Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications

Author(s): Michele Iovino, Tullio Messana, Anna Tortora, Consuelo Giusti, Giuseppe Lisco, Vito Angelo Giagulli, Edoardo Guastamacchia, Giovanni De Pergola and Vincenzo Triggiani*

Volume 21, Issue 1, 2021

Published on: 20 May, 2020

Page: [91 - 110] Pages: 20

DOI: 10.2174/1871530320666200520093730

Price: $65

Abstract

Background: In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects.

Objective: The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects.

Methods: Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined.

Results: We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts.

Conclusion: Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.

Keywords: Oxytocin, oxytocin receptor, maternal behavior, social behavior, metabolic homeostasis, atherosclerosis, pain, neuroinflammation, autism, schizophrenia, depression, bipolar disorder.

Graphical Abstract

[1]
Sofroniew, M.V. Morphology of vasopressin and oxytocin neurones and their central and vascular projections. In: Prog. Brain Res; , 1983; 60, pp. 101-114.
[http://dx.doi.org/10.1016/S0079-6123(08)64378-2] [PMID: 6198686]
[2]
Zimmerman, E.A.; Nilaver, G.; Hou-Yu, A.; Silverman, A.J. Vasopressinergic and oxytocinergic pathways in the central nervous system. Fed. Proc., 1984, 43(1), 91-96.
[PMID: 6690342]
[3]
Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, transport, and release of posterior pituitary hormones. Science, 1980, 207(4429), 373-378.
[http://dx.doi.org/10.1126/science.6153132] [PMID: 6153132]
[4]
Leng, G.; Brown, C.H.; Russell, J.A. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog. Neurobiol., 1999, 57(6), 625-655.
[http://dx.doi.org/10.1016/S0301-0082(98)00072-0] [PMID: 10221785]
[5]
Russell, J.A.; Leng, G.; Douglas, A.J. The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front. Neuroendocrinol., 2003, 24(1), 27-61.
[http://dx.doi.org/10.1016/S0091-3022(02)00104-8] [PMID: 12609499]
[6]
Urban, I.; Moss, R.L.; Cross, B.A. Problems in electrical stimulation of afferent pathways for oxytocin release. J. Endocrinol., 1971, 51(2), 347-358.
[http://dx.doi.org/10.1677/joe.0.0510347] [PMID: 5166156]
[7]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Triggiani, V. Molecular mechanisms involved in the control of neurohypophyseal hormones secretion. Curr. Pharm. Des., 2014, 20(42), 6702-6713.
[http://dx.doi.org/10.2174/1381612820666140905150730] [PMID: 25190061]
[8]
Iovino, M.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Triggiani, V. Synaptic inputs of neural efferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(42), 6702-6713.
[9]
Yamamoto, Y.; Liang, M.; Higashida, H. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behavior in mice. Commun. Biol., 2019, 2, 76.
[10]
Way, S.A.; Leng, G. Relaxin increases the firing rate of supraoptic neurones and increases oxytocin secretion in the rat. J. Endocrinol., 1992, 132(1), 149-158.
[http://dx.doi.org/10.1677/joe.0.1320149] [PMID: 1737954]
[11]
Wilson, B.C.; Summerlee, A.J. Effects of exogenous relaxin on oxytocin and vasopressin release and the intramammary pressure response to central hyperosmotic challenge. J. Endocrinol., 1994, 141(1), 75-80.
[http://dx.doi.org/10.1677/joe.0.1410075] [PMID: 8014606]
[12]
Brailoiu, E.; Dun, S.L.; Brailoiu, G.C.; Mizuo, K.; Sklar, L.A.; Oprea, T.I.; Prossnitz, E.R.; Dun, N.J. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. J. Endocrinol., 2007, 193(2), 311-321.
[http://dx.doi.org/10.1677/JOE-07-0017] [PMID: 17470522]
[13]
Hazell, G.G.; Yao, S.T.; Roper, J.A.; Prossnitz, E.R.; O’Carroll, A.M.; Lolait, S.J. Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J. Endocrinol., 2009, 202(2), 223-236.
[http://dx.doi.org/10.1677/JOE-09-0066] [PMID: 19420011]
[14]
Wang, H.; Ward, A.R.; Morris, J.F. Oestradiol acutely stimulates exocytosis of oxytocin and vasopressin from dendrites and somata of hypothalamic magnocellular neurons. Neuroscience, 1995, 68(4), 1179-1188.
[http://dx.doi.org/10.1016/0306-4522(95)00186-M] [PMID: 8544991]
[15]
Israel, J.M.; Poulain, D.A. 17-Oestradiol modulates in vitro electrical properties and responses to kainate of oxytocin neurones in lactating rats. J. Physiol., 2000, 524(Pt 2), 457-470.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-2-00457.x] [PMID: 10766926]
[16]
Miselis, R.R. The efferent projections of the subfornical organ of the rat: a circumventricular organ within a neural network subserving water balance. Brain Res., 1981, 230(1-2), 1-23.
[http://dx.doi.org/10.1016/0006-8993(81)90388-7] [PMID: 7317773]
[17]
Lind, R.W.; Van Hoesen, G.W.; Johnson, A.K. An HRP study of the connections of the subfornical organ of the rat. J. Comp. Neurol., 1982, 210(3), 265-277.
[http://dx.doi.org/10.1002/cne.902100306] [PMID: 7142442]
[18]
Renaud, L.P.; Rogers, J.; Sgro, S. Terminal degeneration in supraoptic nucleus following subfornical organ lesions: ultrastructural observations in the rat. Brain Res., 1983, 275(2), 365-368.
[http://dx.doi.org/10.1016/0006-8993(83)90999-X] [PMID: 6626987]
[19]
Camacho, A.; Phillips, M.I. Horseradish peroxidase study in rat of the neural connections of the organum vasculosum of the lamina terminalis. Neurosci. Lett., 1981, 25(3), 201-204.
[http://dx.doi.org/10.1016/0304-3940(81)90391-8] [PMID: 7290524]
[20]
Sawchenko, P.E.; Swanson, L.W. The organization of forebrain afferents to the paraventricular and supraoptic nuclei of the rat. J. Comp. Neurol., 1983, 218(2), 121-144.
[http://dx.doi.org/10.1002/cne.902180202] [PMID: 6886068]
[21]
Hazell, G.G.; Hindmarch, C.C.; Pope, G.R.; Roper, J.A.; Lightman, S.L.; Murphy, D.; O’Carroll, A.M.; Lolait, S.J. G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei--serpentine gateways to neuroendocrine homeostasis. Front. Neuroendocrinol., 2012, 33(1), 45-66.
[http://dx.doi.org/10.1016/j.yfrne.2011.07.002] [PMID: 21802439]
[22]
Sladek, C.D.; Song, Z. Diverse roles of G-protein coupled receptors in the regulation of neurohypophyseal hormone secretion. J. Neuroendocrinol., 2012, 24(4), 554-565.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02268.x] [PMID: 22151700]
[23]
Barberis, C.; Tribollet, E. Vasopressin and oxytocin receptors in the central nervous system. Crit. Rev. Neurobiol., 1996, 10(1), 119-154.
[http://dx.doi.org/10.1615/CritRevNeurobiol.v10.i1.60] [PMID: 8853957]
[24]
Kiss, A.; Mikkelsen, J.D. Oxytocin--anatomy and functional assignments: a minireview. Endocr. Regul., 2005, 39(3), 97-105.
[PMID: 16468232]
[25]
Grady, E.F.; Böhm, S.K.; Bunnett, N.W. Turning off the signal: mechanisms that attenuate signaling by G protein-coupled receptors. Am. J. Physiol., 1997, 273(3 Pt 1), G586-G601.
[PMID: 9316462]
[26]
Conti, F.; Sertic, S.; Reversi, A.; Chini, B. Intracellular trafficking of the human oxytocin receptor: evidence of receptor recycling via a Rab4/Rab5 “short cycle”. Am. J. Physiol. Endocrinol. Metab., 2009, 296(3), E532-E542.
[http://dx.doi.org/10.1152/ajpendo.90590.2008] [PMID: 19126785]
[27]
Fushimi, K.; Sasaki, S.; Marumo, F. Phosphorylation of serine 256 is required for cAMP-dependent regulatory exocytosis of the aquaporin-2 water channel. J. Biol. Chem., 1997, 272(23), 14800-14804.
[http://dx.doi.org/10.1074/jbc.272.23.14800] [PMID: 9169447]
[28]
Marlin, B.J.; Mitre, M.; D’amour, J.A.; Chao, M.V.; Froemke, R.C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 2015, 520(7548), 499-504.
[http://dx.doi.org/10.1038/nature14402] [PMID: 25874674]
[29]
Oztaş, B.; Koçak, H.; Oner, P.; Küçük, M. Sex-dependent changes in blood-brain barrier permeability and brain NA(+),K(+) ATPase activity in rats following acute water intoxication. J. Neurosci. Res., 2000, 62(5), 750-753.
[http://dx.doi.org/10.1002/1097-4547(20001201)62:5<750:AID-JNR15>3.0.CO;2-8] [PMID: 11104514]
[30]
Sano, Y.; Watanabe, N.; Suzuki, E.; Shimodaira, K.; Kato, N.; Arakawa, H. A cohort study of the level of plasma oxytocin associated with autism spectrum disorder in Japanese males, females and pregnant females. Clin. Med. Biochem, 2016, 2, 113.
[http://dx.doi.org/10.4172/2471-2663.1000113]
[31]
Mitre, M.; Kranz, T.M.; Marlin, B.J.; Schiavo, J.K; Erdjument-Bromage, H.; Zhang, X.; Neubert, T.A.; Hackett, T.A.; Chao, M.V.; Froemke, R.C. Sex-specific differences in oxytocin receptor expression and function for parental behavior. Journals.sagepub,
[http://dx.doi.org/10.1089/gg.2017.0017]
[32]
Haley, G.E.; Flynn, F.W. Agonist and hypertonic saline-induced trafficking of the NK3-receptors on vasopressin neurons within the paraventricular nucleus of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, 290(5), R1242-R1250.
[http://dx.doi.org/10.1152/ajpregu.00773.2005] [PMID: 16357093]
[33]
Howe, H.E.; Somponpun, S.J.; Sladek, C.D. Role of neurokinin 3 receptors in supraoptic vasopressin and oxytocin neurons. J. Neurosci., 2004, 24(45), 10103-10110.
[http://dx.doi.org/10.1523/JNEUROSCI.3164-04.2004] [PMID: 15537880]
[34]
Jensen, D.D.; Sundstrom, K.; Flynn, F.W. Expression of the nuclear transport protein importin ß-1 and its association with the neurokinin 3 receptor in the rat hypothalamus following acute hyperosmotic challenge. Neuroscience, 2010, 170(4), 1020-1027.
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.015] [PMID: 20709160]
[35]
Yue, C.; Mutsuga, N.; Scordalakes, E.M.; Gainer, H. Studies of oxytocin and vasopressin gene expression in the rat hypothalamus using exon- and intro-specific probes. Am. J. Physiol. Integr. Comp. Physiol., 2006, 290, 1233-1241.
[http://dx.doi.org/10.1152/ajpregu.00709.2005]
[36]
Yue, C.; Ponzio, T.A.; Fields, R.L.; Gainer, H. Oxytocin and vasopressin gene expression and RNA splicing patterns in the rat supraoptic nucleus. Physiol. Genomics, 2008, 35(3), 231-242.
[http://dx.doi.org/10.1152/physiolgenomics.90218.2008] [PMID: 18765859]
[37]
Bali, B.; Kovács, K.J. GABAergic control of neuropeptide gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. Eur. J. Neurosci., 2003, 18(6), 1518-1526.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02877.x] [PMID: 14511331]
[38]
Cole, R.L.; Sawchenko, P.E. Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J. Neurosci., 2002, 22(3), 959-969.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00959.2002] [PMID: 11826124]
[39]
Scordalakes, E.M.; Yue, C.; Gainer, H. Experimental approaches for the study of oxytocin and vasopressin gene expression in the central nervous system. In: Prog. Brain Res; , 2008; 170, pp. 43-51.
[http://dx.doi.org/10.1016/S0079-6123(08)00404-4] [PMID: 18655870]
[40]
Ozaki, Y.; Nomura, M.; Saito, J.; Luedke, C.E.; Muglia, L.J.; Matsumoto, T.; Ogawa, S.; Ueta, Y.; Pfaff, D.W. Expression of the arginine vasopressin gene in response to salt loading in oxytocin gene knockout mice. J. Neuroendocrinol., 2004, 16(1), 39-44.
[http://dx.doi.org/10.1111/j.1365-2826.2004.01119.x] [PMID: 14962074]
[41]
Yue, C.; Mutsuga, N.; Sugimura, Y.; Verbalis, J.; Gainer, H. Differential kinetics of oxytocin and vasopressin heteronuclear RNA expression in the rat supraoptic nucleus in response to chronic salt loading in vivo. J. Neuroendocrinol., 2008, 20(2), 227-232.
[http://dx.doi.org/10.1111/j.1365-2826.2007.01640.x] [PMID: 18088359]
[42]
Chevaleyre, V.; Moos, F.C.; Desarménien, M.G. Interplay between presynaptic and postsynaptic activities is required for dendritic plasticity and synaptogenesis in the supraoptic nucleus. J. Neurosci., 2002, 22(1), 265-273.
[http://dx.doi.org/10.1523/JNEUROSCI.22-01-00265.2002] [PMID: 11756510]
[43]
Iovino, M.; Guastamacchia, E.; Giagulli, V.A.; Licchelli, B.; Triggiani, V. Vasopressin secretion control: central neural pathways, neurotransmitters and effects of drugs. Curr. Pharm. Des., 2012, 18(30), 4714-4724.
[http://dx.doi.org/10.2174/138161212802651607]
[44]
El Majdoubi, M.; Poulain, D.A.; Theodosis, D.T. The glutamatergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus and its contribution to lactation-induced synaptic plasticity. Eur. J. Neurosci., 1996, 8(7), 1377-1389.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01600.x] [PMID: 8758945]
[45]
Tweedle, C.D.; Hatton, G.I. Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res., 1977, 181(1), 59-72.
[http://dx.doi.org/10.1007/BF00222774] [PMID: 880623]
[46]
Theodosis, D.T.; Poulain, D.A.; Vincent, J.D. Possible morphological bases for synchronisation of neuronal firing in the rat supraoptic nucleus during lactation. Neuroscience, 1981, 6(5), 919-929.
[http://dx.doi.org/10.1016/0306-4522(81)90173-1] [PMID: 7242921]
[47]
Araque, A.; Parpura, V.; Sanzgiri, R.P.; Haydon, P.G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci., 1998, 10(6), 2129-2142.
[http://dx.doi.org/10.1046/j.1460-9568.1998.00221.x] [PMID: 9753099]
[48]
Jourdain, P.; Bergersen, L.H.; Bhaukaurally, K.; Bezzi, P.; Santello, M.; Domercq, M.; Matute, C.; Tonello, F.; Gundersen, V.; Volterra, A. Glutamate exocytosis from astrocytes controls synaptic strength. Nat. Neurosci., 2007, 10(3), 331-339.
[http://dx.doi.org/10.1038/nn1849] [PMID: 17310248]
[49]
Parpura, V.; Basarsky, T.A.; Liu, F.; Jeftinija, K.; Jeftinija, S.; Haydon, R.G. Glutamate-mediated astrocyte-neurons. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8629-8634.
[http://dx.doi.org/10.1073/pnas.97.15.8629] [PMID: 10900020]
[50]
Parpura, V.; Haydon, P.G. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8629-8634.
[http://dx.doi.org/10.1073/pnas.97.15.8629] [PMID: 10900020]
[51]
Halassa, M.M.; Florian, C.; Fellin, T.; Munoz, J.R.; Lee, S.Y.; Abel, T.; Haydon, P.G.; Frank, M.G. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 2009, 61(2), 213-219.
[http://dx.doi.org/10.1016/j.neuron.2008.11.024] [PMID: 19186164]
[52]
Gordon, G.R.; Baimoukhametova, D.V.; Hewitt, S.A.; Rajapaksha, W.R.; Fisher, T.E.; Bains, J.S. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat. Neurosci., 2005, 8(8), 1078-1086.
[http://dx.doi.org/10.1038/nn1498] [PMID: 15995701]
[53]
Panatier, A.; Theodosis, D.T.; Mothet, J.P.; Touquet, B.; Pollegioni, L.; Poulain, D.A.; Oliet, S.H. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell, 2006, 125(4), 775-784.
[http://dx.doi.org/10.1016/j.cell.2006.02.051] [PMID: 16713567]
[54]
Stellwagen, D.; Malenka, R.C. Synaptic scaling mediated by glial TNF-alpha. Nature, 2006, 440(7087), 1054-1059.
[http://dx.doi.org/10.1038/nature04671] [PMID: 16547515]
[55]
Humphrey, P.P.; Buell, G.; Kennedy, I.; Khakh, B.S.; Michel, A.D.; Surprenant, A.; Trezise, D.J. New insights on P2X purinoceptors. Naunyn Schmiedebergs Arch. Pharmacol., 1995, 352(6), 585-596.
[http://dx.doi.org/10.1007/BF00171316] [PMID: 9053729]
[56]
Girdler, G.; Khakh, B.S. ATP-gated P2X channels. Curr. Biol., 2004, 14(1), R6.
[http://dx.doi.org/10.1016/j.cub.2003.12.009] [PMID: 14711422]
[57]
Jarvis, M.F.; Khakh, B.S. ATP-gated P2X cation-channels. Neuropharmacology, 2009, 56(1), 208-215.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.067] [PMID: 18657557]
[58]
Khakh, B.S.; North, R.A. P2X receptors as cell-surface ATP sensors in health and disease. Nature, 2006, 442(7102), 527-532.
[http://dx.doi.org/10.1038/nature04886] [PMID: 16885977]
[59]
Tasker, J.G.; Oliet, S.H.; Bains, J.S.; Brown, C.H.; Stern, J.E. Glial regulation of neuronal function: From synapse to systems physiology. J. Neuroendocrinol., 2012, 24(4), 566-576.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02259.x] [PMID: 22128866]
[60]
Piet, R.; Vargová, L.; Syková, E.; Poulain, D.A.; Oliet, S.H. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc. Natl. Acad. Sci. USA, 2004, 101(7), 2151-2155.
[http://dx.doi.org/10.1073/pnas.0308408100] [PMID: 14766975]
[61]
Park, J.B.; Skalska, S.; Stern, J.E. Characterization of a novel tonic gamma-aminobutyric acidA receptor-mediated inhibition in magnocellular neurosecretory neurons and its modulation by glia. Endocrinology, 2006, 147(8), 3746-3760.
[http://dx.doi.org/10.1210/en.2006-0218] [PMID: 16675519]
[62]
Park, J.B.; Jo, J.Y.; Zheng, H.; Patel, K.P.; Stern, J.E. Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J. Physiol., 2009, 587(Pt 19), 4645-4660.
[http://dx.doi.org/10.1113/jphysiol.2009.173435] [PMID: 19703969]
[63]
Potapenko, E.S.; Biancardi, V.C.; Zhou, Y.; Stern, J.E. Astrocytes modulate a postsynaptic NMDA-GABAA-receptor crosstalk in hypothalamic neurosecretory neurons. J. Neurosci., 2013, 33(2), 631-640.
[http://dx.doi.org/10.1523/JNEUROSCI.3936-12.2013] [PMID: 23303942]
[64]
Son, S.J.; Filosa, J.A.; Potapenko, E.S.; Biancardi, V.C.; Zheng, H.; Patel, K.P.; Tobin, V.A.; Ludwig, M.; Stern, J.E. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron, 2013, 78(6), 1036-1049.
[http://dx.doi.org/10.1016/j.neuron.2013.04.025] [PMID: 23791197]
[65]
Bonfardin, V.D.; Fossat, P.; Theodosis, D.T.; Oliet, S.H. Glia-dependent switch of kainate receptor presynaptic action. J. Neurosci., 2010, 30(3), 985-995.
[http://dx.doi.org/10.1523/JNEUROSCI.3389-09.2010] [PMID: 20089907]
[66]
Kombian, S.B.; Hirasawa, M.; Mouginot, D.; Pittman, Q.J. Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. In: Prog. Brain Res; , 2002; 139, pp. 235-246.
[http://dx.doi.org/10.1016/S0079-6123(02)39020-4] [PMID: 12436939]
[67]
Prager-Khoutorsky, M.; Bourque, C.W. Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends Neurosci., 2010, 33(2), 76-83.
[http://dx.doi.org/10.1016/j.tins.2009.11.004] [PMID: 19963290]
[68]
Alonso, G.; Gabrion, J.; Travers, E.; Assenmacher, I. Ultrastructural organization of actin filaments in neurosecretory axons of the rat. Cell Tissue Res., 1981, 214(2), 323-341.
[http://dx.doi.org/10.1007/BF00249215] [PMID: 6894105]
[69]
Letourneau, P.C. Actin in axons: stable scaffolds and dynamic filaments. Results Probl. Cell Differ., 2009, 48, 65-90.
[http://dx.doi.org/10.1007/400_2009_15] [PMID: 19582412]
[70]
Saarikangas, J.; Zhao, H.; Lappalainen, P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev., 2010, 90(1), 259-289.
[http://dx.doi.org/10.1152/physrev.00036.2009] [PMID: 20086078]
[71]
Sawchenko, P.E.; Swanson, L.W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res., 1982, 257(3), 275-325.
[http://dx.doi.org/10.1016/0165-0173(82)90010-8] [PMID: 6756545]
[72]
Palkovits, M. Catecholamines in the hypothalamus: an anatomical review. Neuroendocrinology, 1981, 33(2), 123-128.
[http://dx.doi.org/10.1159/000123215] [PMID: 6167889]
[73]
Moos, F.; Richard, P. Excitatory effect of dopamine on oxytocin and vasopressin reflex releases in the rat. Brain Res., 1982, 241(2), 249-260.
[http://dx.doi.org/10.1016/0006-8993(82)91061-7] [PMID: 7104713]
[74]
Yang, C.R.; Bourque, C.W.; Renaud, L.P. Dopamine D2 receptor activation depolarizes rat supraoptic neurones in hypothalamic explants. J. Physiol., 1991, 443, 405-419.
[http://dx.doi.org/10.1113/jphysiol.1991.sp018840] [PMID: 1688025]
[75]
Dahlstroem, A.; Fuxe, K. Evidence for the existence of monoamine- containing neurons in the central nervous system. I. demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl., 1964, 62(Suppl. 232), 232-, 1-55.
[PMID: 14229500]
[76]
Day, T.A.; Ferguson, A.V.; Renaud, L.P. Facilitatory influence of noradrenergic afferents on the excitability of rat paraventricular nucleus neurosecretory cells. J. Physiol., 1984, 355, 237-249.
[http://dx.doi.org/10.1113/jphysiol.1984.sp015416] [PMID: 6436476]
[77]
Tanaka, J.; Kaba, H.; Saito, H.; Seto, K. Inputs from the A1 noradrenergic region to hypothalamic paraventricular neurons in the rat. Brain Res., 1985, 335(2), 368-371.
[http://dx.doi.org/10.1016/0006-8993(85)90496-2] [PMID: 2988698]
[78]
Knigge, U.; Willems, E.; Kjaer, A.; Jørgensen, H.; Warberg, J. Histaminergic and catecholaminergic interactions in the central regulation of vasopressin and oxytocin secretion. Endocrinology, 1999, 140(8), 3713-3719.
[http://dx.doi.org/10.1210/endo.140.8.6891] [PMID: 10433231]
[79]
Kapoor, J.R.; Sladek, C.D. Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J. Neurosci., 2000, 20(23), 8868-8875.
[http://dx.doi.org/10.1523/JNEUROSCI.20-23-08868.2000] [PMID: 11102496]
[80]
Stanzani, S.; Russo, A. [Afferent and efferent connections between the hypothalamus and raphe. Study using the technic of retrograde transport of peroxidases] Boll. Soc. Ital. Biol. Sper., 1981, 57(9), 993-998.
[PMID: 7284125]
[81]
Barnes, N.M.; Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology, 1999, 38(8), 1083-1152.
[http://dx.doi.org/10.1016/S0028-3908(99)00010-6] [PMID: 10462127]
[82]
Lee, J.S.; Lee, H.S. Reciprocal connections between CART-immunoreactive, hypothalamic paraventricular neurons and serotonergic dorsal raphe cells in the rat: Light microscopic study. Brain Res., 2014, 1560, 46-59.
[http://dx.doi.org/10.1016/j.brainres.2014.03.006] [PMID: 24642272]
[83]
Jørgensen, H.S. Studies on the neuroendocrine role of serotonin. Dan. Med. Bull., 2007, 54(4), 266-288.
[PMID: 18208678]
[84]
Gálfi, M.; Radács, M.; Juhász, A.; László, F.; Molnár, A.; László, F.A. Serotonin-induced enhancement of vasopressin and oxytocin secretion in rat neurohypophyseal tissue culture. Regul. Pept., 2005, 127(1-3), 225-231.
[http://dx.doi.org/10.1016/j.regpep.2004.12.009] [PMID: 15680491]
[85]
Jørgensen, H.; Riis, M.; Knigge, U.; Kjaer, A.; Warberg, J. Serotonin receptors involved in vasopressin and oxytocin secretion. J. Neuroendocrinol., 2003, 15(3), 242-249.
[http://dx.doi.org/10.1046/j.1365-2826.2003.00978.x] [PMID: 12588512]
[86]
Kombian, S.B.; Zidichouski, J.A.; Pittman, Q.J. GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro. J. Neurophysiol., 1996, 76(2), 1166-1179.
[http://dx.doi.org/10.1152/jn.1996.76.2.1166] [PMID: 8871228]
[87]
Yamaguchi, K.; Yamada, T. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats. Brain Res. Bull., 2008, 77(1), 61-69.
[http://dx.doi.org/10.1016/j.brainresbull.2008.04.009] [PMID: 18639747]
[88]
Theodosis, D.T.; Paut, L.; Tappaz, M.L. Immunocytochemical analysis of the GABAergic innervation of oxytocin- and vasopressin-secreting neurons in the rat supraoptic nucleus. Neuroscience, 1986, 19(1), 207-222.
[http://dx.doi.org/10.1016/0306-4522(86)90016-3] [PMID: 3537841]
[89]
Decavel, C.; Van den Pol, A.N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol., 1990, 302(4), 1019-1037.
[http://dx.doi.org/10.1002/cne.903020423] [PMID: 2081813]
[90]
Zingg, H.H.; Baertschi, A.J.; Dreifuss, J.J. Action of gamma-aminobutyric acid on hypothalamo-neurohypophysial axons. Brain Res., 1979, 171(3), 453-459.
[http://dx.doi.org/10.1016/0006-8993(79)91049-7] [PMID: 476481]
[91]
Moss, R.L.; Urban, I.; Cross, B.A. Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons. Am. J. Physiol., 1972, 223(2), 310-318.
[http://dx.doi.org/10.1152/ajplegacy.1972.223.2.310] [PMID: 4558378]
[92]
Nicoll, R.A.; Barker, J.L. The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res., 1971, 35(2), 501-511.
[http://dx.doi.org/10.1016/0006-8993(71)90491-4] [PMID: 4400088]
[93]
Kim, Y.B.; Kim, Y.S.; Kim, W.B.; Shen, F.Y.; Lee, S.W.; Chung, H.J.; Kim, J.S.; Han, H.C.; Colwell, C.S.; Kim, Y.I. GABAergic excitation of vasopressin neurons: possible mechanism underlying sodium-dependent hypertension. Circ. Res., 2013, 113(12), 1296-1307.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301814] [PMID: 24103391]
[94]
Brown, C.H.; Russell, J.A.; Leng, G. Opioid modulation of magnocellular neurosecretory cell activity. Neurosci. Res., 2000, 36(2), 97-120.
[http://dx.doi.org/10.1016/S0168-0102(99)00121-2] [PMID: 10711808]
[95]
van der Kooy, D.; Koda, L.Y.; McGinty, J.F.; Gerfen, C.R.; Bloom, F.E. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol., 1984, 224(1), 1-24.
[http://dx.doi.org/10.1002/cne.902240102] [PMID: 6715573]
[96]
Poulin, J.F.; Chevalier, B.; Laforest, S.; Drolet, G. Enkephalinergic afferents of the centromedial amygdala in the rat. J. Comp. Neurol., 2006, 496(6), 859-876.
[http://dx.doi.org/10.1002/cne.20956] [PMID: 16628615]
[97]
Poulain, P.; Martin-Bouyer, L.; Beauvillain, J.C.; Tramu, G. Study of the efferent connections of the enkephalinergic magnocellular dorsal nucleus in the guinea-pig hypothalamus using lesions, retrograde tracing and immunohistochemistry: Evidence for a projection to the lateral septum. Neuroscience, 1984, 11(2), 331-343.
[http://dx.doi.org/10.1016/0306-4522(84)90027-7] [PMID: 6201778]
[98]
Rossier, J.; Pittman, Q.; Bloom, F.; Guillemin, R. Distribution of opioid peptides in the pituitary: A new hypothalamic-pars nervosa enkephalinergic pathway. Fed. Proc., 1980, 39(8), 2555-2560.
[PMID: 6103825]
[99]
Summy-Long, J.Y.; Miller, D.S.; Rosella-Dampman, L.M.; Hartman, R.D.; Emmert, S.E. A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin. Brain Res., 1984, 309(2), 362-366.
[http://dx.doi.org/10.1016/0006-8993(84)90605-X] [PMID: 6541075]
[100]
Van de Heijning, B.J.; Koekkoek-Van den Herik, I.; Maigret, C.; Van Wimersma Greidanus, T.B. Pharmacological assessment of the site of action of opioids on the release of vasopressin and oxytocin in the rat. Eur. J. Pharmacol., 1991, 197(2-3), 175-180.
[http://dx.doi.org/10.1016/0014-2999(91)90518-U] [PMID: 1680708]
[101]
Summy-Long, J.Y.; Rosella-Dampman, L.M.; McLemore, G.L.; Koehler, E. Kappa opiate receptors inhibit release of oxytocin from the magnocellular system during dehydration. Neuroendocrinology, 1990, 51(4), 376-384.
[http://dx.doi.org/10.1159/000125364] [PMID: 1971712]
[102]
Leng, G.; Bicknell, R.J.; Brown, D.; Bowden, C.; Chapman, C.; Russell, J.A.; Russell, J.A. Stimulus-induced depletion of pro-enkephalins, oxytocin and vasopressin and pro-enkephalin interaction with posterior pituitary hormone release in vitro. Neuroendocrinology, 1994, 60(6), 559-566.
[http://dx.doi.org/10.1159/000126797] [PMID: 7700499]
[103]
Keil, L.C.; Rosella-Dampman, L.M.; Emmert, S.; Chee, O.; Summy-Long, J.Y. Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin. Brain Res., 1984, 297(2), 329-336.
[http://dx.doi.org/10.1016/0006-8993(84)90574-2] [PMID: 6722545]
[104]
Sunn, N.; McKinley, M.J.; Oldfield, B.J. Identification of efferent neural pathways from the lamina terminalis activated by blood-borne relaxin. J. Neuroendocrinol., 2001, 13(5), 432-437.
[http://dx.doi.org/10.1046/j.1365-2826.2001.00650.x] [PMID: 11328453]
[105]
Leng, G.; Pineda, R.; Sabatier, N.; Ludwig, M. 60 YEARS OF NEUROENDOCRINOLOGY: The posterior pituitary, from Geoffrey Harris to our present understanding. J. Endocrinol., 2015, 226(2), T173-T185.
[http://dx.doi.org/10.1530/JOE-15-0087] [PMID: 25901040]
[106]
Somponpun, S.J.; Johnson, A.K.; Beltz, T.; Sladek, C.D. Osmotic regulation of estrogen receptor-β expression in magnocellular vasopressin neurons requires lamina terminalis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2004, 286(3), R465-R473.
[http://dx.doi.org/10.1152/ajpregu.00478.2003] [PMID: 14604844]
[107]
Nomura, M.; McKenna, E.; Korach, K.S.; Pfaff, D.W.; Ogawa, S. Estrogen receptor-β regulates transcript levels for oxytocin and arginine vasopressin in the hypothalamic paraventricular nucleus of male mice. Brain Res. Mol. Brain Res., 2002, 109(1-2), 84-94.
[http://dx.doi.org/10.1016/S0169-328X(02)00525-9] [PMID: 12531518]
[108]
Somponpun, S.J.; Sladek, C.D. Osmotic regulation of estrogen receptor-beta in rat vasopressin and oxytocin neurons. J. Neurosci., 2003, 23(10), 4261-4269.
[http://dx.doi.org/10.1523/JNEUROSCI.23-10-04261.2003] [PMID: 12764114]
[109]
Antonijevic, I.A.; Leng, G.; Luckman, S.M.; Douglas, A.J.; Bicknell, R.J.; Russell, J.A. Induction of uterine activity with oxytocin in late pregnant rats replicates the expression of c-fos in neuroendocrine and brain stem neurons as seen during parturition. Endocrinology, 1995, 136(1), 154-163.
[http://dx.doi.org/10.1210/endo.136.1.7828526] [PMID: 7828526]
[110]
Hubscher, C.H.; Berkley, K.J. Responses of neurons in caudal solitary nucleus of female rats to stimulation of vagina, cervix, uterine horn and colon. Brain Res., 1994, 664(1-2), 1-8.
[http://dx.doi.org/10.1016/0006-8993(94)91946-1] [PMID: 7895018]
[111]
Kalia, M.; Mesulam, M.M. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion. J. Comp. Neurol., 1980, 193(2), 435-465.
[http://dx.doi.org/10.1002/cne.901930210] [PMID: 7440777]
[112]
Norgren, R. Projections from the nucleus of the solitary tract in the rat. Neuroscience, 1978, 3(2), 207-218.
[http://dx.doi.org/10.1016/0306-4522(78)90102-1] [PMID: 733004]
[113]
Verbalis, J.G.; McCann, M.J.; McHale, C.M.; Stricker, E.M. Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea from satiety. Science, 1986, 232(4 756), 141-7-1419.
[http://dx.doi.org/10.1126/science.3715453]
[114]
Renaud, L.P.; Tang, M.; McCann, M.J.; Stricker, E.M.; Verbalis, J.G. Cholecystokinin and gastric distension activate oxytocinergic cells in rat hypothalamus. Am. J. Physiol., 1987, 253(4 Pt 2), R661-R665.
[PMID: 3661761]
[115]
Verbalis, J.G.; Stricker, E.M.; Robinson, A.G.; Hoffman, G.E. Cholecystokinin activates C-fos expression in hypothalamic oxytocin and corticotropin-releasing hormone neurons. J. Neuroendocrinol., 1991, 3(2), 205-213.
[http://dx.doi.org/10.1111/j.1365-2826.1991.tb00264.x] [PMID: 19215523]
[116]
Luckman, S.M.; Hamamura, M.; Antonijevic, I.; Dye, S.; Leng, G. Involvement of cholecystokinin receptor types in pathways controlling oxytocin secretion. Br. J. Pharmacol., 1993, 110(1), 378-384.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13820.x] [PMID: 8220899]
[117]
Miller, T.R.; Bianchi, B.R.; Witte, D.G.; Lin, C.W. Peripheral cholecystokinin type A receptors mediate oxytocin secretion in vivo. Regul. Pept., 1993, 43(1-2), 107-112.
[http://dx.doi.org/10.1016/0167-0115(93)90413-3] [PMID: 8426907]
[118]
Iovino, M.; Vanacore, A.; Steardo, L. Alpha 2-adrenergic stimulation within the nucleus tractus solitarius attenuates vasopressin release induced by depletion of cardiovascular volume. Pharmacol. Biochem. Behav., 1990, 37(4), 821-824.
[http://dx.doi.org/10.1016/0091-3057(90)90568-3] [PMID: 1982697]
[119]
Hardy, S.B. Mothers and Others: The Evolutionary Origins of Mutual Understanding; Belknap Press, Harvard Univ. Press: Cambridge, MA, 2009.
[120]
Landgraf, R.; Neumann, I.; Pittman, Q.J. Septal and hippocampal release of vasopressin and oxytocin during late pregnancy and parturition in the rat. Neuroendocrinology, 1991, 54(4), 378-383.
[http://dx.doi.org/10.1159/000125917] [PMID: 1758580]
[121]
Caldwell, J.D.; Greer, E.R.; Johnson, M.F.; Prange, A.J., Jr; Pedersen, C.A. Oxytocin and vasopressin immunoreactivity in hypothalamic and extrahypothalamic sites in late pregnant and postpartum rats. Neuroendocrinology, 1987, 46(1), 39-47.
[http://dx.doi.org/10.1159/000124794] [PMID: 3614554]
[122]
Landgraf, R.; Neumann, I.; Russell, J.A.; Pittman, Q.J. Push-pull perfusion and microdialysis studies of central oxytocin and vasopressin release in freely moving rats during pregnancy, parturition, and lactation. Ann. N. Y. Acad. Sci., 1992, 652, 326-339.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb34364.x] [PMID: 1626836]
[123]
Meddle, S.L.; Bishop, V.R.; Gkoumassi, E.; van Leeuwen, F.W.; Douglas, A.J. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology, 2007, 148(10), 5095-5104.
[http://dx.doi.org/10.1210/en.2007-0615] [PMID: 17628000]
[124]
Pedersen, C.A.; Ascher, J.A.; Monroe, Y.L.; Prange, A.J., Jr Oxytocin induces maternal behavior in virgin female rats. Science, 1982, 216(4546), 648-650.
[http://dx.doi.org/10.1126/science.7071605] [PMID: 7071605]
[125]
Iovino, M.; Messana, T.; Iovino, E.; De Pergola, G.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. Neuroendocrine Mechanisms Involved in Male Sexual and Emotional Behavior. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 472-480.
[http://dx.doi.org/10.2174/1871530319666190131155310] [PMID: 30706797]
[126]
Xiao, L.; Priest, M.F.; Nasenbeny, J.; Lu, T.; Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron, 2017, 95(2), 368-384.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.06.003] [PMID: 28669546]
[127]
Gunaydin, L.A.; Grosenick, L.; Finkelstein, J.C.; Kauvar, I.V.; Fenno, L.E.; Adhikari, A.; Lammel, S.; Mirzabekov, J.J.; Airan, R.D.; Zalocusky, K.A.; Tye, K.M.; Anikeeva, P.; Malenka, R.C.; Deisseroth, K. Natural neural projection dynamics underlying social behavior. Cell, 2014, 157(7), 1535-1551.
[http://dx.doi.org/10.1016/j.cell.2014.05.017] [PMID: 24949967]
[128]
Patel, J.C.; Rossignol, E.; Rice, M.E.; Machold, R.P. Opposing regulation of dopaminergic activity and exploratory motor behavior by forebrain and brainstem cholinergic circuits. Nat. Commun., 2012, 3, 1172.
[http://dx.doi.org/10.1038/ncomms2144] [PMID: 23132022]
[129]
Johns, J.M.; Joyner, P.W.; McMurray, M.S.; Elliott, D.L.; Hofler, V.E.; Middleton, C.L.; Knupp, K.; Greenhill, K.W.; Lomas, L.M.; Walker, C.H. The effects of dopaminergic/serotonergic reuptake inhibition on maternal behavior, maternal aggression, and oxytocin in the rat. Pharmacol. Biochem. Behav., 2005, 81(4), 769-785.
[http://dx.doi.org/10.1016/j.pbb.2005.06.001] [PMID: 15996723]
[130]
Champagne, F.; Diorio, J.; Sharma, S.; Meaney, M.J. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc. Natl. Acad. Sci. USA, 2001, 98(22), 12736-12741.
[http://dx.doi.org/10.1073/pnas.221224598] [PMID: 11606726]
[131]
Pedersen, C.A. Oxytocin control of maternal behavior. Regulation by sex steroids and offspring stimuli. Ann. N. Y. Acad. Sci., 1997, 807, 126-145.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb51916.x] [PMID: 9071347]
[132]
Young, W.S., III; Shepard, E.; Amico, J.; Hennighausen, L.; Wagner, K.U.; LaMarca, M.E.; McKinney, C.; Ginns, E.I. Deficiency in mouse oxytocin prevents milk ejection, but not fertility or parturition. J. Neuroendocrinol., 1996, 8(11), 847-853.
[http://dx.doi.org/10.1046/j.1365-2826.1996.05266.x] [PMID: 8933362]
[133]
Pedersen, C.A.; Vadlamudi, S.V.; Boccia, M.L.; Amico, J.A. Maternal behavior deficits in nulliparous oxytocin knockout mice. Genes Brain Behav., 2006, 5(3), 274-281.
[http://dx.doi.org/10.1111/j.1601-183X.2005.00162.x] [PMID: 16594980]
[134]
Klampfl, S.M.; Schramm, M.M.; Gaßner, B.M.; Hübner, K.; Seasholtz, A.F.; Brunton, P.J.; Bayerl, D.S.; Bosch, O.J. Maternal stress and the MPOA: Activation of CRF receptor 1 impairs maternal behavior and triggers local oxytocin release in lactating rats. Neuropharmacology, 2018, 133, 440-450.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.019] [PMID: 29477300]
[135]
Dabrowska, J.; Hazra, R.; Ahern, T.H.; Guo, J.D.; McDonald, A.J.; Mascagni, F.; Muller, J.F.; Young, L.J.; Rainnie, D.G. Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology, 2011, 36(9), 1312-1326.
[http://dx.doi.org/10.1016/j.psyneuen.2011.03.003] [PMID: 21481539]
[136]
Martinon, D.; Dabrowska, J. Corticotropin-releasing factor receptors modulate oxytocin release in the dorsolateral bed nucleus of the stria terminalis (BNST) in male rats. Front. Neurosci., 2018, 12, 183.
[http://dx.doi.org/10.3389/fnins.2018.00183] [PMID: 29618970]
[137]
Janeček, M.; Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res., 2019, 375(1), 143-172.
[http://dx.doi.org/10.1007/s00441-018-2889-8] [PMID: 30054732]
[138]
Niswender, G.D.; Davis, T.L.; Griffith, R.J.; Bogan, R.L.; Monser, K.; Bott, R.C.; Bruemmer, J.E.; Nett, T.M. Judge, jury and executioner: the auto-regulation of luteal function. Soc. Reprod. Fertil. Suppl., 2007, 64, 191-206.
[http://dx.doi.org/10.5661/RDR-VI-191] [PMID: 17491148]
[139]
Carter, C.S.; Altemus, M. Integrative functions of lactational hormones in social behavior and stress management. Ann. N. Y. Acad. Sci., 1997, 807, 164-174.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb51918.x] [PMID: 9071349]
[140]
Tyzio, R.; Cossart, R.; Khalilov, I.; Minlebaev, M.; Hübner, C.A.; Represa, A.; Ben-Ari, Y.; Khazipov, R. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science, 2006, 314(5806), 1788-1792.
[http://dx.doi.org/10.1126/science.1133212] [PMID: 17170309]
[141]
Crépel, V.; Aronov, D.; Jorquera, I.; Represa, A.; Ben-Ari, Y.; Cossart, R. A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus. Neuron, 2007, 54(1), 105-120.
[http://dx.doi.org/10.1016/j.neuron.2007.03.007] [PMID: 17408581]
[142]
Khazipov, R.; Tyzio, R.; Ben-Ari, Y. Effects of oxytocin on GABA signalling in the foetal brain during delivery. In: Prog. Brain Res; , 2008; 170, pp. 243-257.
[http://dx.doi.org/10.1016/S0079-6123(08)00421-4] [PMID: 18655887]
[143]
Hoge, E.A.; Anderson, E.; Lawson, E.A.; Bui, E.; Fischer, L.E.; Khadge, S.D.; Barrett, L.F.; Simon, N.M. Gender moderates the effect of oxytocin on social judgments. Hum. Psychopharmacol., 2014, 29(3), 299-304.
[http://dx.doi.org/10.1002/hup.2402] [PMID: 24911580]
[144]
Preckel, K.; Scheele, D.; Kendrick, K.M.; Maier, W.; Hurlemann, R. Oxytocin facilitates social approach behavior in women. Front. Behav. Neurosci., 2014, 8, 191.
[http://dx.doi.org/10.3389/fnbeh.2014.00191] [PMID: 24904342]
[145]
Fischer-Shofty, M.; Levkovitz, Y.; Shamay-Tsoory, S.G. Oxytocin facilitates accurate perception of competition in men and kinship in women. Soc. Cogn. Affect. Neurosci., 2013, 8(3), 313-317.
[http://dx.doi.org/10.1093/scan/nsr100] [PMID: 22446301]
[146]
Scheele, D.; Striepens, N.; Kendrick, K.M.; Schwering, C.; Noelle, J.; Wille, A.; Schläpfer, T.E.; Maier, W.; Hurlemann, R. Opposing effects of oxytocin on moral judgment in males and females. Hum. Brain Mapp., 2014, 35(12), 6067-6076.
[http://dx.doi.org/10.1002/hbm.22605] [PMID: 25094043]
[147]
Scheele, D.; Striepens, N.; Güntürkün, O.; Deutschländer, S.; Maier, W.; Kendrick, K.M.; Hurlemann, R. Oxytocin modulates social distance between males and females. J. Neurosci., 2012, 32(46), 16074-16079.
[http://dx.doi.org/10.1523/JNEUROSCI.2755-12.2012] [PMID: 23152592]
[148]
Ditzen, B.; Nater, U.M.; Schaer, M.; La Marca, R.; Bodenmann, G.; Ehlert, U.; Heinrichs, M. Sex-specific effects of intranasal oxytocin on autonomic nervous system and emotional responses to couple conflict. Soc. Cogn. Affect. Neurosci., 2013, 8(8), 897-902.
[http://dx.doi.org/10.1093/scan/nss083] [PMID: 22842905]
[149]
Bale, T.L.; Davis, A.M.; Auger, A.P.; Dorsa, D.M.; McCarthy, M.M. CNS region-specific oxytocin receptor expression: Importance in regulation of anxiety and sex behavior. J. Neurosci., 2001, 21(7), 2546-2552.
[http://dx.doi.org/10.1523/JNEUROSCI.21-07-02546.2001] [PMID: 11264328]
[150]
Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci., 2005, 25(49), 11489-11493.
[http://dx.doi.org/10.1523/JNEUROSCI.3984-05.2005] [PMID: 16339042]
[151]
Stevens, J.S.; Hamann, S. Sex differences in brain activation to emotional stimuli: a meta-analysis of neuroimaging studies. Neuropsychologia, 2012, 50(7), 1578-1593.
[http://dx.doi.org/10.1016/j.neuropsychologia.2012.03.011] [PMID: 22450197]
[152]
Gao, S.; Becker, B.; Luo, L.; Geng, Y.; Zhao, W.; Yin, Y.; Hu, J.; Gao, Z.; Gong, Q.; Hurlemann, R.; Yao, D.; Kendrick, K.M. Oxytocin, the peptide that bonds the sexes also divides them. Proc. Natl. Acad. Sci. USA, 2016, 113(27), 7650-7654.
[http://dx.doi.org/10.1073/pnas.1602620113] [PMID: 27325780]
[153]
Amunts, K.; Kedo, O.; Kindler, M.; Peperhoff, P.; Mohiberg, H.; Shah, N.J.; Habel, U.; Sneider, F.; Ziles, K. Cytoarchitectonic mapping of the human amygdala and entorhinal cortex: intersubject variability and probability maps. Anat. Embryol. (Berl.), 2005, 210(5-6), 343-352.
[http://dx.doi.org/10.1007/s00429-005-0025-5] [PMID: 16208455]
[154]
Adolphs, R. What does the amygdala contribute to social cognition? Ann. N. Y. Acad. Sci., 2010, 1191, 42-61.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05445.x] [PMID: 20392275]
[155]
Ming, G.L.; Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci., 2005, 28, 223-250.
[http://dx.doi.org/10.1146/annurev.neuro.28.051804.101459] [PMID: 16022595]
[156]
Loram, L.C.; Taylor, F.R.; Strand, K.A.; Frank, M.G.; Sholar, P.; Harrison, J.A.; Maier, S.F.; Watkins, L.R. Prior exposure to glucocorticoids potentiates lipopolysaccharide induced mechanical allodynia and spinal neuroinflammation. Brain Behav. Immun., 2011, 25(7), 1408-1415.
[http://dx.doi.org/10.1016/j.bbi.2011.04.013] [PMID: 21536123]
[157]
Yeager, M.P.; Rassias, A.J.; Pioli, P.A.; Beach, M.L.; Wardwell, K.; Collins, J.E.; Lee, H.K.; Guyre, P.M. Pretreatment with stress cortisol enhances the human systemic inflammatory response to bacterial endotoxin. Crit. Care Med., 2009, 37(10), 2727-2732.
[http://dx.doi.org/10.1097/CCM.0b013e3181a592b3] [PMID: 19885996]
[158]
Diz-Chaves, Y.; Pernía, O.; Carrero, P.; Garcia-Segura, L.M. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J. Neuroinflammation, 2012, 9, 71-96.
[http://dx.doi.org/10.1186/1742-2094-9-71] [PMID: 22520439]
[159]
Ślusarczyk, J.; Trojan, E.; Głombik, K.; Budziszewska, B.; Kubera, M.; Lasoń, W.; Popiołek-Barczyk, K.; Mika, J.; Wędzony, K.; Basta-Kaim, A. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front. Cell. Neurosci., 2015, 9, 82.
[http://dx.doi.org/10.3389/fncel.2015.00082] [PMID: 25814933]
[160]
Sanders, G.; Freilicher, J.; Lightman, S.L. Psychological stress of exposure to uncontrollable noise increases plasma oxytocin in high emotionality women. Psychoneuroendocrinology, 1990, 15(1), 47-58.
[http://dx.doi.org/10.1016/0306-4530(90)90046-C] [PMID: 2367615]
[161]
Neumann, I.D.; Wigger, A.; Torner, L.; Holsboer, F.; Landgraf, R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: partial action within the paraventricular nucleus. J. Neuroendocrinol., 2000, 12(3), 235-243.
[http://dx.doi.org/10.1046/j.1365-2826.2000.00442.x] [PMID: 10718919]
[162]
Ditzen, B.; Schaer, M.; Gabriel, B.; Bodenmann, G.; Ehlert, U.; Heinrichs, M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol. Psychiatry, 2009, 65(9), 728-731.
[http://dx.doi.org/10.1016/j.biopsych.2008.10.011] [PMID: 19027101]
[163]
Windle, R.J.; Shanks, N.; Lightman, S.L.; Ingram, C.D. Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 1997, 138(7), 2829-2834.
[http://dx.doi.org/10.1210/endo.138.7.5255] [PMID: 9202224]
[164]
Karelina, K.; Stuller, K.A.; Jarrett, B.; Zhang, N.; Wells, J.; Norman, G.J.; DeVries, A.C. Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke, 2011, 42(12), 3606-3611.
[http://dx.doi.org/10.1161/STROKEAHA.111.628008] [PMID: 21960564]
[165]
Norman, G.J.; Karelina, K.; Morris, J.S.; Zhang, N.; Cochran, M.; Courtney DeVries, A. Social interaction prevents the development of depressive-like behavior post nerve injury in mice: A potential role for oxytocin. Psychosom. Med., 2010, 72(6), 519-526.
[http://dx.doi.org/10.1097/PSY.0b013e3181de8678] [PMID: 20466999]
[166]
Amini-Khoei, H.; Mohammadi-Asl, A.; Amiri, S.; Hosseini, M-J.; Momeny, M.; Hassanipour, M.; Rastegar, M.; Haj-Mirzaian, A.; Mirzaian, A.H.; Sanjarimoghaddam, H.; Mehr, S.E.; Dehpour, A.R. Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 76, 169-178.
[http://dx.doi.org/10.1016/j.pnpbp.2017.02.022] [PMID: 28259722]
[167]
Mazzuca, M.; Minlebaev, M.; Shakirzyanova, A.; Tyzio, R.; Taccola, G. Newborn analgesia mediated by oxytocin during delivery. Front. Cell. Neurosci., 2011, 5, 3.
[http://dx.doi.org/10.3389/fncel.2011.00003]
[168]
Stuebe, A.M.; Grewen, K.; Meltzer-Brody, S. Association between maternal mood and oxytocin response to breastfeeding. J. Womens Health (Larchmt.), 2013, 22(4), 352-361.
[http://dx.doi.org/10.1089/jwh.2012.3768] [PMID: 23586800]
[169]
Burkett, J.P.; Spiegel, L.L.; Inoue, K.; Murphy, A.Z.; Young, L.J. Activation of μ-opioid receptors in the dorsal striatum is necessary for adult social attachment in monogamous prairie voles. Neuropsychopharmacology, 2011, 36(11), 2200-2210.
[http://dx.doi.org/10.1038/npp.2011.117] [PMID: 21734650]
[170]
Gu, X.L.; Yu, L.C. Involvement of opioid receptors in oxytocin-induced antinociception in the nucleus accumbens of rats. J. Pain, 2007, 8(1), 85-90.
[http://dx.doi.org/10.1016/j.jpain.2006.07.001] [PMID: 17097925]
[171]
Russo, R.; D’Agostino, G.; Mattace Raso, G.; Avagliano, C.; Cristiano, C.; Meli, R.; Calignano, A. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides, 2012, 38(1), 81-88.
[http://dx.doi.org/10.1016/j.peptides.2012.08.005] [PMID: 22917880]
[172]
Sawchenko, P.E.; Swanson, L.W. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol., 1982, 205(3), 260-272.
[http://dx.doi.org/10.1002/cne.902050306] [PMID: 6122696]
[173]
Juif, P.E.; Poisbeau, P. Neurohormonal effects of oxytocin and vasopressin receptor agonists on spinal pain processing in male rats. Pain, 2013, 154(8), 1449-1456.
[http://dx.doi.org/10.1016/j.pain.2013.05.003] [PMID: 23707282]
[174]
Juif, P.E.; Breton, J.D.; Rajalu, M.; Charlet, A.; Goumon, Y.; Poisbeau, P. Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition. J. Neurosci., 2013, 33(42), 16617-16626.
[http://dx.doi.org/10.1523/JNEUROSCI.3084-12.2013] [PMID: 24133265]
[175]
Eliava, M.; Melchior, M.; Knobloch-Bollmann, H.S.; Wahis, J.; da Silva Gouveia, M.; Tang, Y.; Ciobanu, A.C.; Triana Del Rio, R.; Roth, L.C.; Althammer, F.; Chavant, V.; Goumon, Y.; Gruber, T.; Petit-Demoulière, N.; Busnelli, M.; Chini, B.; Tan, L.L.; Mitre, M.; Froemke, R.C.; Chao, M.V.; Giese, G.; Sprengel, R.; Kuner, R.; Poisbeau, P.; Seeburg, P.H.; Stoop, R.; Charlet, A.; Grinevich, V. A new population of parvocellular OT neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron, 2016, 89(6), 1291-1304.
[http://dx.doi.org/10.1016/j.neuron.2016.01.041] [PMID: 26948889]
[176]
Leuner, B.; Caponiti, J.M.; Gould, E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus, 2012, 22(4), 861-868.
[http://dx.doi.org/10.1002/hipo.20947] [PMID: 21692136]
[177]
Gutkowska, J.; Jankowski, M. Oxytocin revisited: Its role in cardiovascular regulation. J. Neuroendocrinol., 2012, 24(4), 599-608.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02235.x] [PMID: 21981277]
[178]
Jafarzadeh, N.; Javeri, A.; Khaleghi, M.; Taha, M.F. Oxytocin improves proliferation and neural differentiation of adipose tissue-derived stem cells. Neurosci. Lett., 2014, 564, 105-110.
[http://dx.doi.org/10.1016/j.neulet.2014.02.012] [PMID: 24548623]
[179]
Lin, Y.T.; Chen, C.C.; Huang, C.C.; Nishimori, K.; Hsu, K.S. Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat. Commun., 2017, 8(1), 537.
[http://dx.doi.org/10.1038/s41467-017-00675-5] [PMID: 28912554]
[180]
Petersson, M. Cardiovascular effects of oxytocin. In: Prog. Brain Res; , 2002; 139, pp. 281-288.
[http://dx.doi.org/10.1016/S0079-6123(02)39024-1] [PMID: 12436943]
[181]
Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev., 2001, 81(2), 629-683.
[http://dx.doi.org/10.1152/physrev.2001.81.2.629] [PMID: 11274341]
[182]
Welch, M.G.; Tamir, H.; Gross, K.J.; Chen, J.; Anwar, M.; Gershon, M.D. Expression and developmental regulation of oxytocin (OT) and oxytocin receptors (OTR) in the enteric nervous system (ENS) and intestinal epithelium. J. Comp. Neurol., 2009, 512(2), 256-270.
[http://dx.doi.org/10.1002/cne.21872] [PMID: 19003903]
[183]
Olszewski, P.K.; Klockars, A.; Schiöth, H.B.; Levine, A.S. Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol. Biochem. Behav., 2010, 97(1), 47-54.
[http://dx.doi.org/10.1016/j.pbb.2010.05.026] [PMID: 20595062]
[184]
Nielsen, S.H.; Magid, E.; Spannow, J.; Christensen, S.; Lam, H.R.; Petersen, J.S. Renal function after myocardial infarction and cardiac arrest in rats: role of ANP-induced albuminuria? Acta Physiol. Scand., 1997, 160(4), 301-310.
[http://dx.doi.org/10.1046/j.1365-201X.1997.00162.x] [PMID: 9338510]
[185]
Jameson, H.; Bateman, R.; Byrne, P.; Dyavanapalli, J.; Wang, X.; Jain, V.; Mendelowitz, D. Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(11), H1549-H1557.
[http://dx.doi.org/10.1152/ajpheart.00808.2015] [PMID: 27016581]
[186]
Wang, P.; Yang, H.P.; Tian, S.; Wang, L.; Wang, S.C.; Zhang, F.; Wang, Y.F. Oxytocin-secreting system: A major part of the neuroendocrine center regulating immunologic activity. J. Neuroimmunol., 2015, 289, 152-161.
[http://dx.doi.org/10.1016/j.jneuroim.2015.11.001] [PMID: 26616885]
[187]
Wang, Y-F. Center role of the oxytocin-secreting system in neuroendocrine-immune network revisited. J. Clin. Exp. Neuroimmunol., 2016, 1, 102.
[188]
Iovino, M.; Messana, T.; De Pergola, G.; Iovino, E.; Guastamacchia, E.; Licchelli, B.; Vanacore, A.; Giagulli, V.A.; Triggiani, V. Brain angiotensinergic regulation of the immune system: Implications for cardiovascular and neuroendocrine responses. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(1), 15-24.
[http://dx.doi.org/10.2174/1871530319666190617160934] [PMID: 31237219]
[189]
Deblon, N.; Veyrat-Durebex, C.; Bourgoin, L.; Caillon, A.; Bussier, A.L.; Petrosino, S.; Piscitelli, F.; Legros, J.J.; Geenen, V.; Foti, M.; Wahli, W.; Di Marzo, V.; Rohner-Jeanrenaud, F. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One, 2011, 6(9)e25565
[190]
Blevins, J. E.; Baskin, D. G. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: insights from rodents, nonhuman primates and humans. Physiol. Behav, 2015, 152(Pt B), 438-449.
[http://dx.doi.org/10.1016/j.physbeh.2015.05.023]
[191]
Iovino, M.; Iacoviello, M.; De Pergola, G.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. Vasopressin in heart failure. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(5), 458-465.
[http://dx.doi.org/10.2174/1871530318666180212095235] [PMID: 29437026]
[192]
Iovino, M.; Messana, T.; De Pergola, G.; Iovino, E.; Dicuonzo, F.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. The role of neurohypophyseal hormones vasopressin and oxytocin in neuropsychiatric disorders. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(4), 341-347.
[http://dx.doi.org/10.2174/1871530318666180220104900] [PMID: 29468985]
[193]
Wang, S.C.; Meng, D.; Yang, H.; Wang, X.; Jia, S.; Wang, P.; Wang, Y-F. Pathological basis of cardiac arrhythmias: Vicious cycle of immune-metabolic dysregulation. Cardiovasc. Disord. Med., 2018, 3, 1-7.
[194]
Jankowski, M.; Broderick, T.L.; Gutkowska, J. Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr. Disord., 2016, 16, 34.
[http://dx.doi.org/10.1186/s12902-016-0110-1]
[195]
Morishita, Y.; Arima, H.; Hiroi, M.; Hayashi, M.; Hagiwara, D.; Asai, N.; Ozaki, N.; Sugimura, Y.; Nagasaki, H.; Shiota, A.; Takahashi, M.; Oiso, Y. Poly(A) tail length of neurohypophysial hormones is shortened under endoplasmic reticulum stress. Endocrinology, 2011, 152(12), 4846-4855.
[http://dx.doi.org/10.1210/en.2011-1415] [PMID: 21971157]
[196]
Indrambarya, T.; Boyd, J.H.; Wang, Y.; McConechy, M.; Walley, K.R. Low-dose vasopressin infusion results in increased mortality and cardiac dysfunction following ischemia-reperfusion injury in mice. Crit. Care, 2009, 13(3), R98.
[http://dx.doi.org/10.1186/cc7930] [PMID: 19549333]
[197]
Wang, P.; Wang, S.C.; Yang, H.; Lv, C.; Jia, S.; Liu, X.; Wang, X.; Meng, D.; Qin, D.; Zhu, H.; Wang, Y.F. Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: Mechanisms and signaling pathways. Front. Neurosci., 2019, 13, 454.
[198]
Plante, E.; Menaouar, A.; Danalache, B.A.; Yip, D.; Broderick, T.L.; Chiasson, J.L.; Jankowski, M.; Gutkowska, J. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology, 2015, 156(4), 1416-1428.
[http://dx.doi.org/10.1210/en.2014-1718] [PMID: 25562615]
[199]
Modahl, C.; Green, L.; Fein, D.; Morris, M.; Waterhouse, L.; Feinstein, C.; Levin, H. Plasma oxytocin levels in autistic children. Biol. Psychiatry, 1998, 43(4), 270-277.
[http://dx.doi.org/10.1016/S0006-3223(97)00439-3] [PMID: 9513736]
[200]
Green, L.; Fein, D.; Modahl, C.; Feinstein, C.; Waterhouse, L.; Morris, M. Oxytocin and autistic disorder: Alterations in peptide forms. Biol. Psychiatry, 2001, 50(8), 609-613.
[http://dx.doi.org/10.1016/S0006-3223(01)01139-8] [PMID: 11690596]
[201]
Jansen, L.M.; Gispen-de Wied, C.C.; Wiegant, V.M.; Westenberg, H.G.; Lahuis, B.E.; van Engeland, H. Autonomic and neuroendocrine responses to a psychosocial stressor in adults with autistic spectrum disorder. J. Autism Dev. Disord., 2006, 36(7), 891-899.
[http://dx.doi.org/10.1007/s10803-006-0124-z] [PMID: 16865550]
[202]
LoParo, D.; Waldman, I.D. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Mol. Psychiatry, 2015, 20(5), 640-646.
[http://dx.doi.org/10.1038/mp.2014.77] [PMID: 25092245]
[203]
Malavasi, F.; Deaglio, S.; Funaro, A.; Ferrero, E.; Horenstein, A.L.; Ortolan, E.; Vaisitti, T.; Aydin, S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev., 2008, 88(3), 841-886.
[http://dx.doi.org/10.1152/physrev.00035.2007] [PMID: 18626062]
[204]
Liu, H.X.; Lopatina, O.; Higashida, C.; Tsuji, T.; Kato, I.; Takasawa, S.; Okamoto, H.; Yokoyama, S.; Higashida, H. Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice. Neurosci. Lett., 2008, 448(1), 67-70.
[http://dx.doi.org/10.1016/j.neulet.2008.09.084] [PMID: 18926879]
[205]
Higashida, H.; Yokoyama, S.; Kikuchi, M.; Munesue, T. CD38 and its role in oxytocin secretion and social behavior. Horm. Behav., 2012, 61(3), 351-358.
[http://dx.doi.org/10.1016/j.yhbeh.2011.12.011] [PMID: 22227279]
[206]
Higashida, H.; Yokoyama, S.; Munesue, T.; Kikuchi, M.; Minabe, Y.; Lopatina, O. CD38 gene knockout juvenile mice: A model of oxytocin signal defects in autism. Biol. Pharm. Bull., 2011, 34(9), 1369-1372.
[http://dx.doi.org/10.1248/bpb.34.1369] [PMID: 21881219]
[207]
Lopatina, O.; Liu, H.X.; Amina, S.; Hashii, M.; Higashida, H. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-ribose or Ca(2+) concentrations is involved in autoregulation of oxytocin secretion in the hypothalamus and posterior pituitary in male mice. Neuropharmacology, 2010, 58(1), 50-55.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.012] [PMID: 19540855]
[208]
Jin, D.; Liu, H.X.; Hirai, H.; Torashima, T.; Nagai, T.; Lopatina, O.; Shnayder, N.A.; Yamada, K.; Noda, M.; Seike, T.; Fujita, K.; Takasawa, S.; Yokoyama, S.; Koizumi, K.; Shiraishi, Y.; Tanaka, S.; Hashii, M.; Yoshihara, T.; Higashida, K.; Islam, M.S.; Yamada, N.; Hayashi, K.; Noguchi, N.; Kato, I.; Okamoto, H.; Matsushima, A.; Salmina, A.; Munesue, T.; Shimizu, N.; Mochida, S.; Asano, M.; Higashida, H. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 2007, 446(7131), 41-45.
[http://dx.doi.org/10.1038/nature05526] [PMID: 17287729]
[209]
Munesue, T.; Yokoyama, S.; Nakamura, K.; Anitha, A.; Yamada, K.; Hayashi, K.; Asaka, T.; Liu, H.X.; Jin, D.; Koizumi, K.; Islam, M.S.; Huang, J.J.; Ma, W.J.; Kim, U.H.; Kim, S.J.; Park, K.; Kim, D.; Kikuchi, M.; Ono, Y.; Nakatani, H.; Suda, S.; Miyachi, T.; Hirai, H.; Salmina, A.; Pichugina, Y.A.; Soumarokov, A.A.; Takei, N.; Mori, N.; Tsujii, M.; Sugiyama, T.; Yagi, K.; Yamagishi, M.; Sasaki, T.; Yamasue, H.; Kato, N.; Hashimoto, R.; Taniike, M.; Hayashi, Y.; Hamada, J.; Suzuki, S.; Ooi, A.; Noda, M.; Kamiyama, Y.; Kido, M.A.; Lopatina, O.; Hashii, M.; Amina, S.; Malavasi, F.; Huang, E.J.; Zhang, J.; Shimizu, N.; Yoshikawa, T.; Matsushima, A.; Minabe, Y.; Higashida, H. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci. Res., 2010, 67(2), 181-191.
[http://dx.doi.org/10.1016/j.neures.2010.03.004] [PMID: 20435366]
[210]
Allen-Brady, K.; Miller, J.; Matsunami, N.; Stevens, J.; Block, H.; Farley, M.; Krasny, L.; Pingree, C.; Lainhart, J.; Leppert, M.; McMahon, W.M.; Coon, H. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol. Psychiatry, 2009, 14(6), 590-600.
[http://dx.doi.org/10.1038/mp.2008.14] [PMID: 18283277]
[211]
Ebstein, R.P.; Israel, S.; Lerer, E.; Uzefovsky, F.; Shalev, I.; Gritsenko, I.; Riebold, M.; Salomon, S.; Yirmiya, N. Arginine vasopressin and oxytocin modulate human social behavior. Ann. N. Y. Acad. Sci., 2009, 1167, 87-102.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04541.x] [PMID: 19580556]
[212]
Hovey, D.; Zettergren, A.; Jonsson, L.; Melke, J.; Anckarsäter, H.; Lichtenstein, P.; Westberg, L. Associations between oxytocin-related genes and autistic-like traits. Soc. Neurosci., 2014, 9(4), 378-386.
[http://dx.doi.org/10.1080/17470919.2014.897995] [PMID: 24635660]
[213]
Francis, S.M.; Kistner-Griffin, E.; Yan, Z.; Guter, S.; Cook, E.H.; Jacob, S. Variants in adjacent oxytocin/vasopressin gene region and associations with ASD diagnosis and other autism elated endophenotypes. Front. Neurosci., 2016, 10, 195-213.
[http://dx.doi.org/10.3389/fnins.2016.00195] [PMID: 27242401]
[214]
Jonas, W.; Mileva-Seitz, V.; Girard, A.W.; Bisceglia, R.; Kennedy, J.L.; Sokolowski, M.; Meaney, M.J.; Fleming, A.S.; Steiner, M. MAVAN Research Team. Genetic variation in oxytocin rs2740210 and early adversity associated with postpartum depression and breastfeeding duration. Genes Brain Behav., 2013, 12(7), 681-694.
[http://dx.doi.org/10.1111/gbb.12069] [PMID: 23941164]
[215]
Jacob, S.; Brune, C.W.; Carter, C.S.; Leventhal, B.L.; Lord, C.; Cook, E.H., Jr Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci. Lett., 2007, 417(1), 6-9.
[http://dx.doi.org/10.1016/j.neulet.2007.02.001] [PMID: 17383819]
[216]
Lerer, E.; Levi, S.; Salomon, S.; Darvasi, A.; Yirmiya, N.; Ebstein, R.P. Association between the oxytocin receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. Mol. Psychiatry, 2008, 13(10), 980-988.
[http://dx.doi.org/10.1038/sj.mp.4002087] [PMID: 17893705]
[217]
Di Napoli, A.; Warrier, V.; Baron-Cohen, S.; Chakrabarti, B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with Asperger Syndrome. Mol. Autism, 2014, 5(1), 48-64.
[http://dx.doi.org/10.1186/2040-2392-5-48] [PMID: 25264479]
[218]
Ma, W.J.; Hashii, M.; Munesue, T.; Hayashi, K.; Yagi, K.; Yamagishi, M.; Higashida, H.; Yokoyama, S. Non-synonymous single-nucleotide variations of the human oxytocin receptor gene and autism spectrum disorders: a case-control study in a Japanese population and functional analysis. Mol. Autism, 2013, 4(1), 22-46.
[http://dx.doi.org/10.1186/2040-2392-4-22] [PMID: 23815867]
[219]
Tost, H.; Kolachana, B.; Hakimi, S.; Lemaitre, H.; Verchinski, B.A.; Mattay, V.S.; Weinberger, D.R.; Meyer-Lindenberg, A. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13936-13941.
[http://dx.doi.org/10.1073/pnas.1003296107] [PMID: 20647384]
[220]
Wang, J.; Qin, W.; Liu, B.; Wang, D.; Zhang, Y.; Jiang, T.; Yu, C. Variant in OXTR gene and functional connectivity of the hypothalamus in normal subjects. Neuroimage, 2013, 81, 199-204.
[http://dx.doi.org/10.1016/j.neuroimage.2013.05.029] [PMID: 23684879]
[221]
Schneider-Hassloff, H.; Straube, B.; Jansen, A.; Nuscheler, B.; Wemken, G.; Witt, S.H.; Rietschel, M.; Kircher, T. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. Neuroimage, 2016, 134, 671-684.
[http://dx.doi.org/10.1016/j.neuroimage.2016.04.009] [PMID: 27109357]
[222]
Andari, E.; Duhamel, J.R.; Zalla, T.; Herbrecht, E.; Leboyer, M.; Sirigu, A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4389-4394.
[http://dx.doi.org/10.1073/pnas.0910249107] [PMID: 20160081]
[223]
Yatawara, C.J.; Einfeld, S.L.; Hickie, I.B.; Davenport, T.A.; Guastella, A.J. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: A randomized clinical crossover trial. Mol. Psychiatry, 2016, 21(9), 1225-1231.
[http://dx.doi.org/10.1038/mp.2015.162] [PMID: 26503762]
[224]
Kosaka, H.; Munesue, T.; Ishitobi, M.; Asano, M.; Omori, M.; Sato, M.; Tomoda, A.; Wada, Y. Long-term oxytocin administration improves social behaviors in a girl with autistic disorder. BMC Psychiatry, 2012, 12, 110-119.
[http://dx.doi.org/10.1186/1471-244X-12-110] [PMID: 22888794]
[225]
Watanabe, T.; Kuroda, M.; Kuwabara, H.; Aoki, Y.; Iwashiro, N.; Tatsunobu, N.; Takao, H.; Nippashi, Y.; Kawakubo, Y.; Kunimatsu, A.; Kasai, K.; Yamasue, H. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain, 2015, 138(Pt 11), 3400-3412.
[http://dx.doi.org/10.1093/brain/awv249] [PMID: 26336909]
[226]
Dadds, M.R.; MacDonald, E.; Cauchi, A.; Williams, K.; Levy, F.; Brennan, J. Nasal oxytocin for social deficits in childhood autism: A randomized controlled trial. J. Autism Dev. Disord., 2014, 44(3), 521-531.
[http://dx.doi.org/10.1007/s10803-013-1899-3] [PMID: 23888359]
[227]
Guastella, A.J.; Gray, K.M.; Rinehart, N.J.; Alvares, G.A.; Tonge, B.J.; Hickie, I.B.; Keating, C.M.; Cacciotti-Saija, C.; Einfeld, S.L. The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: a randomized controlled trial. J. Child Psychol. Psychiatry, 2015, 56(4), 444-452.
[http://dx.doi.org/10.1111/jcpp.12305] [PMID: 25087908]
[228]
Kosaka, H.; Okamoto, Y.; Munesue, T.; Yamasue, H.; Inohara, K.; Fujioka, T.; Anme, T.; Orisaka, M.; Ishitobi, M.; Jung, M.; Fujisawa, T.X.; Tanaka, S.; Arai, S.; Asano, M.; Saito, D.N.; Sadato, N.; Tomoda, A.; Omori, M.; Sato, M.; Okazawa, H.; Higashida, H.; Wada, Y. Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: A 24-week randomized clinical trial. Transl. Psychiatry, 2016, 6(8)e872
[http://dx.doi.org/10.1038/tp.2016.152] [PMID: 27552585]
[229]
Carter, C.S. Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 1998, 23(8), 779-818.
[http://dx.doi.org/10.1016/S0306-4530(98)00055-9] [PMID: 9924738]
[230]
Carter, C.S. Developmental consequences of oxytocin. Physiol. Behav., 2003, 79(3), 383-397.
[http://dx.doi.org/10.1016/S0031-9384(03)00151-3] [PMID: 12954433]
[231]
Carter, C.S.; Pournajafi-Nazarloo, H.; Kramer, K.M.; Ziegler, T.E.; White-Traut, R.; Bello, D.; Schwertz, D. Oxytocin: behavioral associations and potential as a salivary biomarker. Ann. N. Y. Acad. Sci., 2007, 1098, 312-322.
[http://dx.doi.org/10.1196/annals.1384.006] [PMID: 17435137]
[232]
Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: implications for anxiety, depression, and social behaviors. Trends Neurosci., 2012, 35(11), 649-659.
[http://dx.doi.org/10.1016/j.tins.2012.08.004] [PMID: 22974560]
[233]
Landgraf, R.; Wigger, A. Born to be anxious: neuroendocrine and genetic correlates of trait anxiety in HBA rats. Stress, 2003, 6(2), 111-119.
[http://dx.doi.org/10.1080/1025389031000104193]
[234]
Appenrodt, E.; Schnabel, R.; Schwarzberg, H. Vasopressin administration modulates anxiety-related behavior in rats. Physiol. Behav., 1998, 64(4), 543-547.
[http://dx.doi.org/10.1016/S0031-9384(98)00119-X] [PMID: 9761230]
[235]
Insel, T.R.; Young, L.J. The neurobiology of attachment. Nat. Rev. Neurosci., 2001, 2, 129-136.
[236]
Heinrichs, M.; Baumgartner, T.; Kirschbaum, C.; Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry, 2003, 54(12), 1389-1398.
[http://dx.doi.org/10.1016/S0006-3223(03)00465-7] [PMID: 14675803]
[237]
Domes, G.; Heinrichs, M.; Gläscher, J.; Büchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry, 2007, 62(10), 1187-1190.
[http://dx.doi.org/10.1016/j.biopsych.2007.03.025] [PMID: 17617382]
[238]
Kosfeld, M.; Heinrichs, M.; Zak, P.J.; Fischbacher, U.; Fehr, E. Oxytocin increases trust in humans. Nature, 2005, 435(7042), 673-676.
[http://dx.doi.org/10.1038/nature03701] [PMID: 15931222]
[239]
Macdonald, K.; Feifel, D. Oxytocin in schizophrenia: a review of evidence for its therapeutic effects. Acta Neuropsychiatr., 2012, 24(3), 130-146.
[http://dx.doi.org/10.1111/j.1601-5215.2011.00634.x] [PMID: 22736892]
[240]
Linkowski, P.; Geenen, V.; Kerkhofs, M.; Mendlewicz, J.; Legros, J.J. Cerebrospinal fluid neurophysins in affective illness and in schizophrenia. Eur. Arch. Psychiatry Neurol. Sci., 1984, 234(3), 162-165.
[http://dx.doi.org/10.1007/BF00461555] [PMID: 6489403]
[241]
Beckmann, H.; Lang, R.E.; Gattaz, W.F. Vasopressin--oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls. Psychoneuroendocrinology, 1985, 10(2), 187-191.
[http://dx.doi.org/10.1016/0306-4530(85)90056-3] [PMID: 4034849]
[242]
Legros, J.J.; Gazzotti, C.; Carvelli, T.; Franchimont, P.; Timsit-Berthier, M.; von Frenckell, R.; Ansseau, M. Apomorphine stimulation of vasopressin- and oxytocin-neurophysins. Evidence for increased oxytocinergic and decreased vasopressinergic function in schizophrenics. Psychoneuroendocrinology, 1992, 17(6), 611-617.
[http://dx.doi.org/10.1016/0306-4530(92)90019-4] [PMID: 1287681]
[243]
Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull., 1987, 13(2), 261-276.
[http://dx.doi.org/10.1093/schbul/13.2.261] [PMID: 3616518]
[244]
Rubin, L.H.; Carter, C.S.; Drogos, L.; Pournajafi-Nazarloo, H.; Sweeney, J.A.; Maki, P.M. Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr. Res., 2010, 124(1-3), 13-21.
[http://dx.doi.org/10.1016/j.schres.2010.09.014] [PMID: 20947304]
[245]
Souza, R.P.; Ismail, P.; Meltzer, H.Y.; Kennedy, J.L. Variants in the oxytocin gene and risk for schizophrenia. Schizophr. Res., 2010, 121(1-3), 279-280.
[http://dx.doi.org/10.1016/j.schres.2010.04.019] [PMID: 20547038]
[246]
Teltsh, O.; Kanyas-Sarner, K.; Rigbi, A.; Greenbaum, L.; Lerer, B.; Kohn, Y. Oxytocin and vasopressin genes are significantly associated with schizophrenia in a large Arab-Israeli pedigree. Int. J. Neuropsychopharmacol., 2012, 15(3), 309-319.
[http://dx.doi.org/10.1017/S1461145711001374] [PMID: 21899794]
[247]
Souza, R.P.; de Luca, V.; Meltzer, H.Y.; Lieberman, J.A.; Kennedy, J.L. Schizophrenia severity and clozapine treatment outcome association with oxytocinergic genes. Int. J. Neuropsychopharmacol., 2010, 13(6), 793-798.
[http://dx.doi.org/10.1017/S1461145710000167] [PMID: 20196918]
[248]
Bujanow, W. Hormones in the treatment of psychoses. BMJ, 1972, 4(5835), 298.
[http://dx.doi.org/10.1136/bmj.4.5835.298-c] [PMID: 5083904]
[249]
Bujanow, W. Letter: Is oxytocin an anti-schizophrenic hormone? Can. Psychiatr. Assoc. J., 1974, 19(3), 323.
[http://dx.doi.org/10.1177/070674377401900323] [PMID: 4841051]
[250]
Bakharev, V.D.; Tikhomirov, S.M.; Lozhkina, T.K. Psychotropic properties of oxytocin. Neurosci. Behav. Physiol., 1986, 16(2), 160-164.
[http://dx.doi.org/10.1007/BF01186517] [PMID: 3748373]
[251]
Goldman, M.B.; Gomes, A.M.; Carter, C.S.; Lee, R. Divergent effects of two different doses of intranasal oxytocin on facial affect discrimination in schizophrenic patients with and without polydipsia. Psychopharmacology (Berl.), 2011, 216(1), 101-110.
[http://dx.doi.org/10.1007/s00213-011-2193-8] [PMID: 21301811]
[252]
Feifel, D.; Macdonald, K.; Nguyen, A.; Cobb, P.; Warlan, H.; Galangue, B.; Minassian, A.; Becker, O.; Cooper, J.; Perry, W.; Lefebvre, M.; Gonzales, J.; Hadley, A. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol. Psychiatry, 2010, 68(7), 678-680.
[http://dx.doi.org/10.1016/j.biopsych.2010.04.039] [PMID: 20615494]
[253]
Feifel, D.; Macdonald, K.; Cobb, P.; Minassian, A. Adjunctive intranasal oxytocin improves verbal memory in people with schizophrenia. Schizophr. Res., 2012, 139(1-3), 207-210.
[http://dx.doi.org/10.1016/j.schres.2012.05.018] [PMID: 22682705]
[254]
Pedersen, C.A.; Gibson, C.M.; Rau, S.W.; Salimi, K.; Smedley, K.L.; Casey, R.L.; Leserman, J.; Jarskog, L.F.; Penn, D.L. Intranasal oxytocin reduces psychotic symptoms and improves Theory of Mind and social perception in schizophrenia. Schizophr. Res., 2011, 132(1), 50-53.
[http://dx.doi.org/10.1016/j.schres.2011.07.027] [PMID: 21840177]
[255]
Modabbernia, A.; Rezaei, F.; Salehi, B.; Jafarinia, M.; Ashrafi, M.; Tabrizi, M.; Hosseini, S.M.; Tajdini, M.; Ghaleiha, A.; Akhondzadeh, S. Intranasal oxytocin as an adjunct to risperidone in patients with schizophrenia: An 8-week, randomized, double-blind, placebo-controlled study. CNS Drugs, 2013, 27(1), 57-65.
[http://dx.doi.org/10.1007/s40263-012-0022-1] [PMID: 23233269]
[256]
Rotzinger, S.; Lovejoy, D.A.; Tan, L.A. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides, 2010, 31(4), 736-756.
[http://dx.doi.org/10.1016/j.peptides.2009.12.015] [PMID: 20026211]
[257]
Zetzsche, T.; Frasch, A.; Jirikowski, G.; Murck, H.; Steiger, A. Nocturnal oxytocin secretion is reduced in major depression. Biol. Psychiatry, 1996, 39, 584.
[http://dx.doi.org/10.1016/0006-3223(96)84235-1]
[258]
Anderberg, U.M.; Uvnäs-Moberg, K. Plasma oxytocin levels in female fibromyalgia syndrome patients. Z. Rheumatol., 2000, 59(6), 373-379.
[http://dx.doi.org/10.1007/s003930070045] [PMID: 11201002]
[259]
Ozsoy, S.; Esel, E.; Kula, M. Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res., 2009, 169(3), 249-252.
[http://dx.doi.org/10.1016/j.psychres.2008.06.034] [PMID: 19732960]
[260]
Cyranowski, J.M.; Hofkens, T.L.; Frank, E.; Seltman, H.; Cai, H.M.; Amico, J.A. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med., 2008, 70(9), 967-975.
[http://dx.doi.org/10.1097/PSY.0b013e318188ade4] [PMID: 19005082]
[261]
Skrundz, M.; Bolten, M.; Nast, I.; Hellhammer, D.H.; Meinlschmidt, G.; Meinlschmidt, G. Plasma oxytocin concentration during pregnancy is associated with development of postpartum depression. Neuropsychopharmacology, 2011, 36(9), 1886-1893.
[http://dx.doi.org/10.1038/npp.2011.74] [PMID: 21562482]
[262]
Costa, B.; Pini, S.; Gabelloni, P.; Abelli, M.; Lari, L.; Cardini, A.; Muti, M.; Gesi, C.; Landi, S.; Galderisi, S.; Mucci, A.; Lucacchini, A.; Cassano, G.B.; Martini, C. Oxytocin receptor polymorphisms and adult attachment style in patients with depression. Psychoneuroendocrinology, 2009, 34(10), 1506-1514.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.006] [PMID: 19515497]
[263]
Thompson, R.J.; Parker, K.J.; Hallmayer, J.F.; Waugh, C.E.; Gotlib, I.H. Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology, 2011, 36(1), 144-147.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.003] [PMID: 20708845]
[264]
Scantamburlo, G.; Ansseau, M.; Geenen, V.; Legros, J.J. Intranasal oxytocin as an adjunct to escitalopram in major depression. J. Neuropsychiatry Clin. Neurosci., 2011, 23(2) E5
[http://dx.doi.org/10.1176/jnp.23.2.jnpe5] [PMID: 21677229]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy