Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Effects of Heat Source Temperature, Nanostructure, and Wettability on Explosive Boiling of Ultra-Thin Liquid Argon Film Over Graphene Substrate: A Molecular Dynamics Study

Author(s): Haiyan Zhang, Cunhui Li*, Yi Wang, Yingmin Zhu and Weidong Wang*

Volume 17, Issue 1, 2021

Published on: 11 May, 2020

Page: [98 - 108] Pages: 11

DOI: 10.2174/1573413716999200511125418

Price: $65

Abstract

Background: The study on explosive boiling phenomenon has received increasing attention because it involves many industries, such as advanced micro-, nano-electromechanical and nano-electronic cooling systems, laser steam cleaning, and so on.

Objective: In the present work, the explosive boiling of ultra-thin liquid film over two-dimensional nanomaterial surface in confined space with particular emphasis under the three different influencing factors: various heights of nanostructures, various wetting conditions of solid-liquid interface as well as various heat source temperatures.

Methods: Molecular Dynamics simulations (MDs) in present work have been adopted to simulate the whole explosive boiling process.

Results: For different heat source temperature case, the higher the heat temperature is, the less time the explosive boiling spends after relaxation. For nanostructure case, nanostructure surface significantly increases heat transfer rate and then leads to the increase of phase transition rate of explosive boiling. For different wetting property case, the increase of surface wettability results in an increase of phase transition to some degree.

Conclusion: The addition of nanostructures, the higher heat source temperature and good wettability between thin liquid film and substrate surface dramatically improve thermal heat transfer from solid surface to liquid film, which will give rise to explosive boiling occur. In addition, the non-vaporized argon layer still exists in these three factors despite continuous thermal transmission from the substrate surface to liquid argon film adjacent to the solid surface even other vaporized argon atoms.

Keywords: Molecular Dynamics simulations (MDs), explosive boiling, ultra-thin liquid film, three different influencing factors, three-phase simulation system, graphene surface.

Graphical Abstract

[1]
Hetsroni, G.; Mosyak, A.; Pogrebnyak, E.; Segal, Z. Explosive boiling of water in parallel micro-channel. Int. J. Multiph. Flow, 2005, 31, 371-392.
[http://dx.doi.org/10.1016/j.ijmultiphaseflow.2005.01.003]
[2]
Lorazo, P.; Lewis, L.J.; Meunier, M. Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett., 2003, 91(22)225502
[http://dx.doi.org/10.1103/PhysRevLett.91.225502] [PMID: 14683249]
[3]
Yoo, J.H.; Jeong, S.H.; Greif, R.; Russo, R.E. Explosive change in crater properties during high power nanosecond laser ablation of silicon. J. Appl. Phys., 2000, 88, 1638-1649.
[http://dx.doi.org/10.1063/1.373865]
[4]
Kotaidis, V.; Dahmen, C.; von Plessen, G.; Springer, F.; Plech, A. Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J. Chem. Phys., 2006, 124(18)184702
[http://dx.doi.org/10.1063/1.2187476] [PMID: 16709126]
[5]
Tam, A.C.; Park, H.K.; Grigoropoulos, C.P. Laser cleaning of surface contaminants. Appl. Surf. Sci., 1998, 127, 721-725.
[http://dx.doi.org/10.1016/S0169-4332(97)00788-5]
[6]
Fu, W.J.; Hong, B.F.; Yang, Y.; Zhang, X.; Gao, J-P.; Zhang, L.; Wang, X-X. Vaporesection for managing benign prostatic hyperplasia using a 2-microm continuous-wave laser: a prospective trial with 1-year follow-up. BJU Int., 2009, 103(3), 352-356.
[http://dx.doi.org/10.1111/j.1464-410X.2008.08040.x] [PMID: 18778340]
[7]
Shen, M.; Schelling, P.K.; Keblinski, P. Heat transfer mechanism across few-layer graphene by molecular dynamics. Phys. Rev. B Condens. Matter Mater. Phys., 2013, 88045444
[http://dx.doi.org/10.1103/PhysRevB.88.045444]
[8]
Sheikholeslami, M.; Ashorynejad, H.R.; Rana, P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J. Mol. Liq., 2016, 214, 86-95.
[http://dx.doi.org/10.1016/j.molliq.2015.11.052]
[9]
Ewen, J.P.; Restrepo, S.E.; Morgan, N.; Dini, D. Nonequilibrium molecular dynamics simulations of stearic acid adsorbed on iron surfaces with nanoscale roughness. Tribol. Int., 2017, 107, 264-273.
[http://dx.doi.org/10.1016/j.triboint.2016.11.039]
[10]
Hens, A.; Agarwal, R.; Biswas, G. Nanoscale study of boiling and evaporation in a liquid Ar film on a Pt heater using molecular dynamics simulation. Int. J. Heat Mass Transf., 2014, 71, 303-312.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.032]
[11]
Bourdon, B.; Bertrand, E.; Di Marco, P.; Marengo, M.; Rioboo, R.; De Coninck, J. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces. Adv. Colloid Interface Sci., 2015, 221, 34-40.
[http://dx.doi.org/10.1016/j.cis.2015.04.004] [PMID: 25952077]
[12]
Gu, X.; Urbassek, H.M. Atomic dynamics of explosive boiling of liquid-argon films. Appl. Phys. B, 2005, 81, 675-679.
[http://dx.doi.org/10.1007/s00340-005-1906-2]
[13]
Seyf, H.R.; Zhang, Y. Molecular dynamics simulation of normal and explosive boiling on nanostructured surface. J. Heat Transfer, 2013, 135121503
[http://dx.doi.org/10.1115/1.4024668]
[14]
Seyf, H.R.; Zhang, Y. Effect of nanotextured array of conical features on explosive boiling over a flat substrate: A nonequilibrium molecular dynamics study. Int. J. Heat Transf., 2013, 66, 613-624.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.025]
[15]
Wang, W.; Zhang, H.; Tian, C.; Meng, X. Numerical experiments on evaporation and explosive boiling of ultra-thin liquid argon film on aluminum nanostructure substrate. Nanoscale Res. Lett., 2015, 10, 158.
[http://dx.doi.org/10.1186/s11671-015-0830-6] [PMID: 25918494]
[16]
Shavik, S.M.; Hasan, M.N.; Monjur Morshed, A.K.M.; Quamrul Islam, M. Molecular dynamics study of effect of different wetting conditions on evaporation and rapid boiling of ultra-thin argon layer over platinum surface. Procedia Eng., 2015, 105, 446-451.
[http://dx.doi.org/10.1016/j.proeng.2015.05.032]
[17]
Zhang, S.; Hao, F.; Chen, H.; Yuan, W.; Tang, Y.; Chen, X. Molecular dynamics simulation on explosive boiling of liquid argon film on copper nanochannels. Appl. Therm. Eng., 2017, 113, 208-214.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.11.034]
[18]
Zhang, H.; Li, C.; Zhao, M.; Zhu, Y.; Wang, W. Influence of interface wettability on normal and explosive boiling of ultra-thin liquid films on a heated substrate in nanoscale: a molecular dynamics study. Micro & Nano Lett., 2017, 12, 843-848.
[http://dx.doi.org/10.1049/mnl.2017.0425]
[19]
Yin, X.; Bai, M.; Hu, C.; Lv, J. Molecular dynamics simulation on the effect of nanoparticle deposition and nondeposition on the nanofluid explosive boiling heat transfer. Numer. Heat Tr. Anal. Appl., 2018, 73, 553-564.
[20]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[21]
Gill-Comeau, M.; Lewis, L.J. Heat conductivity in graphene and related materials: A time-domain modal analysis. Phys. Rev. B Condens. Matter Mater. Phys., 2015, 92195404
[http://dx.doi.org/10.1103/PhysRevB.92.195404]
[22]
Wu, H.; Drzal, L.T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon, 2012, 5, 1135-1145.
[http://dx.doi.org/10.1016/j.carbon.2011.10.026]
[23]
Shahil, K.M.F.; Balandin, A.A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun., 2012, 152, 1331-1340.
[http://dx.doi.org/10.1016/j.ssc.2012.04.034]
[24]
Shen, Y.K.; Wu, H.A. Interlayer shear effect on multilayer graphene subjected to bending. Appl. Phys. Lett., 2012, •••100101909
[http://dx.doi.org/10.1063/1.3693390]
[25]
Si, C.; Wang, X.D.; Fan, Z.; Feng, Z.H.; Cao, B.Y. Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transf., 2017, 107, 450-460.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.065]
[26]
Guo, Z.; Chang, T.; Guo, X.; Gao, H. Gas-like adhesion of two-dimensional materials onto solid surfaces. Sci. Rep., 2017, 7(1), 159.
[http://dx.doi.org/10.1038/s41598-017-00184-x] [PMID: 28279014]
[27]
Wagemann, E.; Oyarzua, E.; Walther, J.H.; Zambrano, H.A. Slip divergence of water flow in graphene nanochannels: the role of chirality. Phys. Chem. Chem. Phys., 2017, 19(13), 8646-8652.
[http://dx.doi.org/10.1039/C6CP07755B] [PMID: 28195288]
[28]
Sarkar, S.; Selvam, R.P. Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J. Appl. Phys., 2007, 102074302
[http://dx.doi.org/10.1063/1.2785009]
[29]
Cannon, J.; Hess, O. Fundamental dynamics of flow through carbon nanotube membranes. Microfluid. Nanofluidics, 2010, 8, 21-31.
[http://dx.doi.org/10.1007/s10404-009-0446-1]]
[30]
LAMMPS Molecular Dynamics Simulator https://lammps.sandia.gov/ (Accessed Apr 21, 2020).
[31]
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 2010, 18015012
[http://dx.doi.org/10.1088/0965-0393/18/1/015012]
[32]
Wang, W.; Zhang, H.; Li, S.; Zhan, Y. Influences of ambient temperature, surface fluctuation and charge density on wettability properties of graphene film. Nanotechnology, 2016, 27(7)075707
[http://dx.doi.org/10.1088/0957-4484/27/7/075707] [PMID: 26783182]
[33]
Zhang, K.; Wang, F.; Zhao, X. The self-propelled movement of the water nanodroplet in different surface wettability gradients: A contact angle view. Comput. Mater. Sci., 2016, 124, 190-194.
[http://dx.doi.org/10.1016/j.commatsci.2016.07.026]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy