: Application of enhanced charged nanoparticles with iontophoresis. Colloids Surf. B Biointerfaces, 2017, 155, 35-40.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.047] [PMID: 28391082]
[95]
Ita, K. Transdermal delivery of drugs with microneedles-potential and challenges. Pharmaceutics, 2015, 7(3), 90-105.
[http://dx.doi.org/10.3390/pharmaceutics7030090] [PMID: 26131647]
[96]
Daddona, P.E.; Matriano, J.A.; Mandema, J.; Maa, Y.F. Parathyroid hormone (1-34)-coated microneedle patch system: clinical pharmacokinetics and pharmacodynamics for treatment of osteoporosis. Pharm. Res., 2011, 28(1), 159-165.
[http://dx.doi.org/10.1007/s11095-010-0192-9] [PMID: 20567999]
[97]
Cosman, F.; Lane, N.E.; Bolognese, M.A.; Zanchetta, J.R.; Garcia-Hernandez, P.A.; Sees, K.; Matriano, J.A.; Gaumer, K.; Daddona, P.E. Effect of transdermal teriparatide administration on bone mineral density in postmenopausal women. J. Clin. Endocrinol. Metab., 2010, 95(1), 151-158.
[http://dx.doi.org/10.1210/jc.2009-0358] [PMID: 19858319]
[98]
Elger, W.; Schneider, B.; Oettel, M.; Ernst, M.; Hubler, D.; Dittgen, M. Use of estriol for treatment of climacteric osteoporosis. US Patent 5614213, March 25;1997
[99]
Choi, Y.K. Matrix type patch for transdermal administration of vitamin d analog and the use thereof. WIPO WO2004028515A1, April 8;2004
[100]
Brierre, B.T. Pharmaceutical composition and method for the transdermal delivery of calcium. US Patent, 20070292493A1, Dec 20;2007
[101]
Cummings, S.; Ellman, H.; Ettinger, B. Transdermal treatment of postmenopausal women using ultra-low doses of estrogen. EU Patent, EP1570848B1, Jan 16;2008
[102]
Park, J.S.; Nam, S.H. Transdermal drug delivery system and pharmaceutical composition for preventing or treating bone diseases. WIPO WO2011132826A1, 2010 31 Aug;
[103]
Ameri, M.; Cambery, M.; Kormia, M. Apparatus and method for transdermal delivery of parathyroid hormone preparations. Japan Patent, JP5007427B2, June 8;2012
[104]
Hattersley, G.; Harris, A.; SAEH, J.; Hamed, E. Formulations of abaloparatide, transdermal patches thereof, and uses thereof.6 WIPO WO2017184355A1, April 6;2017
[105]
Pack, A.M.; Morrell, M.J. Epilepsy and bone health in adults. Epilepsy Behav., 2004, 5(2)(Suppl. 2), S24-S29.
[http://dx.doi.org/10.1016/j.yebeh.2003.11.029] [PMID: 15123008]
[106]
Menon, B.; Mehndiratta, M.M. Bone health in epilepsy. Int. J. Epilepsy, 2017, 4(1), 59-64.
[http://dx.doi.org/10.1016/j.ijep.2017.04.001]
[107]
Acharya, J.N.; Acharya, V.J. Epilepsy in the elderly: Special considerations and challenges. Ann. Indian Acad. Neurol., 2014, 17(Suppl. 1), S18-S26.
[http://dx.doi.org/10.4103/0972-2327.128645] [PMID: 24791083]
[108]
Chen, Y-H.; Lo, R.Y. Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue Za Zhi, 2017, 29(3), 138-142.
[http://dx.doi.org/10.4103/tcmj.tcmj_54_17] [PMID: 28974906]
[109]
Paudel, K.S.; Milewski, M.; Swadley, C.L.; Brogden, N.K.; Ghosh, P.; Stinchcomb, A.L. Challenges and opportunities in dermal/transdermal delivery. Ther. Deliv., 2010, 1(1), 109-131.
[http://dx.doi.org/10.4155/tde.10.16] [PMID: 21132122]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy