Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Pharmacological Effects of Saffron and its Constituents in Ocular Disorders from in vitro Studies to Clinical Trials: A Systematic Review

Author(s): Samaneh Sepahi, Adel Ghorani-Azam, Seyedeh M. Hossieni, Seyed A. Mohajeri* and Elham Khodaverdi*

Volume 19, Issue 3, 2021

Published on: 07 May, 2020

Page: [392 - 401] Pages: 10

DOI: 10.2174/1570159X18666200507083346

Price: $65

Abstract

Introduction: Some medicinal plants have shown promising therapeutic potential for the management of the diseases. We aimed to systematically review the literature wherein the therapeutic effects of saffron have been studied on eye disorders.

Methods: A systematic literature search was performed in PubMed, Scopus, Web of Science, Google scholar and other databases using eye disorders and saffron as key terms. No strict inclusion criteria were defined, and almost all clinical studies, as well as in vivo and in vitro studies were included. The reported data in each study were extracted and then qualitatively described.

Results: Finally, 78 articles were found but only 29 relevant articles were included. Nine articles were clinical trials and 20 articles were studies conducted on cellular and molecular aspects of saffron on eye disorders. According to the included studies, crocin prevented the pro-inflammatory response in retinal cells and decreased glucose levels in diabetic mice. Also, crocetin prevented retinal degeneration and saffron protected photoreceptors from light-induced damage in retinal cells. Saffron also improved visual function in age-related macular edema and decreased intraocular pressure in patients with glaucoma. In addition, it was shown that crocin can improve best corrected visual acuity and decrease central macular thickness in patients with diabetic maculopathy.

Conclusion: The results of this review indicated that saffron and its main ingredients such as crocin could be a potential candidate for the treatment of ocular disease especially eye inflammation; however, further clinical studies are needed to confirm such efficiency.

Keywords: Saffron, crocin, herbal medicine, eye disorder, eye inflammation, ocular complication.

Graphical Abstract

[1]
Qi, L.; Cai, J.; Mao, D.; Wang, M.; Ge, X.; Wu, W.; Jin, X.; Li, C.; Hua, Y.; Li, M. Use of contrast-enhanced computed tomographic imaging to diagnose and evaluate Behçet’s disease with vascular complications. Exp. Ther. Med., 2019, 18(6), 4265-4272.
[PMID: 31777534]
[2]
Ozmen, M.C. Is gabapentin effective in dry eye disease and neuropathic ocular pain? Acta Neurol. Belg., 2019, 120(5), 1215-1216.
[http://dx.doi.org/10.1007/s13760-019-01251-y] [PMID: 31776811]
[3]
Sunness, J.S. The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol. Vis., 1999, 5, 25.
[PMID: 10562649]
[4]
Subramanian, M.L.; Ness, S.; Abedi, G.; Ahmed, E.; Daly, M.; Feinberg, E.; Bhatia, S.; Patel, P.; Nguyen, M.; Houranieh, A. Bevacizumab vs ranibizumab for age-related macular degeneration: early results of a prospective double-masked, randomized clinical trial. Am. J. Ophthalmol., 2009, 148(6), 875-882.
[http://dx.doi.org/10.1016/j.ajo.2009.07.009]
[5]
Olalla, M.; Laura, G-Q.; Andrea, L-R.; Anxo, F-F.; Ana, L-P.; Maximino, J.A.; María, J.L.; Ángel, C. Anti-VEGF Treatment and response in age-related macular degeneration: disease’s susceptibility, pharmacogenetics and pharmacokinetics. Curr. Med. Chem., 2019, 26, 1-20.
[6]
Papapostolou, I.; Lommatzsch, A.P.; Farecki, M.L.; Ziegler, M.; Gutfleisch, M.; Pauleikhoff, D. Are there different phenotypes in geographic atrophy of amd? - pilot study on differentiation using multimodal imaging; Klin. Monbl. Augenheilkd, 2019. Epub a head of Print
[7]
Ba, J.; Peng, R.S.; Xu, D.; Li, Y.H.; Shi, H.; Wang, Q.; Yu, J. Intravitreal anti-VEGF injections for treating wet age-related macular degeneration: a systematic review and meta-analysis. Drug Des. Devel. Ther., 2015, 9, 5397-5405.
[PMID: 26451092]
[8]
Thomas, R.L.; Halim, S.; Gurudas, S.; Sivaprasad, S.; Owens, D.R. IDF Diabetes Atlas: A review of studies utilising retinal photography on the global prevalence of diabetes related retinopathy between 2015 and 2018. Diabetes Res. Clin. Pract., 2019, 157107840
[http://dx.doi.org/10.1016/j.diabres.2019.107840] [PMID: 31733978]
[9]
Zhou, Q.; Guo, C.; You, A.; Wang, D.; Wang, W.; Zhang, X. One-year outcomes of novel VEGF decoy receptor therapy with intravitreal conbercept in diabetic retinopathy-induced macular edema. Mol. Vis., 2019, 25, 636-644.
[PMID: 31700228]
[10]
Singh, R.P.; Elman, M.J.; Singh, S.K.; Fung, A.E.; Stoilov, I. Advances in the treatment of diabetic retinopathy. J. Diabetes Complications, 2019, 33(12)107417
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107417] [PMID: 31669065]
[11]
Sadat, M.N.G.; Razeghinejad, R.; Janghorbani, M.; Mohamadian, A.; Hassan, J.M.; Bazdar, S.; Salehi, A.; Molavi, V.H. Prevalence, incidence and ecological determinants of diabetic retinopathy in iran: systematic review and meta-analysis. J. Ophthalmic Vis. Res., 2019, 14(3), 321-335.
[http://dx.doi.org/10.18502/jovr.v14i3.4790] [PMID: 31660112]
[12]
Liew, G.; Wong, V.W.; Saw, M.; Tsang, T.E.; Nolan, T.; Ong, S.; Ho, I.V. Profile of a population-based diabetic macular oedema study: the Liverpool Eye and Diabetes Study (Sydney). BMJ Open, 2019, 9(1), e021884-e021884.
[http://dx.doi.org/10.1136/bmjopen-2018-021884] [PMID: 30679285]
[13]
Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology, 2014, 121(11), 2081-2090.
[http://dx.doi.org/10.1016/j.ophtha.2014.05.013] [PMID: 24974815]
[14]
Ichhpujani, P.; Thakur, S.; Spaeth, G.L. Contrast sensitivity and glaucoma. J. Glaucoma, 2019, 29(1), 71-75.
[PMID: 31567752]
[15]
Nodehi- Moghadam. A.; Goudarzian, M.; Azadi, F.; Nasiri, A.; Hosseini, SM.; Geranmayeh, S.; Larne, Y.; Habibi, M.; Yaghmaei, P. Prevalence of eye disorders in elderly population of Tehran, Iran. Elder. Health. J., 2015, 1(2), 46-51.
[16]
Matsuura, K.; Miyazaki, D.; Sasaki, S.I.; Inoue, Y.; Sasaki, Y.; Shimizu, Y. Effectiveness of intraoperative iodine in cataract surgery: cleanliness of the surgical field without preoperative topical antibiotics. Jpn. J. Ophthalmol., 2019, 64(1), 37-44.
[PMID: 31776820]
[17]
World Health, O. State of the world’s sight: VISION 2020: the Right to Sight: 1999-2005; World Health Organization: Geneva, 2005.
[18]
Amaniti, A.; Dalakakis, I.; Gkinas, D.; Sapalidis, K.; Grosomanidis, V.; Papazisis, G. Corrigendum to “Bradycardia Leading to Asystole following dexmedetomidine infusion during cataract surgery: dexmedetomidine-induced asystole for cataract surgery”. Case Rep. Anesthesiol., 2019, 20197254218
[http://dx.doi.org/10.1155/2019/7254218] [PMID: 31781404]
[19]
Makri, O.E.; Ferlemi, A.V.; Lamari, F.N.; Georgakopoulos, C.D. Saffron administration prevents selenite-induced cataractogenesis. Mol. Vis., 2013, 19, 1188-1197.
[PMID: 23734088]
[20]
Shukurova, P.; Babaev, R. A study into the effectiveness of the application of saffron extract in ocular pathologies in experiment. Georgian Med. News, 2010, (182), 38-42.
[PMID: 20587831]
[21]
Corso, L.; Cavallero, A.; Baroni, D.; Garbati, P.; Prestipino, G.; Bisti, S.; Nobile, M.; Picco, C. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors. Purinergic Signal., 2016, 12(1), 161-174.
[http://dx.doi.org/10.1007/s11302-015-9490-3] [PMID: 26739703]
[22]
Maccarone, R.; Di Marco, S.; Bisti, S. Saffron supplement maintains morphology and function after exposure to damaging light in mammalian retina. Invest. Ophthalmol. Vis. Sci., 2008, 49(3), 1254-1261.
[http://dx.doi.org/10.1167/iovs.07-0438] [PMID: 18326756]
[23]
Laabich, A.; Vissvesvaran, G.P.; Lieu, K.L.; Murata, K.; McGinn, T.E.; Manmoto, C.C.; Sinclair, J.R.; Karliga, I.; Leung, D.W.; Fawzi, A.; Kubota, R. Protective effect of crocin against blue light- and white light-mediated photoreceptor cell death in bovine and primate retinal primary cell culture. Invest. Ophthalmol. Vis. Sci., 2006, 47(7), 3156-3163.
[http://dx.doi.org/10.1167/iovs.05-1621] [PMID: 16799063]
[24]
Liou, J-C.; Yang, S-L.; Wang, P-H.; Wu, J-L.; Huang, Y-P.; Chen, B-Y.; Lee, M-C. Protective effect of crocin against the declining of high spatial frequency-based visual performance in mice. J. Funct. Foods, 2018, 49, 314-323.
[http://dx.doi.org/10.1016/j.jff.2018.08.031]
[25]
Qi, Y.; Chen, L.; Zhang, L.; Liu, W.B.; Chen, X.Y.; Yang, X.G. Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway. Exp. Eye Res., 2013, 107, 44-51.
[http://dx.doi.org/10.1016/j.exer.2012.11.011] [PMID: 23201026]
[26]
Ishizuka, F.; Shimazawa, M.; Umigai, N.; Ogishima, H.; Nakamura, S.; Tsuruma, K.; Hara, H. Crocetin, a carotenoid derivative, inhibits retinal ischemic damage in mice. Eur. J. Pharmacol., 2013, 703(1-3), 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.007] [PMID: 23428630]
[27]
Yamauchi, M.; Tsuruma, K.; Imai, S.; Nakanishi, T.; Umigai, N.; Shimazawa, M.; Hara, H. Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity. Eur. J. Pharmacol., 2011, 650(1), 110-119.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.081] [PMID: 20951131]
[28]
Fernández-Albarral, J.A.; Ramírez, A.I.; de Hoz, R.; López-Villarín, N.; Salobrar-García, E.; López-Cuenca, I.; Licastro, E.; Inarejos-García, A.M.; Almodóvar, P.; Pinazo-Durán, M.D.; Ramírez, J.M.; Salazar, J.J. Neuroprotective and anti-inflammatory effects of a hydrophilic saffron extract in a model of glaucoma. Int. J. Mol. Sci., 2019, 20(17), 4110.
[http://dx.doi.org/10.3390/ijms20174110] [PMID: 31443568]
[29]
Doumouchtsis, E.K.; Tzani, A.; Doulamis, I.P.; Konstantopoulos, P.; Laskarina-Maria, K.; Agrogiannis, G.; Agapitos, E.; Moschos, M.M.; Kostakis, A.; Perrea, D.N. Effect of saffron on metabolic profile and retina in apolipoprotein e-knockout mice fed a high-fat diet. J. Diet. Suppl., 2018, 15(4), 471-481.
[http://dx.doi.org/10.1080/19390211.2017.1356417] [PMID: 28937827]
[30]
Yang, X.; Huo, F.; Liu, B.; Liu, J.; Chen, T.; Li, J.; Zhu, Z.; Lv, B. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of pi3k/akt signaling pathway. J. Mol. Neurosci., 2017, 61(4), 581-589.
[http://dx.doi.org/10.1007/s12031-017-0899-8] [PMID: 28238066]
[31]
Maccarone, R.; Rapino, C.; Zerti, D.; di Tommaso, M.; Battista, N.; Di Marco, S.; Bisti, S.; Maccarrone, M. Modulation of Type-1 and Type-2 cannabinoid receptors by saffron in a rat model of retinal neurodegeneration. PLoS One, 2016, 11(11)e0166827
[http://dx.doi.org/10.1371/journal.pone.0166827] [PMID: 27861558]
[32]
Bahmani, F.; Bathaie, S.Z.; Aldavood, S.J.; Ghahghaei, A. Inhibitory effect of crocin(s) on lens α-crystallin glycation and aggregation, results in the decrease of the risk of diabetic cataract. Molecules, 2016, 21(2), 143-143.
[http://dx.doi.org/10.3390/molecules21020143] [PMID: 26821002]
[33]
Lv, B.; Chen, T.; Xu, Z.; Huo, F.; Wei, Y.; Yang, X. Crocin protects retinal ganglion cells against H2O2-induced damage through the mitochondrial pathway and activation of NF-κB. Int. J. Mol. Med., 2016, 37(1), 225-232.
[http://dx.doi.org/10.3892/ijmm.2015.2418] [PMID: 26718031]
[34]
Chen, L.; Qi, Y.; Yang, X. Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina. Ophthalmic Res., 2015, 54(3), 157-168.
[http://dx.doi.org/10.1159/000439026] [PMID: 26437379]
[35]
Di Marco, F.; Di Paolo, M.; Romeo, S.; Colecchi, L.; Fiorani, L.; Spana, S.; Stone, J.; Bisti, S. Combining neuroprotectants in a model of retinal degeneration: no additive benefit. PLoS One, 2014, 9(6)e100389
[http://dx.doi.org/10.1371/journal.pone.0100389] [PMID: 24955576]
[36]
Fernández-Sánchez, L.; Lax, P.; Esquiva, G.; Martín-Nieto, J.; Pinilla, I.; Cuenca, N. Safranal, a saffron constituent, attenuates retinal degeneration in P23H rats. PLoS One, 2012, 7(8)e43074
[http://dx.doi.org/10.1371/journal.pone.0043074] [PMID: 22900092]
[37]
Masaki, M.; Aritake, K.; Tanaka, H.; Shoyama, Y.; Huang, Z.L.; Urade, Y. Crocin promotes non-rapid eye movement sleep in mice. Mol. Nutr. Food Res., 2012, 56(2), 304-308.
[http://dx.doi.org/10.1002/mnfr.201100181] [PMID: 22038919]
[38]
Lyu, B.; Xu, Z.; Chen, T.; Shi, J.; Yang, X. A comparative study on protective effect of optical nerve between crocin and erigeron breviscapus in chronic ocular hypertensive rats Chinese. J. Exp. ophtalmol, 2016, 34, 990-996.,
[39]
Piccardi, M.; Fadda, A.; Martelli, F.; Marangoni, D.; Magli, A.; Minnella, A.M.; Bertelli, M.; Di Marco, S.; Bisti, S.; Falsini, B. Antioxidant saffron and central retinal function in abca4-related stargardt macular dystrophy. Nutrients, 2019, 11(10), 2461.
[http://dx.doi.org/10.3390/nu11102461] [PMID: 31618812]
[40]
Broadhead, G.K.; Grigg, J.R.; McCluskey, P.; Hong, T.; Schlub, T.E.; Chang, A.A. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: a randomised clinical trial. Graefes Arch. Clin. Exp. Ophthalmol., 2019, 257(1), 31-40.
[http://dx.doi.org/10.1007/s00417-018-4163-x] [PMID: 30343354]
[41]
Sepahi, S.; Mohajeri, S.A.; Hosseini, S.M.; Khodaverdi, E.; Shoeibi, N.; Namdari, M.; Tabassi, S.A.S. Effects of crocin on diabetic maculopathy: a placebo-controlled randomized clinical trial. Am. J. Ophthalmol., 2018, 190, 89-98.
[http://dx.doi.org/10.1016/j.ajo.2018.03.007] [PMID: 29550187]
[42]
Riazi, A.; Panahi, Y.; Alishiri, A.A.; Hosseini, M.A.; Zarchi, A.A.K.; Sahebkar, A. The impact of saffron (Crocus sativus) supplementation on visual function in patients with dry age-related macular degeneration. Ital. J. Med., 2017, 11(2), 196-201.
[43]
Lashay, A.; Sadough, G.; Ashrafi, E.; Lashay, M.; Movassat, M.; Akhondzadeh, S. Short-term outcomes of saffron supplementation in patients with age-related macular degeneration: a double-blind, placebo-controlled, randomized trial. Med. Hypothesis Discov. Innov. Ophthalmol., 2016, 5(1), 32-38.
[PMID: 28289690]
[44]
Jabbarpoor Bonyadi, M.H.; Yazdani, S.; Saadat, S. The ocular hypotensive effect of saffron extract in primary open angle glaucoma: a pilot study. BMC Complement. Altern. Med., 2014, 14, 399.
[http://dx.doi.org/10.1186/1472-6882-14-399] [PMID: 25319729]
[45]
Marangoni, D.; Falsini, B.; Piccardi, M.; Ambrosio, L.; Minnella, A.M.; Savastano, M.C.; Bisti, S.; Maccarone, R.; Fadda, A.; Mello, E.; Concolino, P.; Capoluongo, E. Functional effect of Saffron supplementation and risk genotypes in early age-related macular degeneration: a preliminary report. J. Transl. Med., 2013, 11, 228.
[http://dx.doi.org/10.1186/1479-5876-11-228] [PMID: 24067115]
[46]
Piccardi, M.; Marangoni, D.; Minnella, A.M.; Savastano, M.C.; Valentini, P.; Ambrosio, L.; Capoluongo, E.; Maccarone, R.; Bisti, S.; Falsini, B. A longitudinal follow-up study of saffron supplementation in early age-related macular degeneration: sustained benefits to central retinal function. Evid. Based Complement. Alternat. Med., 2012, 2012429124
[http://dx.doi.org/10.1155/2012/429124] [PMID: 22852021]
[47]
Falsini, B.; Piccardi, M.; Minnella, A.; Savastano, C.; Capoluongo, E.; Fadda, A.; Balestrazzi, E.; Maccarone, R.; Bisti, S. Influence of saffron supplementation on retinal flicker sensitivity in early age-related macular degeneration. Invest. Ophthalmol. Vis. Sci., 2010, 51(12), 6118-6124.
[http://dx.doi.org/10.1167/iovs.09-4995] [PMID: 20688744]
[48]
Aziz, S.; Aeron, A.; Kahil, T. Health benefits and possible risks of herbal medicine. Microbes in Food and Health; Springer, 2016, pp. 97-116.
[49]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[50]
Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol., 2015, 4(1), 27-30.
[PMID: 28197471]
[51]
Xuan, B.; Zhou, Y.H.; Li, N.; Min, Z.D.; Chiou, G.C. Effects of crocin analogs on ocular blood flow and retinal function. J. Ocul. Pharmacol. Ther., 1999, 15(2), 143-152.
[http://dx.doi.org/10.1089/jop.1999.15.143] [PMID: 10229492]
[52]
Yorgun, M.A.; Rashid, K.; Aslanidis, A.; Bresgen, C.; Dannhausen, K.; Langmann, T. Crocin, a plant-derived carotenoid, modulates microglial reactivity. Biochem. Biophys. Rep., 2017, 12, 245-250.
[http://dx.doi.org/10.1016/j.bbrep.2017.09.007] [PMID: 29214225]
[53]
Kang, J.W.; Chung, H.; Chan Kim, H. Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina, 2016, 36(9), 1630-1639.
[http://dx.doi.org/10.1097/IAE.0000000000000995] [PMID: 26900741]
[54]
Kim, C. Gestational diabetes: risks, management, and treatment options. Int. J. Womens Health, 2010, 2, 339-351.
[http://dx.doi.org/10.2147/IJWH.S13333] [PMID: 21151681]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy