Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Dual Release Model to Evaluate Dissolution Profiles from Swellable Drug Polyelectrolyte Matrices

Author(s): Alicia Graciela Cid, María Verónica Ramírez-Rigo, María Celeste Palena, Elio Emilio Gonzo, Alvaro Federico Jimenez-Kairuz and José María Bermúdez*

Volume 17, Issue 6, 2020

Page: [511 - 522] Pages: 12

DOI: 10.2174/1567201817666200512093115

Price: $65

Abstract

Background: Mathematical modeling in modified drug release is an important tool that allows predicting the release rate of drugs in their surrounding environment and elucidates the transport mechanisms involved in the process.

Objective: The aim of this work was to develop a mathematical model that allows evaluating the release profile of drugs from polymeric carriers in which the swelling phenomenon is present.

Methods: Swellable matrices based on ionic complexes of alginic acid or carboxymethylcellulose with ciprofloxacin were prepared and the effect of adding the polymer sodium salt on the swelling process and the drug release was evaluated. Experimental data from the ciprofloxacin release profiles were mathematically adjusted, considering the mechanisms involved in each stage of the release process.

Results: A proposed model, named “Dual Release” model, was able to properly fit the experimental data of matrices presenting the swelling phenomenon, characterized by an inflection point in their release profile. This entails applying the extended model of Korsmeyer-Peppas to estimate the percentage of drug released from the first experimental point up to the inflection point and then a model called Lumped until the final time, allowing to adequately represent the complete range of the drug release profile. Different parameters of pharmaceutical relevance were calculated using the proposed model to compare the profiles of the studied matrices.

Conclusion: The “Dual Release” model proposed in this article can be used to predict the behavior of complex systems in which different mechanisms are involved in the release process.

Keywords: Mathematical model, alginic acid, carboxymethylcellulose, ciprofloxacin, drug delivery, swellable drugpolyelectrolyte matrices.

Graphical Abstract

[1]
Ren, J. Biodegradable poly (lactic acid): synthesis, modification, processing and applications; Springer Science and Business Media: Berlin, Heidelberg, 2011.
[http://dx.doi.org/10.1007/978-3-642-17596-1]
[2]
Li, J.; Zhang, X.; Zhao, M.; Wu, L.; Luo, K.; Pu, Y.; He, B. Tumor-pH-sensitive PLLA-based microsphere with acid cleavable acetal bonds on the backbone for efficient localized chemotherapy. Biomacromolecules, 2018, 19(7), 3140-3148.
[http://dx.doi.org/10.1021/acs.biomac.8b00734] [PMID: 29883542]
[3]
Cheng, F.; Su, T.; Luo, K.; Pu, Y.; He, B. The polymerization kinetics, oxidation-responsiveness, and in vitro anticancer efficacy of poly(ester-thioether)s. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(6), 1005-1016.
[http://dx.doi.org/10.1039/C8TB02980F] [PMID: 32255105]
[4]
Aungst, B.J. Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J. Pharm. Sci., 2017, 106(4), 921-929.
[http://dx.doi.org/10.1016/j.xphs.2016.12.002] [PMID: 27986598]
[5]
Qiu, Y.; Zhang, G. Development of modified-release solid oral dosage forms. Developing solid oral dosage forms. Qiu, Y.; Chen, Y.; Zhang, G.G.Z.; Liu, L; Porter, W.R., Ed.; Academic Press: San Diego, 2009, pp. 501-517.
[6]
Romero, A.I.; Villegas, M.; Cid, A.G.; Parentis, M.L.; Gonzo, E.E.; Bermúdez, J.M. Validation of kinetic modeling of progesterone release from polymeric membranes. Asian J Pharm Sci, 2018, 13(1), 54-62.
[http://dx.doi.org/10.1016/j.ajps.2017.08.007] [PMID: 32104378]
[7]
Korsmeyer, R.; Peppas, N. Swelling-controlled delivery systems for pharmaceutical applications: macromolecular and modelling considerations; Marcel Dekker: New York, 1983.
[8]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm., 2013, 453(1), 12-24.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.044] [PMID: 23618956]
[9]
Siepmann, J.; Siepmann, F. Mathematical modeling of drug delivery. Int. J. Pharm., 2008, 364(2), 328-343.
[http://dx.doi.org/10.1016/j.ijpharm.2008.09.004] [PMID: 18822362]
[10]
Eltayeb, M.; Stride, E.; Edirisinghe, M.; Harker, A. Electrosprayed nanoparticle delivery system for controlled release. Mater. Sci. Eng. C, 2016, 66, 138-146.
[http://dx.doi.org/10.1016/j.msec.2016.04.001] [PMID: 27207047]
[11]
Fernández-Colino, A.; Bermudez, J.M.; Arias, F.J.; Quinteros, D.; Gonzo, E. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel. Mater. Sci. Eng. C, 2016, 61, 286-292.
[http://dx.doi.org/10.1016/j.msec.2015.12.050] [PMID: 26838852]
[12]
Simonazzi, A.; Cid, A.G.; Paredes, A.J.; Schofs, L.; Gonzo, E.E.; Palma, S.D.; Bermúdez, J.M. Development and in vitro evaluation of solid dispersions as strategy to improve albendazole biopharmaceutical behavior. Ther. Deliv., 2018, 9(9), 623-638.
[http://dx.doi.org/10.4155/tde-2018-0037] [PMID: 30189808]
[13]
Simonazzi, A.; Davies, C.; Cid, A.G.; Gonzo, E.; Parada, L.; Bermúdez, J.M. Preparation and characterization of poloxamer 407 solid dispersions as an alternative strategy to improve benznidazole bioperformance. J. Pharm. Sci., 2018, 107(11), 2829-2836.
[http://dx.doi.org/10.1016/j.xphs.2018.06.027] [PMID: 30005984]
[14]
Villegas, M.; Cid, A.G.; Briones, C.A.; Romero, A.I.; Pistán, F.A.; Gonzo, E.E.; Gottifredi, J.C.; Bermúdez, J.M. Films based on the biopolymer poly(3-hydroxybutyrate) as platforms for the controlled release of dexamethasone. Saudi Pharm. J., 2019, 27(5), 694-701.
[http://dx.doi.org/10.1016/j.jsps.2019.04.004] [PMID: 31297024]
[15]
Colombo, P.; Bettini, R.; Massimo, G.; Catellani, P.L.; Santi, P.; Peppas, N.A. Drug diffusion front movement is important in drug release control from swellable matrix tablets. J. Pharm. Sci., 1995, 84(8), 991-997.
[http://dx.doi.org/10.1002/jps.2600840816] [PMID: 7500286]
[16]
Jimenez-Kairuz, A.F.; Llabot, J.M.; Allemandi, D.A.; Manzo, R.H. Swellable Drug-Polyelectrolyte Matrices (SDPM). Characterization and delivery properties. Int. J. Pharm., 2005, 288(1), 87-99.
[http://dx.doi.org/10.1016/j.ijpharm.2004.09.014] [PMID: 15607261]
[17]
Rigo, M.V.; Allemandi, D.A.; Manzo, R.H. Swellable drug-polyelectrolyte matrices of drug-carboxymethylcellulose complexes. Characterization and delivery properties. Drug Deliv., 2009, 16(2), 108-115.
[http://dx.doi.org/10.1080/10717540802605848] [PMID: 19267302]
[18]
Rigo, M.V.; Allemandi, D.A.; Manzo, R.H. Swellable Drug-Polyelectrolyte Matrices (SDPM) of alginic acid characterization and delivery properties. Int. J. Pharm., 2006, 322(1-2), 36-43.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.025] [PMID: 16806753]
[19]
Bermúdez, J.M.; Jimenez-Kairuz, A.F.; Olivera, M.E.; Allemandi, D.A.; Manzo, R.H. A ciprofloxacin extended release tablet based on swellable drug polyelectrolyte matrices. AAPS PharmSciTech, 2008, 9(3), 924-930.
[http://dx.doi.org/10.1208/s12249-008-9098-9] [PMID: 18686039]
[20]
Olivera, M.E.; Manzo, R.H.; Alovero, F.; Jimenez-Kairuz, A.F.; Ramírez-Rigo, M.V. Polyelectrolyte-drug ionic complexes as nanostructured drug carriers to design solid and liquid oral delivery systems. Nanostructures for Oral Medicine; Andronescu, E; Grumezescu, A.M., Ed.; Elsevier, 2017, pp. 365-408.
[21]
Liu, J.; Willför, S.; Xu, C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact. Carbohydr. Dietary Fibre, 2015, 5, 31-61.
[http://dx.doi.org/10.1016/j.bcdf.2014.12.001]
[22]
Schmid, W.; Picker-Freyer, K.M. Tableting and tablet properties of alginates: characterisation and potential for soft tableting. Eur. J. Pharm. Biopharm., 2009, 72(1), 165-172.
[http://dx.doi.org/10.1016/j.ejpb.2008.10.006] [PMID: 18992337]
[23]
Wade, A.; Weller, P.J. Handbook of Pharmaceutical Excipients, 2nd ed; American Pharmaceutical Association, 1994, p. 651.
[24]
Esezobo, S. Disintegrants: effects of interacting variables on the tensile strengths and disintegration times of sulphaguanidine tablets. Int. J. Pharm., 1989, 56, 207-211.
[http://dx.doi.org/10.1016/0378-5173(89)90016-1]
[25]
Tønnesen, H.H.; Karlsen, J. Alginate in drug delivery systems. Drug Dev. Ind. Pharm., 2002, 28(6), 621-630.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[26]
Tuğcu-Demiröz, F.; Acartürk, F.; Takka, S.; Konuş-Boyunağa, O. Evaluation of alginate based mesalazine tablets for intestinal drug delivery. Eur. J. Pharm. Biopharm., 2007, 67(2), 491-497.
[http://dx.doi.org/10.1016/j.ejpb.2007.03.003] [PMID: 17451926]
[27]
Bodmeier, R.; Wang, J. Microencapsulation of drugs with aqueous colloidal polymer dispersions. J. Pharm. Sci., 1993, 82(2), 191-194.
[http://dx.doi.org/10.1002/jps.2600820215] [PMID: 8445534]
[28]
Rubio, M.R.; Ghaly, E.S. In vitro release of acetaminophen from sodium alginate controlled release pellets. Drug Dev. Ind. Pharm., 1994, 20, 1239-1251.
[http://dx.doi.org/10.3109/03639049409038364]
[29]
Giunchedi, P.; Gavini, E.; Moretti, M.D.; Pirisino, G. Evaluation of alginate compressed matrices as prolonged drug delivery systems. AAPS PharmSciTech, 2000, 1(3)E19
[http://dx.doi.org/10.1208/pt010319] [PMID: 14727905]
[30]
Holte, Ø.; Onsøyen, E.; Myrvold, R.; Karlsen, J. Sustained release of water-soluble drug from directly compressed alginate tablets. Eur. J. Pharm. Sci., 2003, 20(4-5), 403-407.
[http://dx.doi.org/10.1016/j.ejps.2003.09.003] [PMID: 14659484]
[31]
Dabbagh, M.A.; Ford, J.L.; Rubinstein, M.H.; Hogan, J.E.; Rajabi-Siahboomi, A.R. Release of propranolol hydrochloride from matrix tablets containing sodium carboxymethylcellulose and hydroxypropylmethylcellulose. Pharm. Dev. Technol., 1999, 4(3), 313-324.
[http://dx.doi.org/10.1081/PDT-100101367] [PMID: 10434277]
[32]
Takka, S.; Rajbhandari, S.; Sakr, A. Effect of anionic polymers on the release of propranolol hydrochloride from matrix tablets. Eur. J. Pharm. Biopharm., 2001, 52(1), 75-82.
[http://dx.doi.org/10.1016/S0939-6411(01)00147-3] [PMID: 11438426]
[33]
Lotfipour, F.; Nokhodchi, A.; Saeedi, M.; Norouzi-Sani, S.; Sharbafi, J.; Siahi-Shadbad, M.R. The effect of hydrophilic and lipophilic polymers and fillers on the release rate of atenolol from HPMC matrices. Farmaco, 2004, 59(10), 819-825.
[http://dx.doi.org/10.1016/j.farmac.2004.06.006] [PMID: 15474059]
[34]
Conti, S.; Maggi, L.; Segale, L.; Ochoa Machiste, E.; Conte, U.; Grenier, P.; Vergnault, G. Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study. Int. J. Pharm., 2007, 333(1-2), 143-151.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.067] [PMID: 17240091]
[35]
Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev., 2001, 48(2-3), 139-157.
[http://dx.doi.org/10.1016/S0169-409X(01)00112-0] [PMID: 11369079]
[36]
Mahalingam, S.; Homer-Vanniasinkam, S.; Edirisinghe, M. Novel pressurised gyration device for making core-sheath polymer fibres. Mater. Des., 2019, 178107846
[http://dx.doi.org/10.1016/j.matdes.2019.107846]
[37]
Vilches, A.P.; Jimenez-Kairuz, A.; Alovero, F.; Olivera, M.E.; Allemandi, D.A.; Manzo, R.H. Release kinetics and up-take studies of model fluoroquinolones from carbomer hydrogels. Int. J. Pharm., 2002, 246(1-2), 17-24.
[http://dx.doi.org/10.1016/S0378-5173(02)00333-2] [PMID: 12270605]
[38]
Nogami, H.; Nagai, T.; Fukuoka, E.; Sonobe, T. Disintegration of the aspirin tablets containing potato starch and microcrystalline cellulose in various concentrations. Chem. Pharm. Bull. (Tokyo), 1969, 17(7), 1450-1455.
[http://dx.doi.org/10.1248/cpb.17.1450] [PMID: 5822503]
[39]
Llabot, J.M.; Manzo, R.H.; Allemandi, D.A. Double-layered mucoadhesive tablets containing nystatin. AAPS PharmSciTech, 2002, 3(3)E22
[PMID: 12916937]
[40]
Ceschan, N.E.; Bucalá, V.; Ramírez-Rigo, M.V. New alginic acid-atenolol microparticles for inhalatory drug targeting. Mater. Sci. Eng. C, 2014, 41, 255-266.
[http://dx.doi.org/10.1016/j.msec.2014.04.040] [PMID: 24907759]
[41]
Vilches, A.P. Polielectrolitos solubles como portadores defármacos ionizables. Preparación y estudio de sus propiedades farmacotécnicas; Universidad Nacional de Córdoba: Córdoba, Argentina, 2003.
[42]
Esteban, S.L. Sistemas poliméricos portadores de macrólidos. Diseño y evaluación; Universidad Nacional de Córdoba: Córdoba, Argentina, 2007.
[43]
Quinteros, D.A.; Rigo, V.R.; Kairuz, A.F.; Olivera, M.E.; Manzo, R.H.; Allemandi, D.A. Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs. Eur. J. Pharm. Sci., 2008, 33(1), 72-79.
[http://dx.doi.org/10.1016/j.ejps.2007.10.002] [PMID: 18060747]
[44]
Olivera, M.E.; Manzo, R.H.; Junginger, H.E.; Midha, K.K.; Shah, V.P.; Stavchansky, S.; Dressman, J.B.; Barends, D.M. Biowaiver monographs for immediate release solid oral dosage forms: ciprofloxacin hydrochloride. J. Pharm. Sci., 2011, 100(1), 22-33.
[http://dx.doi.org/10.1002/jps.22259] [PMID: 20602455]
[45]
Ramírez Rigo, M.V. Preparación y estudio de sistemas portadores de fármacos, PhD Thesis, Universidad Nacional de Córdoba: Córdoba,Argentina,. 2006.
[46]
Moreno-Villoslada, I.; Oyarzún, F.; Miranda, V.; Hess, S.; Rivas, B.L. Binding of chlorpheniramine maleate to pharmacologically important alginic acid, carboxymethylcellulose, κ-carageenan, and ι-carrageenan as studied by diafiltration. J. Appl. Polym. Sci., 2005, 98, 598-602.
[http://dx.doi.org/10.1002/app.22056]
[47]
Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J. Control. Release, 2014, 190, 75-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.041] [PMID: 24998939]
[48]
Kim, H.; Fassihi, R. Application of a binary polymer system in drug release rate modulation. 1. Characterization of release mechanism. J. Pharm. Sci., 1997, 86(3), 316-322.
[http://dx.doi.org/10.1021/js960302s] [PMID: 9050799]
[49]
Bruschi, M.L. 5 - Mathematical models of drug release. Strategies to modify the drug release from pharmaceutical systems; Bruschi, M.L., Ed.; Woodhead Publishing, 2015, pp. 63-86.
[50]
Omidian, H.; Park, K. Swelling agents and devices in oral drug delivery. J. Drug Deliv. Sci. Technol., 2008, 18, 83-93.
[http://dx.doi.org/10.1016/S1773-2247(08)50016-5]
[51]
Costa, P.; Sousa, Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[52]
Talan, D.A.; Naber, K.G.; Palou, J.; Elkharrat, D. Extended-release ciprofloxacin (Cipro XR) for treatment of urinary tract infections. Int. J. Antimicrob. Agents, 2004, 23(Suppl. 1), S54-S66.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.12.005] [PMID: 15037329]
[53]
Wagenlehner, F.M.; Kinzig-Schippers, M.; Tischmeyer, U.; Wagenlehner, C.; Sörgel, F.; Dalhoff, A.; Naber, K.G. Pharmacokinetics of ciprofloxacin XR (1000 mg) versus levofloxacin (500 mg) in plasma and urine of male and female healthy volunteers receiving a single oral dose. Int. J. Antimicrob. Agents, 2006, 27(1), 7-14.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.014] [PMID: 16343856]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy