Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Relationship between Diet and Frailty in Aging

Author(s): Lucia Gimeno-Mallench, Elisa Sanchez-Morate, Sergi Parejo-Pedrajas, Cristina Mas-Bargues, Marta Inglés, Jorge Sanz-Ros, Aurora Román-Domínguez, Gloria Olaso, Kristine Stromsnes and Juan Gambini*

Volume 20, Issue 9, 2020

Page: [1373 - 1382] Pages: 10

DOI: 10.2174/1871530320666200513083212

Price: $65

Abstract

The increase in lifespan in the 20th century entails an increase in the elderly population. This brings a new challenge for society, causing people to have physical and mental limitations caused by age-related diseases, such as frailty. Frailty is clinically characterized by multisystem pathophysiological processes, such as chronic inflammation, immune activation, dysregulation of the musculoskeletal and endocrine systems, oxidative stress, energy imbalances, mitochondrial dysfunction, and sarcopenia. The elderly should consume energy in amounts close to those in what is currently accepted as a balanced diet. However, an increase in protein intake may be recommended for elderly people as long as there is no kidney damage. This increase could help fight the loss of muscle mass associated with age. Additionally, vitamin and mineral intakes are often insufficient in their diets. Therefore, the diet should be adapted not only to their age, but also to the pathologies associated with aging. Through these measures, we can reduce the prevalence of comorbidity and thereby increase health span. Therefore, both physical and nutritional interventions, including functional foods and nutraceuticals, should be taken into account.

Keywords: Frailty, aging, diet, nutrition, energy balance, healthspan.

Graphical Abstract

[1]
Harman, D. The aging process. Proc. Natl. Acad. Sci. USA, 1981, 78(11), 7124-7128.
[http://dx.doi.org/10.1073/pnas.78.11.7124 ] [PMID: 6947277]
[2]
Khan, S.S.; Singer, B.D.; Vaughan, D.E. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell, 2017, 16(4), 624-633.
[http://dx.doi.org/10.1111/acel.12601 ] [PMID: 28544158]
[3]
Viña, J.; Borras, C.; Gomez-Cabrera, M.C. A free radical theory of frailty. Free Radic. Biol. Med., 2018, 124, 358-363.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.06.028 ] [PMID: 29958933]
[4]
Ageing and health. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (Accessed July 6, 2019)
[5]
Bartali, B.; Frongillo, E.A.; Bandinelli, S.; Lauretani, F.; Semba, R.D.; Fried, L.P.; Ferrucci, L. Low nutrient intake is an essential component of frailty in older persons. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(6), 589-593.
[http://dx.doi.org/10.1093/gerona/61.6.589 ] [PMID: 16799141]
[6]
Kobayashi, S.; Suga, H.; Sasaki, S. Diet with a combination of high protein and high total antioxidant capacity is strongly associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study. Nutr. J., 2017, 16(1), 29.
[http://dx.doi.org/10.1186/s12937-017-0250-9 ] [PMID: 28499379]
[7]
Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; McBurnie, M.A. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci., 2001, 56(3), M146-M156.
[http://dx.doi.org/10.1093/gerona/56.3.M146 ] [PMID: 11253156]
[8]
Fried, L.P.; Ferrucci, L.; Darer, J.; Williamson, J.D.; Anderson, G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J. Gerontol. A Biol. Sci. Med. Sci., 2004, 59(3), 255-263.
[http://dx.doi.org/10.1093/gerona/59.3.M255 ] [PMID: 15031310]
[9]
Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet, 2013, 381(9868), 752-762.
[http://dx.doi.org/10.1016/S0140-6736(12)62167-9 ] [PMID: 23395245]
[10]
Santos-Eggimann, B.; Cuénoud, P.; Spagnoli, J.; Junod, J. Prevalence of frailty in middle-aged and older community-dwelling Europeans living in 10 countries. J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64(6), 675-681.
[http://dx.doi.org/10.1093/gerona/glp012 ] [PMID: 19276189]
[11]
Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.C.; Doehner, W.; Evans, J.; Fried, L.P.; Guralnik, J.M.; Katz, P.R.; Malmstrom, T.K.; McCarter, R.J.; Gutierrez Robledo, L.M.; Rockwood, K.; von Haehling, S.; Vandewoude, M.F.; Walston, J. Frailty consensus: a call to action. J. Am. Med. Dir. Assoc., 2013, 14(6), 392-397.
[http://dx.doi.org/10.1016/j.jamda.2013.03.022 ] [PMID: 23764209]
[12]
de Vries, N.M.; Staal, J.B.; van Ravensberg, C.D.; Hobbelen, J.S.M.; Olde Rikkert, M.G.M.; Nijhuis-van der Sanden, M.W.G. Outcome instruments to measure frailty: a systematic review. Ageing Res. Rev., 2011, 10(1), 104-114.
[http://dx.doi.org/10.1016/j.arr.2010.09.001 ] [PMID: 20850567]
[13]
Mitnitski, A.B.; Mogilner, A.J.; Rockwood, K. Accumulation of deficits as a proxy measure of aging. Sci. World J., 2001, 1, 323-336.
[http://dx.doi.org/10.1100/tsw.2001.58 ] [PMID: 12806071]
[14]
Searle, S.D.; Mitnitski, A.; Gahbauer, E.A.; Gill, T.M.; Rockwood, K. A standard procedure for creating a frailty index. BMC Geriatr., 2008, 8, 24.
[http://dx.doi.org/10.1186/1471-2318-8-24 ] [PMID: 18826625]
[15]
Chen, X.; Mao, G.; Leng, S.X. Frailty syndrome: an overview. Clin. Interv. Aging, 2014, 9, 433-441.
[http://dx.doi.org/10.2147/CIA.S45300 ] [PMID: 24672230]
[16]
Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J-P.; Rolland, Y.; Schneider, S.M.; Topinková, E.; Vandewoude, M.; Zamboni, M. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing, 2010, 39(4), 412-423.
[http://dx.doi.org/10.1093/ageing/afq034 ] [PMID: 20392703]
[17]
Rodriguez-Mañas, L.; Fried, L.P. Frailty in the clinical scenario. Lancet, 2015, 385(9968), e7-e9.
[http://dx.doi.org/10.1016/S0140-6736(14)61595-6 ] [PMID: 25468154]
[18]
Inglés, M.; Gambini, J.; Carnicero, J.A.; García-García, F.J.; Rodríguez-Mañas, L.; Olaso-González, G.; Dromant, M.; Borrás, C.; Viña, J. Oxidative stress is related to frailty, not to age or sex, in a geriatric population: lipid and protein oxidation as biomarkers of frailty. J. Am. Geriatr. Soc., 2014, 62(7), 1324-1328.
[http://dx.doi.org/10.1111/jgs.12876 ] [PMID: 24962132]
[19]
Inglés, M.; Gambini, J.; Mas-Bargues, C.; García-García, F.J.; Viña, J.; Borrás, C. Brain-derived neurotrophic factor as a marker of cognitive frailty. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(3), 450-451.
[http://dx.doi.org/10.1093/gerona/glw145 ] [PMID: 27449141]
[20]
Inglés, M.; Mas-Bargues, C.; Gimeno-Mallench, L.; Cruz-Guerrero, R.; García-García, F.J.; Gambini, J.; Borrás, C.; Rodríguez-Mañas, L.; Viña, J. Relation between genetic factors and frailty in older adults. J. Am. Med. Dir. Assoc., 2019, 20(11), 1451-1457.
[http://dx.doi.org/10.1016/j.jamda.2019.03.011 ] [PMID: 31078485]
[21]
Apóstolo, J.; Cooke, R.; Bobrowicz-Campos, E.; Santana, S.; Marcucci, M.; Cano, A.; Vollenbroek-Hutten, M.; Germini, F.; D’Avanzo, B.; Gwyther, H.; Holland, C. Effectiveness of interventions to prevent pre-frailty and frailty progression in older adults: a systematic review. JBI Database Syst. Rev. Implement. Reports, 2018, 16(1), 140-232.
[http://dx.doi.org/10.11124/JBISRIR-2017-003382 ] [PMID: 29324562]
[22]
Roberts, S.B.; Rosenberg, I. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol. Rev., 2006, 86(2), 651-667.
[http://dx.doi.org/10.1152/physrev.00019.2005 ] [PMID: 16601270]
[23]
Das, S.K.; Moriguti, J.C.; McCrory, M.A.; Saltzman, E.; Mosunic, C.; Greenberg, A.S.; Roberts, S.B. An underfeeding study in healthy men and women provides further evidence of impaired regulation of energy expenditure in old age. J. Nutr., 2001, 131(6), 1833-1838.
[http://dx.doi.org/10.1093/jn/131.6.1833 ] [PMID: 11385075]
[24]
Roberts, S.B.; Fuss, P.; Dallal, G.E.; Atkinson, A.; Evans, W.J.; Joseph, L.; Fiatarone, M.A.; Greenberg, A.S.; Young, V.R. Effects of age on energy expenditure and substrate oxidation during experimental overfeeding in healthy men. J. Gerontol. A Biol. Sci. Med. Sci., 1996, 51(2), B148-B157.
[http://dx.doi.org/10.1093/gerona/51A.2.B148 ] [PMID: 8612099]
[25]
Saltzman, E.; Roberts, S.B. Effects of energy imbalance on energy expenditure and respiratory quotient in young and older men: a summary of data from two metabolic studies. Aging (Milano), 1996, 8(6), 370-378.
[http://dx.doi.org/10.1007/BF03339598] [PMID: 9061123]
[26]
Moriguti, J.C.; Das, S.K.; Saltzman, E.; Corrales, A.; McCrory, M.A.; Greenberg, A.S.; Roberts, S.B. Effects of a 6-week hypocaloric diet on changes in body composition, hunger, and subsequent weight regain in healthy young and older adults. J. Gerontol. A Biol. Sci. Med. Sci., 2000, 55(12), B580-B587.
[http://dx.doi.org/10.1093/gerona/55.12.B580 ] [PMID: 11129387]
[27]
Clarkston, W.K.; Pantano, M.M.; Morley, J.E.; Horowitz, M.; Littlefield, J.M.; Burton, F.R. Evidence for the anorexia of aging: gastrointestinal transit and hunger in healthy elderly vs. young adults. Am. J. Physiol., 1997, 272(1 Pt 2), R243-R248.
[http://dx.doi.org/10.1152/ajpregu.1997.272.1.R243 ] [PMID: 9039015]
[28]
Cook, C.G.; Andrews, J.M.; Jones, K.L.; Wittert, G.A.; Chapman, I.M.; Morley, J.E.; Horowitz, M. Effects of small intestinal nutrient infusion on appetite and pyloric motility are modified by age. Am. J. Physiol., 1997, 273(2 Pt 2), R755-R761.
[http://dx.doi.org/10.1152/ajpregu.1997.273.2.R755 ] [PMID: 9277565]
[29]
Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res., 1985, 29(1), 71-83.
[http://dx.doi.org/10.1016/0022-3999(85)90010-8 ] [PMID: 3981480]
[30]
Campfield, L.A.; Smith, F.J. Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol. Rev., 2003, 83(1), 25-58.
[http://dx.doi.org/10.1152/physrev.00019.2002 ] [PMID: 12506126]
[31]
Mayer, J. Glucostatic mechanism of regulation of food intake. N. Engl. J. Med., 1953, 249(1), 13-16.
[http://dx.doi.org/10.1056/NEJM195307022490104 ] [PMID: 13063674]
[32]
Melanson, K.J.; Westerterp-Plantenga, M.S.; Campfield, L.A.; Saris, W.H.M. Appetite and blood glucose profiles in humans after glycogen-depleting exercise. J. Appl. Physiol., 1999, 87(3), 947-954.
[http://dx.doi.org/10.1152/jappl.1999.87.3.947 ] [PMID: 10484562]
[33]
Melanson, K.J.; Greenberg, A.S.; Ludwig, D.S.; Saltzman, E.; Dallal, G.E.; Roberts, S.B. Blood glucose and hormonal responses to small and large meals in healthy young and older women. J. Gerontol. A Biol. Sci. Med. Sci., 1998, 53(4), B299-B305.
[http://dx.doi.org/10.1093/gerona/53A.4.B299 ] [PMID: 18314561]
[34]
Sturm, K.; MacIntosh, C.G.; Parker, B.A.; Wishart, J.; Horowitz, M.; Chapman, I.M. Appetite, food intake, and plasma concentrations of cholecystokinin, ghrelin, and other gastrointestinal hormones in undernourished older women and well-nourished young and older women. J. Clin. Endocrinol. Metab., 2003, 88(8), 3747-3755.
[http://dx.doi.org/10.1210/jc.2002-021656 ] [PMID: 12915664]
[35]
Geary, N. Pancreatic glucagon signals postprandial satiety. Neurosci. Biobehav. Rev., 1990, 14(3), 323-338.
[http://dx.doi.org/10.1016/S0149-7634(05)80042-9 ] [PMID: 2234610]
[36]
Doty, R.; Shaman, P.; Applebaum, S.; Giberson, R.; Siksorski, L.; Rosenberg, L. Smell identification ability: changes with age. Science, 1984, 226(4681), 1441-1443.
[http://dx.doi.org/10.1126/science.6505700] [PMID: 6505700]
[37]
Doty, R.L. Age-Related Deficits in Taste and Smell. Otolaryngol. Clin. North Am., 2018, 51(4), 815-825.
[http://dx.doi.org/10.1016/j.otc.2018.03.014 ] [PMID: 30001793]
[38]
Schiffman, S.S. Taste and smell losses in normal aging and disease. JAMA, 1997, 278(16), 1357-1362.
[39]
McCrory, M.A.; Fuss, P.J.; McCallum, J.E.; Yao, M.; Vinken, A.G.; Hays, N.P.; Roberts, S.B. Dietary variety within food groups: association with energy intake and body fatness in men and women. Am. J. Clin. Nutr., 1999, 69(3), 440-447.
[http://dx.doi.org/10.1093/ajcn/69.3.440 ] [PMID: 10075328]
[40]
Morley, J.E. Anorexia of aging: physiologic and pathologic. Am. J. Clin. Nutr., 1997, 66(4), 760-773.
[http://dx.doi.org/10.1093/ajcn/66.4.760 ] [PMID: 9322549]
[41]
G.F., Keys A; Taylor, HL. Basal metabolism and age of adult man. Metabolismo, 1973, 22(1973), 579-587..
[http://dx.doi.org/10.1016/0026-0495(73)90071-1]]
[42]
Fukagawa, N.K.; Bandini, L.G.; Young, J.B. Effect of age on body composition and resting metabolic rate. Am. J. Physiol., 1990, 259(2 Pt 1), E233-E238.
[http://dx.doi.org/10.1152/ajpendo.1990.259.2.E233 ] [PMID: 2382714]
[43]
Klausen, B.; Toubro, S.; Astrup, A. Age and sex effects on energy expenditure. Am. J. Clin. Nutr., 1997, 65(4), 895-907.
[http://dx.doi.org/10.1093/ajcn/65.4.895 ] [PMID: 9094870]
[44]
Pannemans, D.L.; Westerterp, K.R. Energy expenditure, physical activity and basal metabolic rate of elderly subjects. Br. J. Nutr., 1995, 73(4), 571-581.
[http://dx.doi.org/10.1079/BJN19950059] [PMID: 7794872]
[45]
Willis, M.W.; Ketter, T.A.; Kimbrell, T.A.; George, M.S.; Herscovitch, P.; Danielson, A.L.; Benson, B.E.; Post, R.M. Age, sex and laterality effects on cerebral glucose metabolism in healthy adults. Psychiatry Res., 2002, 114(1), 23-37.
[http://dx.doi.org/10.1016/S0925-4927(01)00126-3 ] [PMID: 11864807]
[46]
Morgan, J.B. Weight-reducing diets, the thermic effect of feeding and energy balance in young women. Int. J. Obes., 1984, 8(6), 629-640.
[PMID: 6398317]
[47]
Visser, M.; Deurenberg, P.; van Staveren, W.A.; Hautvast, J.G. Resting metabolic rate and diet-induced thermogenesis in young and elderly subjects: relationship with body composition, fat distribution, and physical activity level. Am. J. Clin. Nutr., 1995, 61(4), 772-778.
[http://dx.doi.org/10.1093/ajcn/61.4.772 ] [PMID: 7702018]
[48]
Kerckhoffs, D.A.J.M.; Blaak, E.E.; Van Baak, M.A.; Saris, W.H.M. Effect of aging on β-adrenergically mediated thermogenesis in men. Am. J. Physiol., 1998, 274(6), E1075-E1079.
[http://dx.doi.org/10.1152/ajpendo.1998.274.6.E1075 ] [PMID: 9611158]
[49]
Vaughan, L.; Zurlo, F.; Ravussin, E. Aging and energy expenditure. Am. J. Clin. Nutr., 1991, 53(4), 821-825.
[http://dx.doi.org/10.1093/ajcn/53.4.821 ] [PMID: 2008859]
[50]
Reilly, B.R. JJ.; Bunker, W.; Lord, A. Energy balance in healthy elderly women. Br. J. Nutr., 1993, 69(1), 21-27.
[PMID: 8457528] [http://dx.doi.org/10.1079/bjn19930005]
[51]
Paddon-Jones, D.; Rasmussen, B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care, 2009, 12(1), 86-90.
[http://dx.doi.org/10.1097/MCO.0b013e32831cef8b ] [PMID: 19057193]
[52]
Ramsay, S.E.; Arianayagam, D.S.; Whincup, P.H.; Lennon, L.T.; Cryer, J.; Papacosta, A.O.; Iliffe, S.; Wannamethee, S.G. Cardiovascular risk profile and frailty in a population-based study of older British men. Heart, 2015, 101(8), 616-622.
[http://dx.doi.org/10.1136/heartjnl-2014-306472 ] [PMID: 25480883]
[53]
Power, S.E.; Jeffery, I.B.; Ross, R.P.; Stanton, C.; O’Toole, P.W.; O’Connor, E.M.; Fitzgerald, G.F. Food and nutrient intake of Irish community-dwelling elderly subjects: who is at nutritional risk? J. Nutr. Health Aging, 2014, 18(6), 561-572.
[http://dx.doi.org/10.1007/s12603-014-0449-9 ] [PMID: 24950145]
[54]
Parsons, T.J.; Papachristou, E.; Atkins, J.L.; Papacosta, O.; Ash, S.; Lennon, L.T.; Whincup, P.H.; Ramsay, S.E.; Wannamethee, S.G. Physical frailty in older men: prospective associations with diet quality and patterns. Age Ageing, 2019, 48(3), 355-360.
[http://dx.doi.org/10.1093/ageing/afy216 ] [PMID: 30668624]
[55]
Pieczenik, S.R.; Neustadt, J. Mitochondrial dysfunction and molecular pathways of disease. Exp. Mol. Pathol., 2007, 83(1), 84-92.
[http://dx.doi.org/10.1016/j.yexmp.2006.09.008 ] [PMID: 17239370]
[56]
Yannakoulia, M.; Ntanasi, E.; Anastasiou, C.A.; Scarmeas, N. Frailty and nutrition: From epidemiological and clinical evidence to potential mechanisms. Metabolism, 2017, 68, 64-76.
[http://dx.doi.org/10.1016/j.metabol.2016.12.005 ] [PMID: 28183454]
[57]
Clarkson, P.M.; Thompson, H.S. Antioxidants: what role do they play in physical activity and health? Am. J. Clin. Nutr., 2000, 72(2)(Suppl.), 637S-646S.
[http://dx.doi.org/10.1093/ajcn/72.2.637S ] [PMID: 10919970]
[58]
Wolfe, R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr., 2012, 108(Suppl. 2), S88-S93.
[http://dx.doi.org/10.1017/S0007114512002590 ] [PMID: 23107552]
[59]
Wolfe, R.R.; Miller, S.L.; Miller, K.B. Optimal protein intake in the elderly. Clin. Nutr., 2008, 27(5), 675-684.
[http://dx.doi.org/10.1016/j.clnu.2008.06.008 ] [PMID: 18819733]
[60]
Volpi, E.; Campbell, W.W.; Dwyer, J.T.; Johnson, M.A.; Jensen, G.L.; Morley, J.E.; Wolfe, R.R. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(6), 677-681.
[http://dx.doi.org/10.1093/gerona/gls229 ] [PMID: 23183903]
[61]
Baum, J.I.; Kim, I-Y.; Wolfe, R.R. Protein consumption and the elderly: what is the optimal level of intake? Nutrients, 2016, 8(6), 359.
[http://dx.doi.org/10.3390/nu8060359 ] [PMID: 27338461]
[62]
Cuthbertson, D.; Smith, K.; Babraj, J.; Leese, G.; Waddell, T.; Atherton, P.; Wackerhage, H.; Taylor, P.M.; Rennie, M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J., 2005, 19(3), 422-424.
[http://dx.doi.org/10.1096/fj.04-2640fje ] [PMID: 15596483]
[63]
Symons, T.B.; Sheffield-Moore, M.; Wolfe, R.R.; Paddon-Jones, D. A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects. J. Am. Diet. Assoc., 2009, 109(9), 1582-1586.
[http://dx.doi.org/10.1016/j.jada.2009.06.369 ] [PMID: 19699838]
[64]
Wolfe, R.R. Regulation of muscle protein by amino acids. J. Nutr., 2002, 132(10), 3219S-3224S.
[http://dx.doi.org/10.1093/jn/131.10.3219S ] [PMID: 12368421]
[65]
Pei, J.; Zhao, Y.; Huang, L.; Zhang, X.; Wu, Y. The effect of n-3 polyunsaturated fatty acids on plasma lipids and lipoproteins in patients with chronic renal failure--a meta-analysis of randomized controlled trials. J. Ren. Nutr., 2012, 22(6), 525-532.
[http://dx.doi.org/10.1053/j.jrn.2012.04.005 ] [PMID: 22698988]
[66]
Alexander, D.D.; Miller, P.E.; Van Elswyk, M.E.; Kuratko, C.N.; Bylsma, L.C. A Meta-Analysis of randomized controlled trials and prospective cohort studies of Eicosapentaenoic and Docosahexaenoic long-chain omega-3 fatty acids and coronary heart disease risk. Mayo Clin. Proc., 2017, 92(1), 15-29.
[http://dx.doi.org/10.1016/j.mayocp.2016.10.018 ] [PMID: 28062061]
[67]
Mitchell, S.J.; Mitchell, G.J.; Mitchell, J.R. Modulation of frailty syndrome by diet: A review of evidence from mouse studies. Mech. Ageing Dev., 2019, 180, 82-88.
[http://dx.doi.org/10.1016/j.mad.2019.04.003 ] [PMID: 30980835]
[68]
Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. Three-generation study of women on diets and health study group. High protein intake is associated with low prevalence of frailty among old Japanese women: a multicenter cross-sectional study. Nutr. J., 2013, 12, 164.
[http://dx.doi.org/10.1186/1475-2891-12-164 ] [PMID: 24350714]
[69]
Anthony, J.C.; Yoshizawa, F.; Anthony, T.G.; Vary, T.C.; Jefferson, L.S.; Kimball, S.R. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr., 2000, 130(10), 2413-2419.
[http://dx.doi.org/10.1093/jn/130.10.2413 ] [PMID: 11015466]
[70]
Kimball, S.R.; Jefferson, L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr., 2006, 136(1)(Suppl.), 227S-231S.
[http://dx.doi.org/10.1093/jn/136.1.227S ] [PMID: 16365087]
[71]
Wilkinson, D.J.; Hossain, T.; Hill, D.S.; Phillips, B.E.; Crossland, H.; Williams, J.; Loughna, P.; Churchward-Venne, T.A.; Breen, L.; Phillips, S.M.; Etheridge, T.; Rathmacher, J.A.; Smith, K.; Szewczyk, N.J.; Atherton, P.J. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol., 2013, 591(11), 2911-2923.
[http://dx.doi.org/10.1113/jphysiol.2013.253203 ] [PMID: 23551944]
[72]
Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. (Lond.), 2011, 8, 68.
[http://dx.doi.org/10.1186/1743-7075-8-68 ] [PMID: 21975196]
[73]
León-Muñoz, L.M.; García-Esquinas, E.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. Major dietary patterns and risk of frailty in older adults: a prospective cohort study. BMC Med., 2015, 13, 11.
[http://dx.doi.org/10.1186/s12916-014-0255-6 ] [PMID: 25601152]
[74]
Hutchins-Wiese, H.L.; Kleppinger, A.; Annis, K.; Liva, E.; Lammi-Keefe, C.J.; Durham, H.A.; Kenny, A.M. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J. Nutr. Health Aging, 2013, 17(1), 76-80.
[http://dx.doi.org/10.1007/s12603-012-0415-3 ] [PMID: 23299384]
[75]
Bendayan, M.; Bibas, L.; Levi, M.; Mullie, L.; Forman, D.E.; Afilalo, J. Therapeutic interventions for frail elderly patients: part II. Ongoing and unpublished randomized trials. Prog. Cardiovasc. Dis., 2014, 57(2), 144-151.
[http://dx.doi.org/10.1016/j.pcad.2014.07.005 ] [PMID: 25216613]
[76]
Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. Lancet Public Health, 2018, 3(9), e419-e428.
[http://dx.doi.org/10.1016/S2468-2667(18)30135-X ] [PMID: 30122560]
[77]
Frisoni, G.B.; Franzoni, S.; Rozzini, R.; Ferrucci, L.; Boffelli, S.; Trabucchi, M. Food intake and mortality in the frail elderly. J. Gerontol. A Biol. Sci. Med. Sci., 1995, 50(4), M203-M210.
[http://dx.doi.org/10.1093/gerona/50A.4.M203 ] [PMID: 7614242]
[78]
Bollwein, J.; Diekmann, R.; Kaiser, M.J.; Bauer, J.M.; Uter, W.; Sieber, C.C.; Volkert, D. Dietary quality is related to frailty in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(4), 483-489.
[http://dx.doi.org/10.1093/gerona/gls204 ] [PMID: 23064817]
[79]
Chan, R.; Leung, J.; Woo, J. Dietary patterns and risk of frailty in chinese community-dwelling older people in Hong Kong: A Prospective cohort study. Nutrients, 2015, 7(8), 7070-7084.
[http://dx.doi.org/10.3390/nu7085326 ] [PMID: 26305253]
[80]
Shikany, J.M.; Barrett-Connor, E.; Ensrud, K.E.; Cawthon, P.M.; Lewis, C.E.; Dam, T-T.L.; Shannon, J.; Redden, D.T. Osteoporotic Fractures in Men (MrOS) Research Group. Macronutrients, diet quality, and frailty in older men. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(6), 695-701.
[http://dx.doi.org/10.1093/gerona/glt196 ] [PMID: 24304504]
[81]
Laclaustra, M.; Rodriguez-Artalejo, F.; Guallar-Castillon, P.; Banegas, J.R.; Graciani, A.; Garcia-Esquinas, E.; Ordovas, J.; Lopez-Garcia, E. Prospective association between added sugars and frailty in older adults. Am. J. Clin. Nutr., 2018, 107(5), 772-779.
[http://dx.doi.org/10.1093/ajcn/nqy028 ] [PMID: 29635421]
[82]
Yanase, T.; Yanagita, I.; Muta, K.; Nawata, H. Frailty in elderly diabetes patients. Endocr. J., 2018, 65(1), 1-11.
[http://dx.doi.org/10.1507/endocrj.EJ17-0390 ] [PMID: 29238004]
[83]
Zaslavsky, O.; Walker, R.L.; Crane, P.K.; Gray, S.L.; Larson, E.B. Glucose levels and risk of frailty. J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(9), 1223-1229.
[http://dx.doi.org/10.1093/gerona/glw024 ] [PMID: 26933160]
[84]
Chernoff, R. Micronutrient requirements in older women. Am. J. Clin. Nutr., 2005, 81(5), 1240S-1245S.
[http://dx.doi.org/10.1093/ajcn/81.5.1240 ] [PMID: 15883458]
[85]
Montgomery, S.C.; Streit, S.M.; Beebe, M.L.; Maxwell, P.J., IV Micronutrient needs of the elderly. Nutr. Clin. Pract., 2014, 29(4), 435-444.
[http://dx.doi.org/10.1177/0884533614537684 ] [PMID: 24961877]
[86]
Gopinath, B.; Flood, V.M.; McMahon, C.M.; Burlutsky, G.; Spankovich, C.; Hood, L.J.; Mitchell, P. Dietary antioxidant intake is associated with the prevalence but not incidence of age-related hearing loss. J. Nutr. Health Aging, 2011, 15(10), 896-900.
[http://dx.doi.org/10.1007/s12603-011-0119-0 ] [PMID: 22159779]
[87]
Ono, K.; Yamada, M.; Vitamin, A. Vitamin A and Alzheimer’s disease. Geriatr. Gerontol. Int., 2012, 12(2), 180-188.
[http://dx.doi.org/10.1111/j.1447-0594.2011.00786.x ] [PMID: 22221326]
[88]
Monacelli, F.; Acquarone, E.; Giannotti, C.; Borghi, R.; Nencioni, A. Vitamin C, aging and Alzheimer’s disease. Nutrients, 2017, 9(7), 670.
[http://dx.doi.org/10.3390/nu9070670 ] [PMID: 28654021]
[89]
Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann. Intern. Med., 2004, 140(7), 533-537.
[http://dx.doi.org/10.7326/0003-4819-140-7-200404060-00010 ] [PMID: 15068981]
[90]
Harris, H.R.; Orsini, N.; Wolk, A. Vitamin C and survival among women with breast cancer: a meta-analysis. Eur. J. Cancer, 2014, 50(7), 1223-1231.
[http://dx.doi.org/10.1016/j.ejca.2014.02.013 ] [PMID: 24613622]
[91]
Doskey, C.M.; Buranasudja, V.; Wagner, B.A.; Wilkes, J.G.; Du, J.; Cullen, J.J.; Buettner, G.R. Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox Biol., 2016, 10, 274-284.
[http://dx.doi.org/10.1016/j.redox.2016.10.010 ] [PMID: 27833040]
[92]
Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; Jorde, R.; Grimnes, G.; Moschonis, G.; Mavrogianni, C.; Manios, Y.; Thamm, M.; Mensink, G.B.; Rabenberg, M.; Busch, M.A.; Cox, L.; Meadows, S.; Goldberg, G.; Prentice, A.; Dekker, J.M.; Nijpels, G.; Pilz, S.; Swart, K.M.; van Schoor, N.M.; Lips, P.; Eiriksdottir, G.; Gudnason, V.; Cotch, M.F.; Koskinen, S.; Lamberg-Allardt, C.; Durazo-Arvizu, R.A.; Sempos, C.T.; Kiely, M. Vitamin D deficiency in Europe: pandemic? Am. J. Clin. Nutr., 2016, 103(4), 1033-1044.
[http://dx.doi.org/10.3945/ajcn.115.120873 ] [PMID: 26864360]
[93]
Manios, Y.; Moschonis, G.; Lambrinou, C-P.; Tsoutsoulopoulou, K.; Binou, P.; Karachaliou, A.; Breidenassel, C.; Gonzalez-Gross, M.; Kiely, M.; Cashman, K.D. A systematic review of vitamin D status in southern European countries. Eur. J. Nutr., 2018, 57(6), 2001-2036.
[http://dx.doi.org/10.1007/s00394-017-1564-2 ] [PMID: 29090332]
[94]
Lips, P.; Vitamin, D. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr. Rev., 2001, 22(4), 477-501.
[http://dx.doi.org/10.1210/edrv.22.4.0437 ] [PMID: 11493580]
[95]
Kotlarczyk, M.P.; Perera, S.; Ferchak, M.A.; Nace, D.A.; Resnick, N.M.; Greenspan, S.L. Vitamin D deficiency is associated with functional decline and falls in frail elderly women despite supplementation. Osteoporos. Int., 2017, 28(4), 1347-1353.
[http://dx.doi.org/10.1007/s00198-016-3877-z ] [PMID: 27975302]
[96]
Porto, C.M.; Silva, V.L.; da Luz, J.S.B.; Filho, B.M.; da Silveira, V.M. Association between vitamin D deficiency and heart failure risk in the elderly. ESC Heart Fail., 2018, 5(1), 63-74.
[http://dx.doi.org/10.1002/ehf2.12198 ] [PMID: 28817241]
[97]
LeFevre, M.L. Screening for vitamin D deficiency in adults: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med., 2015, 162(2), 133-140.
[http://dx.doi.org/10.7326/M14-2450 ] [PMID: 25419853]
[98]
Tuyen, D.; Hien, V.T.; Binh, P.T.; Yamamoto, S. Calcium and Vitamin D deficiency in Vietnamese: recommendations for an intervention strategy. J. Nutr. Sci. Vitaminol. (Tokyo), 2016, 62(1), 1-5.
[http://dx.doi.org/10.3177/jnsv.62.1 ] [PMID: 27117844]
[99]
Wong, C.W.; Ip, C.Y.; Leung, C.P.; Leung, C.S.; Cheng, J.N.; Siu, C.Y. Vitamin B12 deficiency in the institutionalized elderly: A regional study. Exp. Gerontol., 2015, 69, 221-225.
[http://dx.doi.org/10.1016/j.exger.2015.06.016 ] [PMID: 26122132]
[100]
Leischker, A.H.; Kolb, G.F. Vitamin-B12-Mangel im Alter. Z. Gerontol. Geriatr., 2015, 48(1), 73-88.
[http://dx.doi.org/10.1007/s00391-014-0837-0 ] [PMID: 25586321]
[101]
Ates Bulut, E.; Soysal, P.; Aydin, A.E.; Dokuzlar, O.; Kocyigit, S.E.; Isik, A.T. Vitamin B12 deficiency might be related to sarcopenia in older adults. Exp. Gerontol., 2017, 95, 136-140.
[http://dx.doi.org/10.1016/j.exger.2017.05.017 ] [PMID: 28549839]
[102]
Andrès, E.; Loukili, N.H.; Noel, E.; Kaltenbach, G.; Abdelgheni, M.B.; Perrin, A.E.; Noblet-Dick, M.; Maloisel, F.; Schlienger, J-L.; Blicklé, J-F. Vitamin B12 (cobalamin) deficiency in elderly patients. CMAJ, 2004, 171(3), 251-259.http://www.ncbi.nlm.nih.gov/pubmed/15289425
[http://dx.doi.org/10.1503/cmaj.1031155 ] [PMID: 15289425]
[103]
Yasuda, H.; Tsutsui, T. Infants and elderlies are susceptible to zinc deficiency. Sci. Rep., 2016, 6, 21850.
[http://dx.doi.org/10.1038/srep21850 ] [PMID: 26912464]
[104]
Robalo Nunes, A.; Fonseca, C.; Marques, F.; Belo, A.; Brilhante, D.; Cortez, J. Prevalence of anemia and iron deficiency in older Portuguese adults: An EMPIRE substudy. Geriatr. Gerontol. Int., 2017, 17(11), 1814-1822.
[http://dx.doi.org/10.1111/ggi.12966 ] [PMID: 28188967]
[105]
Fairweather-Tait, S.J.; Wawer, A.A.; Gillings, R.; Jennings, A.; Myint, P.K. Iron status in the elderly. Mech. Ageing Dev., 2014, 136-137, 22-28.
[http://dx.doi.org/10.1016/j.mad.2013.11.005 ] [PMID: 24275120]
[106]
Pisano, M.; Hilas, O. Zinc and taste disturbances in older adults: a review of the literature. Consult Pharm., 2016, 31(5), 267-270.
[http://dx.doi.org/10.4140/TCP.n.2016.267 ] [PMID: 27178656]
[107]
Aliani, M.; Udenigwe, C.C.; Girgih, A.T.; Pownall, T.L.; Bugera, J.L.; Eskin, M.N.A. Zinc deficiency and taste perception in the elderly. Crit. Rev. Food Sci. Nutr., 2013, 53(3), 245-250.
[http://dx.doi.org/10.1080/10408398.2010.527023 ] [PMID: 23301822]
[108]
Mocchegiani, E.; Romeo, J.; Malavolta, M.; Costarelli, L.; Giacconi, R.; Diaz, L-E.; Marcos, A. Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Dordr.), 2013, 35(3), 839-860.
[http://dx.doi.org/10.1007/s11357-011-9377-3 ] [PMID: 22222917]
[109]
Gómez Ramírez, S.; Remacha Sevilla, Á.F.; Muñoz Gómez, M. Anemia del anciano. Med. Clin. (Barc.), 2017, 149(11), 496-503.
[http://dx.doi.org/10.1016/j.medcli.2017.06.025 ] [PMID: 28743402]
[110]
Çavuşoğlu, Y.; Altay, H.; Çetiner, M.; Güvenç, T.S.; Temizhan, A.; Ural, D.; Yeşilbursa, D.; Yıldırım, N.; Yılmaz, M.B. Iron deficiency and anemia in heart failure. Turk Kardiyol. Dern. Ars., 2017, 45(Suppl. 2), 1-38.
[http://dx.doi.org/10.5543/tkda.2017.79584 ] [PMID: 28446734]
[111]
Hernández Morante, J.J.; Gómez Martínez, C.; Morillas-Ruiz, J.M. Dietary factors associated with frailty in old adults: a review of nutritional interventions to prevent frailty development. Nutrients, 2019, 11(1), 102.
[http://dx.doi.org/10.3390/nu11010102 ] [PMID: 30621313]
[112]
Michelon, E.; Blaum, C.; Semba, R.D.; Xue, Q-L.; Ricks, M.O.; Fried, L.P. Vitamin and carotenoid status in older women: associations with the frailty syndrome. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(6), 600-607.
[http://dx.doi.org/10.1093/gerona/61.6.600 ] [PMID: 16799143]
[113]
Boxer, R.S.; Dauser, D.A.; Walsh, S.J.; Hager, W.D.; Kenny, A.M. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J. Am. Geriatr. Soc., 2008, 56(3), 454-461.
[http://dx.doi.org/10.1111/j.1532-5415.2007.01601.x ] [PMID: 18194227]
[114]
Chang, C-I.; Chan, D-C.D.; Kuo, K-N.; Hsiung, C.A.; Chen, C-Y. Vitamin D insufficiency and frailty syndrome in older adults living in a Northern Taiwan community. Arch. Gerontol. Geriatr., 2010, 50(Suppl. 1), S17-S21.
[http://dx.doi.org/10.1016/S0167-4943(10)70006-6 ] [PMID: 20171450]
[115]
Ensrud, K.E.; Ewing, S.K.; Fredman, L.; Hochberg, M.C.; Cauley, J.A.; Hillier, T.A.; Cummings, S.R.; Yaffe, K.; Cawthon, P.M. Circulating 25-hydroxyvitamin D levels and frailty status in older women. J. Clin. Endocrinol. Metab., 2010, 95(12), 5266-5273.
[http://dx.doi.org/10.1210/jc.2010-2317 ] [PMID: 21131545]
[116]
Balboa-Castillo, T.; Struijk, E.A.; Lopez-Garcia, E.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillon, P. Low vitamin intake is associated with risk of frailty in older adults. Age Ageing, 2018, 47(6), 872-879.
[http://dx.doi.org/10.1093/ageing/afy105 ] [PMID: 30052701]
[117]
Semba, R.D.; Bartali, B.; Zhou, J.; Blaum, C.; Ko, C-W.; Fried, L.P. Low serum micronutrient concentrations predict frailty among older women living in the community. J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61(6), 594-599.
[http://dx.doi.org/10.1093/gerona/61.6.594 ] [PMID: 16799142]
[118]
Das, A.; Cumming, R.G.; Naganathan, V.; Blyth, F.; Ribeiro, R.V.; Le Couteur, D.G.; Handelsman, D.J.; Waite, L.M.; Simpson, S.J.; Hirani, V. Prospective associations between dietary antioxidant intake and frailty in older australian men: the concord health and ageing in men project. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 75(2), 348-356.
[http://dx.doi.org/10.1093/gerona/glz054] [PMID: 30955034]
[119]
Rabassa, M.; Zamora-Ros, R.; Urpi-Sarda, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C.; Cherubini, A. Association of habitual dietary resveratrol exposure with the development of frailty in older age: the Invecchiare in Chianti study. Am. J. Clin. Nutr., 2015, 102(6), 1534-1542.
[http://dx.doi.org/10.3945/ajcn.115.118976 ] [PMID: 26490492]
[120]
Urpi-Sarda, M.; Andres-Lacueva, C.; Rabassa, M.; Ruggiero, C.; Zamora-Ros, R.; Bandinelli, S.; Ferrucci, L.; Cherubini, A. The relationship between urinary total polyphenols and the frailty phenotype in a community-dwelling older population: the InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci., 2015, 70(9), 1141-1147.
[http://dx.doi.org/10.1093/gerona/glv026 ] [PMID: 25838546]
[121]
Eichholzer, M.; Richard, A.; Walser-Domjan, E.; Linseisen, J.; Rohrmann, S. Urinary phytoestrogen levels and frailty in older American women of the National Health and Nutrition Examination Survey (NHANES) 1999-2002: a cross-sectional study. Ann. Nutr. Metab., 2013, 63(4), 269-276.
[http://dx.doi.org/10.1159/000356453 ] [PMID: 24334908]
[122]
Eksakulkla, S.; Suksom, D.; Siriviriyakul, P.; Patumraj, S. Increased NO bioavailability in aging male rats by genistein and exercise training: using 4, 5-diaminofluorescein diacetate. Reprod. Biol. Endocrinol., 2009, 7, 93.
[http://dx.doi.org/10.1186/1477-7827-7-93 ] [PMID: 19735570]
[123]
Kane, A.E.; Hilmer, S.N.; Boyer, D.; Gavin, K.; Nines, D.; Howlett, S.E.; de Cabo, R.; Mitchell, S.J. Impact of longevity interventions on a validated mouse clinical frailty index. J. Gerontol. A Biol. Sci. Med. Sci., 2016, 71(3), 333-339.
[http://dx.doi.org/10.1093/gerona/glu315 ] [PMID: 25711530]
[124]
Gimeno-Mallench, L.; Mas-Bargues, C.; Inglés, M.; Olaso, G.; Borras, C.; Gambini, J.; Vina, J. Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice. Biomed. Pharmacother., 2019. 118109130
[http://dx.doi.org/10.1016/j.biopha.2019.109130 ] [PMID: 31306969]
[125]
Yarla, N.S.; Polito, A.; Peluso, I. Effects of olive oil on TNF-α and IL-6 in humans: implication in obesity and frailty. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 63-74.
[http://dx.doi.org/10.2174/1871530317666171120150329 ] [PMID: 29165098]
[126]
Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. Inverse association between dietary habits with high total antioxidant capacity and prevalence of frailty among elderly Japanese women: a multicenter cross-sectional study. J. Nutr. Health Aging, 2014, 18(9), 827-839.
[http://dx.doi.org/10.1007/s12603-014-0556-7 ] [PMID: 25389961]
[127]
Lorenzo-López, L.; Maseda, A.; de Labra, C.; Regueiro-Folgueira, L.; Rodríguez-Villamil, J.L.; Millán-Calenti, J.C. Nutritional determinants of frailty in older adults: A systematic review. BMC Geriatr., 2017, 17(1), 108.
[http://dx.doi.org/10.1186/s12877-017-0496-2 ] [PMID: 28506216]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy