Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Review on the Synthesis and Properties of the Energetic Compound Containing Boron

Author(s): Guodong Wang*, Jing Suming, Guoqing Liu and Xingyong Gao*

Volume 24, Issue 10, 2020

Page: [1097 - 1107] Pages: 11

DOI: 10.2174/1385272824999200516180719

Price: $65

Abstract

Boron possesses the second greatest heating value of any element that can be adopted as an energetic material in the processing of propellants and explosives. It has become the first choice as a high energy fuel for solid fuel-rich propellants because of its advantages of high theoretical combustion heat. In the actual condition, the combustion efficiency of boron-containing fuel-rich propellants is low, and the potential energy of boron cannot be fully utilized. The compound containing-boron can be used as a new way to improve the combustion efficiency of fuel-rich propellants. In this paper, the progress in the synthesis of energetic borides is reviewed from the perspectives of molecular design, synthesis strategy and route optimization. The situation of the synthesis methods of energetic borides (nitrogen-rich boron esters, poly(azole)borates, nitroboranes, nitrogen-rich borazines and azide boron compounds) is reviewed. The research focus and development trend of various boron compounds are analyzed, and the potential application prospect in the propellant is investigated.

Keywords: Boron, energetic materials, borates, boron esters, nitrogen-rich borazine, nitroboranes.

Graphical Abstract

[1]
Manning, T.; Field, R.; Klingaman, K.; Fair, M.; Bolognini, J.; Crownover, R.; Adam, C.P.; Panchal, V.; Rozumov, E.; Grau, H. Innovative boron nitride-doped propellants. Def. Technol., 2016, 12(2), 69-80.
[http://dx.doi.org/10.1016/j.dt.2015.10.001]
[2]
Rashkovskiy, S.A. Formation of solid residues in combustion of boron-containing solid propellants. Acta Astronaut., 2019, 158, 277-285.
[http://dx.doi.org/10.1016/j.actaastro.2019.03.034]
[3]
Rashkovskiy, S.A. Boron particle agglomeration and formation of solid residues in combustion of boron-containing solid propellants. J. Phys. Conf. Ser., 2018, 1009(1) 012029
[http://dx.doi.org/10.1088/1742-6596/1009/1/012029]
[4]
Liu, J.; Liang, D.; Xiao, J.; Chen, B.; Zhang, Y.; Zhou, J.; Cen, K. Composition and characteristics of primary combustion products of boron-based propellants. Combust. Explos. Shock Waves, 2017, 53(1), 55-64.
[http://dx.doi.org/10.1134/S0010508217010099]
[5]
Syed, A.H.; Manu, L.; Srinibas, K.; Arnab, R. Calculation of theoretical performance of boron-based composite solid propellant for the future applications.in: Innovative Design and Development Practices in Aerospace and Automotive Engineering; Springer, 2017, pp. 327-335.
[6]
Korotkikh, A.G.; Glotov, O.G.; Arkhipov, V.A.; Zarko, V.E.; Kiskin, A.B. Effect of iron and boron ultrafine powders on combustion of aluminized solid propellants. Combust. Flame, 2017, 178, 195-204.
[http://dx.doi.org/10.1016/j.combustflame.2017.01.004]
[7]
Pratim, K.; Mayank, V.; Aniket, M. Combustion performance studies of aluminum and boron based composite solid propellants in sub-atmospheric pressure regimes. Propuls. Power Res, 2019, 8(4), 329-338.
[http://dx.doi.org/10.1016/j.jppr.2019.09.001]
[8]
Daolun, L.; Jianzhong, L.; Binghong, C.; Junhu, Z.; Cen, K. Improvement in energy release properties of boron-based propellant by oxidant coating. Thermochim. Acta, 2016, 638, 58-68.
[http://dx.doi.org/10.1016/j.tca.2016.06.017]
[9]
Chen, B.; Xia, Z.; Huang, L.; Ma, L. Characteristics of the combustion chamber of a boron-based solid propellant ducted rocket with a chin-type inlet. Aerosp. Sci. Technol., 2018, 82, 210-219.
[http://dx.doi.org/10.1016/j.ast.2018.08.035]
[10]
Chen, T.; Zhang, X.; Xiao, J.; Liu, J.; Wang, Y.; Wang, R. Effect of Mg powder on the energy release property of boron-based fuel-rich propellants. J. Solid Rock. Tech., 2018, 41(4), 458-461.
[11]
Ao, W.; Wang, Y.; Wu, S. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics. Acta Astronaut., 2017, 136, 450-458.
[http://dx.doi.org/10.1016/j.actaastro.2017.03.002]
[12]
Paulo, A.F.; Francisco, M.B. Theoretical analysis of ammonium-perchlorate based composite propellants containing small size particles of boron. Energy Procedia, 2017, 136, 202-207.
[http://dx.doi.org/10.1016/j.egypro.2017.10.320]
[13]
Hashim, S.A.; Lahariya, M.; Karmakar, S.; Roy, A. Calculation of theoretical performance of boron-based composite solid propellant for the future applications in: lecture notes in mechanical engineering, 2017, f9, pp. 327-335.
[http://dx.doi.org/10.1007/978-981-10-1771-1_35]
[14]
Abirami, A.; Soman, R.R.; Agawane, N.T.; Bhujbal, J.G.; Singh, R.V.; Kulkarni, P.S. Studies on curing of glycidyl azide polymer using isocyanate, acrylate and peocessing of gap-boron-based, fule-rich propellants. Int. J. Energ. Mat. Chem. Propuls., 2016, 15(3), 215-230.
[http://dx.doi.org/10.1615/IntJEnergeticMaterialsChemProp.2016015614]
[15]
Won, J.; Choi, S.; Lee, W.; Kim, J.; Hwang, G.; Park, B. A study of fuel-rich solid propellant characteristic for boron-bead particle size. J. Kor. Soc. Propuls. Eng., 2014, 18(5), 12-18.
[http://dx.doi.org/10.6108/KSPE.2014.18.5.012]
[16]
Zhang, X.; Liu, M.E.; Liu, W.Z.; Deng, J.R. Synthesis and interfacial adhesion interaction of borate ester bonding agents used for HTPB propellants. Propellants Explos. Pyrotech., 2016, 41(5), 814-821.
[http://dx.doi.org/10.1002/prep.201500348]
[17]
Zhang, X.; Liu, M.; Tan, X.; Peng, J.; Deng, J. Synthesis and application of borate ester bonding agents for a four‐component hydroxy‐terminated polybutadiene propellant. Propellants Explos. Pyrotech., 2015, 40(6), 831-837.
[http://dx.doi.org/10.1002/prep.201500034]
[18]
Zhang, X. Synthesis and application of borate ester bonding agents for a four-component hydroxy-terminated polybutadiene propellant. Propellants Explos. Pyrotech., 2015, 40(6), 831-837.
[http://dx.doi.org/10.1002/prep.201500034]
[19]
Liu, M.; Zhang, X.; Deng, J. Synthesis and application of modified borate ester bonding agent for HTPB propellant. Chin. J. Energ. Mat., 2016, 24(6), 550-554.
[20]
Edwards, K.D.; Pearson, G.H.; Woodrum, M.K.; Niedenzu, K. Tris(ω-aminoalkoxy)boranes. Inorg. Chim. Acta, 1992, 194, 81.
[http://dx.doi.org/10.1016/S0020-1693(00)85826-0]
[21]
Duggal, R.; Mehrotra, R.C. Organic derivatives of boron. Part I. Reactions of alkanolamines with ethyl borate. Inorg. Chim. Acta, 1980, 43, 179-183.
[http://dx.doi.org/10.1016/S0020-1693(00)90525-5]
[22]
Ernst, V. master thesis, ludwig maximilian university munich: germany,. 2008.
[23]
Klapötke, T.M.; Krumm, B.; Moll, R. Polynitroethyl- and fluorodinitroethyl substituted boron esters. Chemistry, 2013, 19(36), 12113-12123.
[http://dx.doi.org/10.1002/chem.201300964] [PMID: 23893716]
[24]
Klapötke, T.M.; Rusan, M.; Sproll, V. Synthesis and investigation of energetic boron compounds for pyrotechnics. Z. Anorg. Allg. Chem., 2014, 640(10), 1892-1899.
[http://dx.doi.org/10.1002/zaac.201400218]
[25]
Zwicky, F. Propellants for tomorrow’s rockets. Astronautics, 1957, 2, 45-49.
[26]
Mader, C.L.; Smith, L.C. The performance of boron explosives; Los Alamos Scientific Laboratory of the University of California, 1959.
[27]
Trofimenko, S. Boron-pyrazole chemistry. II. Poly(1-pyrazolyl)borates. J. Am. Chem. Soc., 1967, 88, 3170.
[http://dx.doi.org/10.1021/ja00989a017]
[28]
Trofimenko, S. The versatile (polypyrazolyl)borates. Angew. Chem., 1973, 12(10), 861.
[http://dx.doi.org/10.1002/anie.197308611]
[29]
Mikhalyova, E.A.; Trofimenko, S.; Zeller, M.; Addison, A.W.; Pavlishchuk, V.V. New homodinuclear tris(3-alkylpyrazolyl)borate complexes of CoII and NiII with a tetraacetylethane dianion as a bridging ligand. Acta Crystallogr. C Struct. Chem., 2016, 72(Pt 11), 777-785.
[http://dx.doi.org/10.1107/S205322961601398X] [PMID: 27811411]
[30]
Trofimenko, S. Polypyrazolyl borates - a new class of ligands. Acc. Chem. Res., 1971, 4(1), 17-22.
[http://dx.doi.org/10.1021/ar50037a003]
[31]
Trofimenko, S. Recent advances in poly(pyrazolyl)borate (scorpionate) chemistry. Chem. Rev., 1993, 93(3), 943-980.
[http://dx.doi.org/10.1021/cr00019a006]
[32]
Trofimenko, S. Spiro cations based on bis-bidentate tetrakis(1-pyrazolyl)borate ligand. J. Coord. Chem., 1972, 2(1), 75-77.
[http://dx.doi.org/10.1080/00958977208072953]
[33]
Trofimenko, S. Recent advances in poly(pyrazolyl)borate (scorpionate) chemistry. ChemInform, 1993, 24(31)
[http://dx.doi.org/10.1002/chin.199331333]
[34]
Trofimenko, S. Transition metal tris(1-pyrazolyl)borates containing nitroso and arylazo ligands. Inorg. Chem., 2002, 8(12), 2675-2680.
[http://dx.doi.org/10.1021/ic50082a028]
[35]
Trofimenko, S. Boron-pyrazole chemistry. II. Poly(1-pyrazolyl)-borates. J. Am. Chem. Soc., 2002, 89(13), 3170-3177.
[http://dx.doi.org/10.1021/ja00989a017]
[36]
Trofimenko, S. Boron-pyrazole chemistry. IV. Carbon- and boron-substituted poly[(1-pyrazolyl) borates. J. Am. Chem. Soc., 2002, 89(24), 6288-6294.
[http://dx.doi.org/10.1021/ja01000a053]
[37]
Niedenzu, K.; Trofimenko, S. The (dimethylamido)tris(1‐pyrazolyl)borate(1‐) ion, a new hybrid poly(1‐pyrazolyl)borate ligand. Inorg. Chem., 1985, 24(24), 4222-4223.
[38]
Janiak, C.; Esser, L. The bishydridobis(tetrazol-l-yl)borate anion,[H2B(CHN4)2]: synthesis and structure of the first tetrazolylborate. Z. Naturforsch. B, 1993, 48, 394-396.
[http://dx.doi.org/10.1515/znb-1993-0319]
[39]
Pellei, M.; Benetollo, F.; Lobbia, G.G.; Alidori, S.; Santini, C. The first nitro-substituted heteroscorpionate ligand. Inorg. Chem., 2005, 44(4), 846-848.
[http://dx.doi.org/10.1021/ic048562x] [PMID: 15859260]
[40]
Zhuo, Z.; Brendan, T.; Shreeve, M. Structure and properties of substituted imidazolium, triazolium, and tetrazolium poly(1,2,4-triazolyl)borate salts. Organometallics, 2007, 26(7), 1782-1787.
[http://dx.doi.org/10.1021/om061113f]
[41]
Haiges, R.; Jones, C.B.; Christe, K.O. Energetic bis(3,5-dinitro-1H-1,2,4-triazolyl)dihydro- and dichloroborates and bis(5-nitro-2H-tetrazolyl)-, bis(5-(trinitromethyl)-2H-tetrazolyl)-, and bis(5-(fluorodinitromethyl)-2H-tetrazolyl)dihydroborate. Inorg. Chem., 2013, 52(9), 5551-5558.
[http://dx.doi.org/10.1021/ic400504h] [PMID: 23614398]
[42]
Glück, J.; Klapötke, T.M.; Rusan, M.; Stierstorfer, J. Green colorants based on energetic azole borates. Chemistry, 2014, 20(48), 15947-15960.
[http://dx.doi.org/10.1002/chem.201403451] [PMID: 25284439]
[43]
Pellei, M.; Santini, C.; Marinelli, M. The hydridotris(3-nitro-1,2,4-triazol-1-yl)borate, a new nitrosubstituted electron withdrawing polydentate “scorpionate”-type ligand and related copper and silver phosphane complexes. Polyhedron, 2017, 125, 86-92.
[http://dx.doi.org/10.1016/j.poly.2016.09.051]
[44]
Chabot, G.B; Kaplan, S.M.; Deokar, P.; Szimhardt, N.; Haiges, R.; Christe, K.O. Synthesis and characterization of nitro-, trinitromethyl-, and fluorodinitromethyl-substituted triazolyl- and tetrazolyl-trihydridoborate anions. Chemistry, 2017, 23(53), 13087-13099.
[http://dx.doi.org/10.1002/chem.201701690] [PMID: 28590071]
[45]
Wang, W.; Xue, Y.; Yang, J. a review of boron hydrides used in high burning rate propellant. energ. mat 2012, 20(1), 132-136.
[http://dx.doi.org/10.3969 / j.issn.1006-9941.2012.01.031]
[46]
Li, X.; Huo, H.; Li, H.; Nie, F.; Yin, H.; Chen, F.X. Cyanotetrazolylborohydride (CTB) anion-based ionic liquids with low viscosity and high energy capacity as ultrafast-igniting hypergolic fuels. Chem. Commun. (Camb.), 2017, 53(59), 8300-8303.
[http://dx.doi.org/10.1039/C7CC03766J] [PMID: 28685780]
[47]
Li, X.; Wang, C. Bishydrobis(tetrazol-1-yl)borate (BTB) based energetic ionic liquids with high-density and energy capacity as hypergolic fuels. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5, 15525-15528.
[http://dx.doi.org/10.1039/C7TA03241B]
[48]
Fei, T.; Cai, H.; Li, Z.; Liu, L. Synthesis, characterization and properties of bis(imidazole) dihydroboronium hypergolic ionic liquids. Energ. Mat., 2015, 23(10), 952-958.
[http://dx.doi.org/10.11943/j.issn.1006-9941.2015.10.007]
[49]
Yang, Q.; Chen, Y.Z.; Wang, Z.U.; Xu, Q.; Jiang, H.L. One-pot tandem catalysis over Pd@MIL-101: boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation. Chem. Commun. (Camb.), 2015, 51(52), 10419-10422.
[http://dx.doi.org/10.1039/C5CC03102H] [PMID: 26000763]
[50]
Göksua, H.; Cana, H.; Şendila, K.; Gültekina, M.S.; Önder, M. CoPd alloy nanoparticles catalyzed tandem ammonia borane dehydrogenation and reduction of aromatic nitro, nitrile and carbonyl compounds. Appl. Catal. A Gen., 2014, 488, 176-182.
[http://dx.doi.org/10.1016/j.apcata.2014.09.043]
[51]
Francisco, C.G.; Freire, R.; Hernandez, R.; Melian, D.; Salazar, J.A.; Suarez, E. Steroidal N-nitroamines. Part 3. Pyrolytic denitroamination of N-nitroamino-adamantane and -bornane, and of several steroidal N-nitroamines. J. Chem. Soc., Perkin Trans. 1, 1983, 2325-2328
[http://dx.doi.org/10.1039/P19830002325]
[52]
Varma, R.S.; Gai, Y.Z.; Kabalka, G.W. Reduction of α,β-unsaturated nitroalkenes with borane and borohydrides. A convenient route to 3-nitro-, 3-hydroxylamino-, and 3-amino-2H-1-benzopyran derivatives. J. Heterocycl. Chem., 1987, 24(3), 767-772.
[http://dx.doi.org/10.1002/jhet.5570240343]
[53]
Zou, Z.; Jiang, Y.; Song, K. Pd Nanoparticles assembled on metalporphyrin-based microporous organic polymer as efficient catalyst for tandem dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Catal. Lett., 2019, 2019, 1277-1286.
[http://dx.doi.org/10.1007/s10562-019-03028-7]
[54]
Schlesinger, H.I.; Herbert, C.; Brown, B.; Abraham, A.C. New developments in the chemistry of diborane and the borohydrides. I. General summary. J. Am. Chem. Soc., 1953, 75(1), 186-190.
[http://dx.doi.org/10.1021/ja01097a049]
[55]
Chabot, G.B.; Rahm, M.; Haiges, R.; Christe, K.O. [BH3C(NO2)3]-: the first room-temperature stable (trinitromethyl)borate. Angew. Chem. Int. Ed. Engl., 2013, 52(42), 11002-11006.
[http://dx.doi.org/10.1002/anie.201305602] [PMID: 24038849]
[56]
Chabot, G.B; Rahm, M.; Haiges, R.; Christe, K.O. Ammonia-(dinitramido)boranes: high-energy-density materials. Angew. Chem. Int. Ed. Engl., 2015, 54(40), 11730-11734.
[http://dx.doi.org/10.1002/anie.201505684] [PMID: 26276906]
[57]
Wang, C.; Li, X.; Chen, F. Synthesis and properties of N-alkytriazole-cyanoborane propellant fuels. Energ Mat., 2018, 26(11), 931-936.
[58]
Stock, A.; Pohland, E. borwasserstoffe, ix.: b3n3h6. ber. dtsch. chem. ges., 1926, a/b 59 , 2215-2223.
[59]
Hohnstedt, L.F.; Schaeffer, G.W. Borazine chemistry in: borax to boranes. 1961, pp 232-240.
[60]
Muszkat, K.A.; Kirson, B. The iodination of borazines. Isr. J. Chem., 1963, 1(3), 150-158.
[http://dx.doi.org/10.1002/ijch.196300031]
[61]
Jones, J.I.; McDonald, W.S. Tetramere alazine and borazine. Angew. Chem., 1963, 75(21), 1030.
[http://dx.doi.org/10.1002/ange.19630752129]
[62]
Gutmann, V. Substitution and condensation reactions of borazines. Angew. Chem., 1965, 4(10), 891.
[http://dx.doi.org/10.1002/anie.196508912]
[63]
Armstrong, D.R.; Clark, D.T. The electronic structure of borazine. J. Chem. Soc. D, 1970, 1970(2), 99-100.
[http://dx.doi.org/10.1039/c29700000099]
[64]
Mamantov, G.; Margrave, J.L. Decomposition of liquid borazine. J. Inorg. Nucl. Chem., 1961, 20(3-4), 348-351.
[http://dx.doi.org/10.1016/0022-1902(61)80289-3]
[65]
Beyer, H.; Jenne, E.H.; Hynes, J.B.; Niedenzu, K. Chemistry of Bfluorinated borazines in: boron-nitrogen chemistry;, 1964, pp. 266-272.
[66]
Laubengayer, A.W. The formation and behavior of polycyclic borazines in: boron-nitrogen chemistry;, 1964, pp. 281-289.
[http://dx.doi.org/10.1021/ba-1964-0042.ch028]
[67]
Silberman, E. The vibrations of borazine derivative-I the planar vibrations of borazine and N-trideuteroborazine. Spectrochimica Acta. Part A, 1967, 23(7), 2021-2028.
[http://dx.doi.org/10.1016/0584-8539(67)80090-4]
[68]
Boyd, R.J.; Lo, D.H.; Whitehead, M.A. Orbital energetic and charge densities in borazine. Chem. Phys. Lett., 1968, 2(4), 227-229.
[http://dx.doi.org/10.1016/0009-2614(68)85007-9]
[69]
Brown, D.A.; McCormack, C.G. The electronic structures of substituted benzenes and borazines. Theor. Chem. Acta., 1966, 6(4), 350-353.
[http://dx.doi.org/10.1007/BF00537281]
[70]
Peyerimhoff, S.D.; Buenker, R.J. Comparison of the molecular structure and spectra of benzene and borazine. Theor. Chim. Acta, 1970, 19(1), 1-19.
[http://dx.doi.org/10.1007/BF00527373]
[71]
Hester, R.E.; Scaife, C.W.J. The B-N mode in symmetrically substituted borazines. Spectrochimica Acta., 1966, 22(4), 755-757.
[http://dx.doi.org/10.1016/0371-1951(66)80104-2]
[72]
Perkins, P.G.; Wall, D.H. Self-consistent molecular-orbital calculations on borazines. J. Chem. Society. A, 1966, 1966, 235-238.
[73]
Niedenzu, K.; Dawson, J.W. Boron-Nitrogen Compounds: Heterocyclic σ-Bonded Systems Containing Boron and Nitrogen; Springer-Verlag: Berlin, 1965, pp. 132-147.
[74]
Niedenzu, K.; Serwatowska, J. 1-Trimethylsilyl-2,4,6-triethylborazine and related species. Z. Naturforsch. Biol. Chem., 1992, 47(5), 713-717.
[75]
Bai, J.; Niedenzu, K.; Serwatowska, J. Preparation and characterization of polyborazines. Inorg. Chem., 1992, 31(2), 228-233.
[76]
Meller, A.; Wechsberg, M. 1,3,5-Trimethyl- und 1,3,5-tri[methyl(d3)]borazinderivate. Monatsh. Chem., 1967, 98, 513.
[http://dx.doi.org/10.1007/BF00899973]
[77]
Paine, R.T.; Koestle, W.; Borek, T.T.; Wood, G.L.; Pruss, E.A.; Duesler, E.N.; Hiskey, M.A. Synthesis, characterization, and explosive properties of the nitrogen-rich borazine. [H3N3B3(N3)3] Inorg. Chem., 1999, 38(16), 3738-3743.
[http://dx.doi.org/10.1021/ic990316b] [PMID: 11671136]
[78]
Zamani, M.; Keshavarz, M.H.; Iran, J. Thermochemical and detonation performance of boron nitride analogues of organic azides and benzotrifuroxan as novel high energetic nitrogen rich precursors. Chem. Soc., 2015, 12, 1077-1087.
[http://dx.doi.org/10.1007/s13738-014-0568-6]
[79]
Brennan, G.L.; Dahl, G.H.; Schaeffer, R. Studies of boron-nitrogen compounds. II. Preparation and reactions of B-trichloroborazole1. J. Am. Chem. Soc., 1960, 82, 6248-6250.
[http://dx.doi.org/10.1021/ja01509a011]
[80]
Hirata, T. Study on synthesis of N-nitroborazine compounds. II. Borazine derivatives; Picatinny Arsenal Dover: New Jersey, 1971.
[81]
Rodriguez, M.A.; Borek, T.T. 2,4-Bis(dimethyl-amino)-1,3,5-trimethyl-6-(nitrooxy)borazine. Acta Crystallogr., 2013, E69, 634.
[82]
Klapötke, T.M.; Rusan, M. The synthesis and characterization of nitrooxy- and nitrosooxyborazine compounds. Z. Naturforsch., 2014, 69b, 1241-1247.
[http://dx.doi.org/10.5560/znb.2014-4101]
[83]
Wiberg, E.; Michaud, H. Zur Kenntnis eines Bortriazids B(N3)3. Z. Naturforsch. B, 1954, 9(7), 497-499.
[http://dx.doi.org/10.1515/znb-1954-0715]
[84]
Paetzold, P. Beitrge zur Chemie der Bor-Azide. I. Zur Kenntnis von Dichlorborazid. Z. Anorg. Allg. Chem., 1963, 326, 47.
[http://dx.doi.org/10.1002/zaac.19633260107]
[85]
Paetzold, P.; Hansen, H.J. Boron azides and boron imides. Z. Anorg. Allg. Chem., 1966, 345, 79.
[http://dx.doi.org/10.1002/zaac.19663450110]
[86]
Paetzold, P. On the chemistry of boron azides VIII. Thermal decomposition of diorganylboron azides. Fortschr. Chem. Forsch., 1967, 8, 437.
[http://dx.doi.org/10.1007/BFb0051914]
[87]
Paetzold, P. Bildung, Struktur und Reaktionen von Methyl(methylimino)boran. Adv. Inorg. Chem., 1987, 31, 123.
[88]
Paetzold, P. Borazide und borimide. Angew. Chem., 1967, 79(12), 583-583.
[http://dx.doi.org/10.1002/ange.19670791219]
[89]
Paetzold, P. Closo-and nido-clusters with a B4 or NB3 skeleton in: Borane, Carborane, Carbocation Continuum; Wiley-Interscience, 1995, pp. 381-395.
[90]
Paetzold, P. New perspectives in boron-nitrogen chemistry-I. Pure Appl. Chem., 1991, 63(3), 345-350.
[http://dx.doi.org/10.1351/pac199163030345]
[91]
Paetzold, P. darstellung, eigenschaften und zerfall von boraziden. anorganische chemie., 8 , 437-469.
[92]
Paetzold, P. Boron azides and boron imides. Angew. Chem., 1967, 6(6), 572-573.
[http://dx.doi.org/10.1002/anie.196705722]
[93]
Paetzold, P.I.; Maier, C.C.G. Aminoboron azides. Angew. Chem., 1964, 3(4), 315.
[http://dx.doi.org/10.1002/anie.196403152]
[94]
Paetzold, P.I. Beiträge zur Chemie der Bor-Azide. II. Zur Kenntnis von diphenylborazid. Z. Anorg. Allg. Chem., 1963, 326(1-2), 53-57.
[http://dx.doi.org/10.1002/zaac.19633260108]
[95]
Paetzold, P.I.; Maier, G. Borazide, X Aminoazidoborane und Alkoxyazidoborane. Chem. Ber., 1970, 103(1), 281-288.
[http://dx.doi.org/10.1002/cber.19701030136]
[96]
Paetzold, P.; Hansen, H.J. Beiträge zur Chemie der Bor-Azide. VI. Zur Kenntnis von dimethylborazid und seinen aminaten. Z. Anorg. Allg. Chem., 1966, 345(1-2), 79-86.
[http://dx.doi.org/10.1002/zaac.19663450110]
[97]
Mulinax, R.K.; Okin, G.S.; Coombe, R.D. Gas phase synthesis, structure, and dissociation of boron triazide. J. Phys. Chem., 1995, 99, 6294-6302.
[http://dx.doi.org/10.1021/j100017a007]
[98]
Liu, Y. Experiment and theoretical study on high energy density materials beijing university of chemical technology; , 2005. p 05;
[99]
Fraenk, W.; Habereder, T.; Hammerl, A.; Klapötke, T.M.; Krumm, B.; Mayer, P.; Nöth, H.; Warchhold, M. Highly energetic tetraazidoborate anion and boron triazide adducts. Inorg. Chem., 2001, 40(6), 1334-1340.
[http://dx.doi.org/10.1021/ic001119b] [PMID: 11300838]
[100]
Mennekes, T.; Paetzold, P. Diazidoborane. Z. Anorg. Allg. Chem., 1995, 621, 1175-1177.
[http://dx.doi.org/10.1002/zaac.19956210710]
[101]
Haiges, R.; Schneider, S.; Schroer, T.; Christe, K.O. High-energy-density materials: synthesis and characterization of N5+[P(N3)6]-, N5+[B(N3)4]-, N5+[HF2]-.n HF, N5+[BF4]-, N5+[PF6]-, and N5+[SO3F]-. Angew. Chem. Int. Ed. Engl., 2004, 43(37), 4919-4924.
[http://dx.doi.org/10.1002/anie.200454242] [PMID: 15372568]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy