Review Article

饮食,营养和生活方式干预在脂肪组织适应和肥胖中的作用

卷 28, 期 9, 2021

发表于: 05 May, 2020

页: [1683 - 1702] 页: 20

弟呕挨: 10.2174/0929867327666200505090449

价格: $65

摘要

肥胖症和相关的非传染性疾病(NCD)的患病率在全球范围内呈上升趋势。虽然现代生活方式要求通过肌肉活动减少代谢能量的通气,但这种生活方式的转变也使人们可以全天候无限量地购买食物,从而延长了高热量和高血糖负荷食品的日常饮食时间。这些情况促进了线粒体中碳底物可用性的高连续通量,并引起了不断的生物能转换。由于源自底物的还原当量的过量流动,被破坏的生物能环境增加了解偶联的呼吸作用,并减少了泛醌进入呼吸链。通过脂肪细胞生热而使解偶联质子梯度转移,将减轻自由基对线粒体和其他细胞器的破坏作用。白色脂肪组织(WAT)对米色脂肪组织(beAT)的自适应诱导已显示出通过beAT的解偶联蛋白1(UCP1)独立的生热作用,对葡萄糖氧化,ROS保护和线粒体功能保存具有有益作用。但是,适应不良的阶段最终可能会因持续不健康的生活方式而开始。在这种代谢僵局下,低氧和促炎环境会促进脂肪分解,继而发生代谢异常,包括胰岛素抵抗,全身性炎症和临床NCD进展。单一的干预措施不可能逆转所有这些复杂的相互作用。包括饮食,营养和所有可修改的生活方式干预措施在内的综合规程可能是减速,停止或逆转NCD病理生理过程的首选。

关键词: 肥胖,脂肪细胞,线粒体,生热,适应,适应不良,饮食,营养,生活方式。

[1]
Jaspers, L.; Colpani, V.; Chaker, L.; van der Lee, S.J.; Muka, T.; Imo, D.; Mendis, S.; Chowdhury, R.; Bramer, W.M.; Falla, A.; Pazoki, R.; Franco, O.H. The global impact of non-communicable diseases on households and impoverishment: a systematic review. Eur. J. Epidemiol., 2015, 30(3), 163-188.
[http://dx.doi.org/10.1007/s10654-014-9983-3] [PMID: 25527371]
[2]
Chan, M. Ten years in public health 2007-2017: Report by Dr. Margaret Chan, Director-General In: World Health Organization; , 2018. Geneva.
[3]
Castro, A.V.B.; Kolka, C.M.; Kim, S.P.; Bergman, R.N. Obesity, insulin resistance and comorbidities? Mechanisms of association. Arq. Bras. Endocrinol. Metabol, 2014, 58(6), 600-609.
[http://dx.doi.org/10.1590/0004-2730000003223] [PMID: 25211442]
[4]
Cai, L.; Lubitz, J.; Flegal, K.M.; Pamuk, E.R. The predicted effects of chronic obesity in middle age on medicare costs and mortality. Med. Care, 2010, 48(6), 510-517.
[http://dx.doi.org/10.1097/MLR.0b013e3181dbdb20] [PMID: 20473195]
[5]
Hammond, R.A.; Levine, R. The economic impact of obesity in the United States. Diabetes Metab. Syndr. Obes., 2010, 3, 285-295.
[http://dx.doi.org/10.2147/DMSO.S7384] [PMID: 21437097]
[6]
Bjørndal, B.; Burri, L.; Staalesen, V.; Skorve, J.; Berge, R.K. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obes., 2011., , 2011490650..
[http://dx.doi.org/10.1155/2011/490650] [PMID: 21403826]
[7]
Uranga, R.M.; Keller, J.N. The complex interactions between obesity, metabolism and the brain. Front. Neurosci., 2019, 13(513), 513.
[http://dx.doi.org/10.3389/fnins.2019.00513] [PMID: 31178685]
[8]
Obesity and Lipotoxicity. Engin, A.B, Eds;; Engin, A. Springer International Publishing: Berlin, 2017.
[http://dx.doi.org/10.1007/978-3-319-48382-5]
[9]
Freese, J.; Klement, R.J.; Ruiz-Núñez, B.; Schwarz, S.; Lötzerich, H. The sedentary (r)evolution: Have we lost our metabolic flexibility? F1000 Res., 2017, 6, 1787.
[http://dx.doi.org/10.12688/f1000research.12724.1] [PMID: 29225776]
[10]
Muoio, D.M.; Inflexibility, M. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell, 2014, 159(6), 1253-1262.
[http://dx.doi.org/10.1016/j.cell.2014.11.034] [PMID: 25480291]
[11]
Mehta, M.M.; Weinberg, S.E.; Chandel, N.S. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol., 2017, 17(10), 608-620. advance online publication
[http://dx.doi.org/10.1038/nri.2017.66] [PMID: 28669986]
[12]
Kelley, D.E. Skeletal muscle fat oxidation: timing and flexibility are everything. J. Clin. Invest., 2005, 115(7), 1699-1702.
[http://dx.doi.org/10.1172/JCI25758] [PMID: 16007246]
[13]
Kelley, D.E.; Mandarino, L.J. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes, 2000, 49(5), 677-683.
[http://dx.doi.org/10.2337/diabetes.49.5.677] [PMID: 10905472]
[14]
Ikeda, K.; Maretich, P.; Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab., 2018, 29(3), 191-200.
[http://dx.doi.org/10.1016/j.tem.2018.01.001] [PMID: 29366777]
[15]
Chouchani, E.T.; Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab., 2019, 1(2), 189-200.
[http://dx.doi.org/10.1038/s42255-018-0021-8] [PMID: 31903450]
[16]
Guilherme, A.; Henriques, F.; Bedard, A.H.; Czech, M.P. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus. Nat. Rev. Endocrinol., 2019, 15(4), 207-225.
[http://dx.doi.org/10.1038/s41574-019-0165-y] [PMID: 30733616]
[17]
Tormos, K.V.; Anso, E.; Hamanaka, R.B.; Eisenbart, J.; Joseph, J.; Kalyanaraman, B.; Chandel, N.S. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab., 2011, 14(4), 537-544.
[http://dx.doi.org/10.1016/j.cmet.2011.08.007] [PMID: 21982713]
[18]
Betz, M.J.; Enerbäck, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat. Rev. Endocrinol., 2018, 14(2), 77-87.
[http://dx.doi.org/10.1038/nrendo.2017.132] [PMID: 29052591]
[19]
Brestoff, J.R.; Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell, 2015, 161(1), 146-160.
[http://dx.doi.org/10.1016/j.cell.2015.02.022] [PMID: 25815992]
[20]
Alcalá, M.; Calderon-Dominguez, M.; Serra, D.; Herrero, L.; Viana, M. Mechanisms of impaired brown adipose tissue recruitment in obesity. Front. Physiol., 2019, 10(94), 94.
[http://dx.doi.org/10.3389/fphys.2019.00094] [PMID: 30814954]
[21]
Cinti, S. The adipose organ. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 73(1), 9-15.
[http://dx.doi.org/10.1016/j.plefa.2005.04.010] [PMID: 15936182]
[22]
Wang, P.; Mariman, E.; Renes, J.; Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell. Physiol., 2008, 216(1), 3-13.
[http://dx.doi.org/10.1002/jcp.21386] [PMID: 18264975]
[23]
Galgani, J.E.; Moro, C.; Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2008, 295(5), E1009-E1017.
[http://dx.doi.org/10.1152/ajpendo.90558.2008] [PMID: 18765680]
[24]
De Pauw, A.; Tejerina, S.; Raes, M.; Keijer, J.; Arnould, T. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am. J. Pathol., 2009, 175(3), 927-939.
[http://dx.doi.org/10.2353/ajpath.2009.081155] [PMID: 19700756]
[25]
Kahn, C.R.; Wang, G.; Lee, K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest., 2019, 129(10), 3990-4000.
[http://dx.doi.org/10.1172/JCI129187] [PMID: 31573548]
[26]
Czech, M.P. Mechanisms of insulin resistance related to white, beige and brown adipocytes. Mol. Metab., 2020, 34, 27-42.
[http://dx.doi.org/10.1016/j.molmet.2019.12.014] [PMID: 32180558]
[27]
Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, W.D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012, 150(2), 366-376.
[http://dx.doi.org/10.1016/j.cell.2012.05.016] [PMID: 22796012]
[28]
Zwick, R.K.; Guerrero-Juarez, C.F.; Horsley, V.; Plikus, M.V. Anatomical, physiological and functional diversity of adipose tissue. Cell Metab., 2018, 27(1), 68-83.
[http://dx.doi.org/10.1016/j.cmet.2017.12.002] [PMID: 29320711]
[29]
Demine, S.; Renard, P.; Arnould, T. Mitochondrial uncoupling: a key controller of biological processes in physiology and diseases. Cells, 2019, 8(8), 795.
[http://dx.doi.org/10.3390/cells8080795] [PMID: 31366145]
[30]
Cedikova, M.; Kripnerová, M.; Dvorakova, J.; Pitule, P.; Grundmanova, M.; Babuska, V.; Mullerova, D.; Kuncova, J. Mitochondria in white, brown and beige adipocytes. Stem Cells Int., 2016, 2016, , 6067349..
[http://dx.doi.org/10.1155/2016/6067349] [PMID: 27073398]
[31]
Harms, M.; Seale, P. Brown and beige fat: development, function and therapeutic potential. Nat. Med., 2013, 19(10), 1252-1263.
[http://dx.doi.org/10.1038/nm.3361] [PMID: 24100998]
[32]
Kajimura, S.; Spiegelman, B.M.; Seale, P. Brown and beige fat: physiological roles beyond heat generation. Cell Metab., 2015, 22(4), 546-559.
[http://dx.doi.org/10.1016/j.cmet.2015.09.007] [PMID: 26445512]
[33]
Liesa, M.; Shirihai, O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab., 2013, 17(4), 491-506.
[http://dx.doi.org/10.1016/j.cmet.2013.03.002] [PMID: 23562075]
[34]
Boudina, S.; Graham, T.E. Mitochondrial function/dysfunction in white adipose tissue. Exp. Physiol., 2014, 99(9), 1168-1178.
[http://dx.doi.org/10.1113/expphysiol.2014.081414] [PMID: 25128326]
[35]
Jeffery, E.; Church, C.D.; Holtrup, B.; Colman, L.; Rodeheffer, M.S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol., 2015, 17(4), 376-385.
[http://dx.doi.org/10.1038/ncb3122] [PMID: 25730471]
[36]
Kleemann, R.; van Erk, M.; Verschuren, L.; van den Hoek, A.M.; Koek, M.; Wielinga, P.Y.; Jie, A.; Pellis, L.; Bobeldijk-Pastorova, I.; Kelder, T.; Toet, K.; Wopereis, S.; Cnubben, N.; Evelo, C.; van Ommen, B.; Kooistra, T. Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS One, 2010, 5(1), e8817-e8817.
[http://dx.doi.org/10.1371/journal.pone.0008817] [PMID: 20098690]
[37]
Asterholm, I.W.; Scherer, P.E. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am. J. Pathol., 2010, 176(3), 1364-1376.
[http://dx.doi.org/10.2353/ajpath.2010.090647] [PMID: 20093494]
[38]
Ricoult, S.J.H.; Manning, B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep., 2013, 14(3), 242-251.
[http://dx.doi.org/10.1038/embor.2013.5] [PMID: 23399656]
[39]
Rosenwald, M.; Perdikari, A.; Rülicke, T.; Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol., 2013, 15(6), 659-667.
[http://dx.doi.org/10.1038/ncb2740] [PMID: 23624403]
[40]
Altshuler-Keylin, S.; Shinoda, K.; Hasegawa, Y.; Ikeda, K.; Hong, H.; Kang, Q.; Yang, Y.; Perera, R.M.; Debnath, J.; Kajimura, S. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab., 2016, 24(3), 402-419.
[http://dx.doi.org/10.1016/j.cmet.2016.08.002] [PMID: 27568548]
[41]
Rossignol, R.; Faustin, B.; Rocher, C.; Malgat, M.; Mazat, J-P.; Letellier, T. Mitochondrial threshold effects. Biochem. J., 2003, 370(Pt 3), 751-762.
[http://dx.doi.org/10.1042/bj20021594] [PMID: 12467494]
[42]
Schöttl, T.; Pachl, F.; Giesbertz, P.; Daniel, H.; Kuster, B.; Fromme, T.; Klingenspor, M. Proteomic and metabolite profiling reveals profound structural and metabolic reorganization of adipocyte mitochondria in obesity. Obesity (Silver Spring), 2020, 28(3), 590-600.
[http://dx.doi.org/10.1002/oby.22737] [PMID: 32034895]
[43]
Schöttl, T.; Kappler, L.; Fromme, T.; Klingenspor, M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol. Metab., 2015, 4(9), 631-642.
[http://dx.doi.org/10.1016/j.molmet.2015.07.001] [PMID: 26413469]
[44]
Vernochet, C.; Mourier, A.; Bezy, O.; Macotela, Y.; Boucher, J.; Rardin, M.J.; An, D.; Lee, K.Y.; Ilkayeva, O.R.; Zingaretti, C.M.; Emanuelli, B.; Smyth, G.; Cinti, S.; Newgard, C.B.; Gibson, B.W.; Larsson, N-G.; Kahn, C.R. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab., 2012, 16(6), 765-776.
[http://dx.doi.org/10.1016/j.cmet.2012.10.016] [PMID: 23168219]
[45]
Schöttl, T.; Kappler, L.; Braun, K.; Fromme, T.; Klingenspor, M. Limited mitochondrial capacity of visceral versus subcutaneous white adipocytes in male C57BL/6N mice. Endocrinology, 2015, 156(3), 923-933.
[http://dx.doi.org/10.1210/en.2014-1689] [PMID: 25549046]
[46]
Vernochet, C.; Damilano, F.; Mourier, A.; Bezy, O.; Mori, M.A.; Smyth, G.; Rosenzweig, A.; Larsson, N-G.; Kahn, C.R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis and cardiovascular complications. FASEB J., 2014, 28(10), 4408-4419.
[http://dx.doi.org/10.1096/fj.14-253971] [PMID: 25005176]
[47]
Busiello, R.A.; Savarese, S.; Lombardi, A. Mitochondrial uncoupling proteins and energy metabolism. Front. Physiol., 2015, 6, 36-36.
[http://dx.doi.org/10.3389/fphys.2015.00036] [PMID: 25713540]
[48]
Nedergaard, J.; Cannon, B. UCP1 mRNA does not produce heat. Biochim. Biophys. Acta, 2013, 1831(5), 943-949.
[http://dx.doi.org/10.1016/j.bbalip.2013.01.009] [PMID: 23353596]
[49]
Vitali, A.; Murano, I.; Zingaretti, M.C.; Frontini, A.; Ricquier, D.; Cinti, S. The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J. Lipid Res., 2012, 53(4), 619-629.
[http://dx.doi.org/10.1194/jlr.M018846] [PMID: 22271685]
[50]
Naon, D.; Zaninello, M.; Giacomello, M.; Varanita, T.; Grespi, F.; Lakshminaranayan, S.; Serafini, A.; Semenzato, M.; Herkenne, S.; Hernández-Alvarez, M.I.; Zorzano, A.; De Stefani, D.; Dorn, G.W., II; Scorrano, L. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc. Natl. Acad. Sci. USA, 2016, 113(40), 11249-11254.
[http://dx.doi.org/10.1073/pnas.1606786113] [PMID: 27647893]
[51]
Kusminski, C.M.; Scherer, P.E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab., 2012, 23(9), 435-443.
[http://dx.doi.org/10.1016/j.tem.2012.06.004] [PMID: 22784416]
[52]
Kazak, L.; Chouchani, E.T.; Jedrychowski, M.P.; Erickson, B.K.; Shinoda, K.; Cohen, P.; Vetrivelan, R.; Lu, G.Z.; Laznik-Bogoslavski, D.; Hasenfuss, S.C.; Kajimura, S.; Gygi, S.P.; Spiegelman, B.M. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell, 2015, 163(3), 643-655.
[http://dx.doi.org/10.1016/j.cell.2015.09.035] [PMID: 26496606]
[53]
Yin, X.; Lanza, I.R.; Swain, J.M.; Sarr, M.G.; Nair, K.S.; Jensen, M.D. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J. Clin. Endocrinol. Metab., 2014, 99(2), E209-E216.
[http://dx.doi.org/10.1210/jc.2013-3042] [PMID: 24276464]
[54]
Peschechera, A.; Eckel, J. “Browning” of adipose tissue--regulation and therapeutic perspectives. Arch. Physiol. Biochem., 2013, 119(4), 151-160.
[http://dx.doi.org/10.3109/13813455.2013.796995] [PMID: 23721302]
[55]
Cannon, B.; Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev., 2004, 84(1), 277-359.
[http://dx.doi.org/10.1152/physrev.00015.2003] [PMID: 14715917]
[56]
Schreiber, R.; Diwoky, C.; Schoiswohl, G.; Feiler, U.; Wongsiriroj, N.; Abdellatif, M.; Kolb, D.; Hoeks, J.; Kershaw, E.E.; Sedej, S.; Schrauwen, P.; Haemmerle, G.; Zechner, R. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab., 2017, 26(5), 753-763.e7.
[http://dx.doi.org/10.1016/j.cmet.2017.09.004] [PMID: 28988821]
[57]
Ikeda, K.; Kang, Q.; Yoneshiro, T.; Camporez, J.P.; Maki, H.; Homma, M.; Shinoda, K.; Chen, Y.; Lu, X.; Maretich, P.; Tajima, K.; Ajuwon, K.M.; Soga, T.; Kajimura, S. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat. Med., 2017, 23(12), 1454-1465.
[http://dx.doi.org/10.1038/nm.4429] [PMID: 29131158]
[58]
Denton, R.M. Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta, 2009, 1787(11), 1309-1316.
[http://dx.doi.org/10.1016/j.bbabio.2009.01.005] [PMID: 19413950]
[59]
Seale, P.; Conroe, H.M.; Estall, J.; Kajimura, S.; Frontini, A.; Ishibashi, J.; Cohen, P.; Cinti, S.; Spiegelman, B.M. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J. Clin. Invest., 2011, 121(1), 96-105.
[http://dx.doi.org/10.1172/JCI44271] [PMID: 21123942]
[60]
Onder, Y.; Green, C.B. Rhythms of metabolism in adipose tissue and mitochondria. Neurobiol. Sleep Circadian Rhythms, 2018, 4, 57-63.
[http://dx.doi.org/10.1016/j.nbscr.2018.01.001] [PMID: 30637351]
[61]
Lackey, D.E.; Burk, D.H.; Ali, M.R.; Mostaedi, R.; Smith, W.H.; Park, J.; Scherer, P.E.; Seay, S.A.; McCoin, C.S.; Bonaldo, P.; Adams, S.H. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab., 2014, 306(3), E233-E246.
[http://dx.doi.org/10.1152/ajpendo.00476.2013] [PMID: 24302007]
[62]
Muir, L.A.; Neeley, C.K.; Meyer, K.A.; Baker, N.A.; Brosius, A.M.; Washabaugh, A.R.; Varban, O.A.; Finks, J.F.; Zamarron, B.F.; Flesher, C.G.; Chang, J.S.; DelProposto, J.B.; Geletka, L.; Martinez-Santibanez, G.; Kaciroti, N.; Lumeng, C.N.; O’Rourke, R.W. Adipose tissue fibrosis, hypertrophy and hyperplasia: correlations with diabetes in human obesity. Obesity (Silver Spring), 2016, 24(3), 597-605.
[http://dx.doi.org/10.1002/oby.21377] [PMID: 26916240]
[63]
Reggio, S.; Rouault, C.; Poitou, C.; Bichet, J-C.; Prifti, E.; Bouillot, J-L.; Rizkalla, S.; Lacasa, D.; Tordjman, J.; Clément, K. Increased Basement Membrane Components in Adipose Tissue During Obesity: Links With TGFβ and Metabolic Phenotypes. J. Clin. Endocrinol. Metab., 2016, 101(6), 2578-2587.
[http://dx.doi.org/10.1210/jc.2015-4304] [PMID: 27049236]
[64]
Henegar, C.; Tordjman, J.; Achard, V.; Lacasa, D.; Cremer, I.; Guerre-Millo, M.; Poitou, C.; Basdevant, A.; Stich, V.; Viguerie, N.; Langin, D.; Bedossa, P.; Zucker, J-D.; Clement, K. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol., 2008, 9(1), R14-R14.
[http://dx.doi.org/10.1186/gb-2008-9-1-r14] [PMID: 18208606]
[65]
Gonzalez, F.J.; Xie, C.; Jiang, C. The role of hypoxia-inducible factors in metabolic diseases. Nat. Rev. Endocrinol., 2018, 15(1), 21-32.
[http://dx.doi.org/10.1038/s41574-018-0096-z] [PMID: 30275460]
[66]
Michailidou, Z. Fundamental roles for hypoxia signalling in adipose tissue metabolism and inflammation in obesity. Curr. Opinion Phys., 2019, 12, 39-43.
[http://dx.doi.org/10.1016/j.cophys.2019.09.005]
[67]
Gaspar, J.M.; Velloso, L.A. Hypoxia inducible factor as a central regulator of metabolism - implications for the development of obesity. Front. Neurosci., 2018, 12(813), 813.
[http://dx.doi.org/10.3389/fnins.2018.00813] [PMID: 30443205]
[68]
Clària, J.; Dalli, J.; Yacoubian, S.; Gao, F.; Serhan, C.N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J. Immunol., 2012, 189(5), 2597-2605.
[http://dx.doi.org/10.4049/jimmunol.1201272] [PMID: 22844113]
[69]
Muñoz, A.; Costa, M. Nutritionally mediated oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2013, 2013, , 610950..
[http://dx.doi.org/10.1155/2013/610950] [PMID: 23844276]
[70]
Olli, K.; Lahtinen, S.; Rautonen, N.; Tiihonen, K. Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes. Br. J. Nutr., 2013, 109(1), 43-49.
[http://dx.doi.org/10.1017/S0007114512000888] [PMID: 22424556]
[71]
Bantug, G.R.; Galluzzi, L.; Kroemer, G.; Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol., 2018, 18(1), 19-34.
[http://dx.doi.org/10.1038/nri.2017.99] [PMID: 28944771]
[72]
Medina-Gómez, G. Mitochondria and endocrine function of adipose tissue. Best Pract. Res. Clin. Endocrinol. Metab., 2012, 26(6), 791-804.
[http://dx.doi.org/10.1016/j.beem.2012.06.002] [PMID: 23168280]
[73]
Ertunc, M.E.; Hotamisligil, G.S. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J. Lipid Res., 2016, 57(12), 2099-2114.
[http://dx.doi.org/10.1194/jlr.R066514] [PMID: 27330055]
[74]
Andreyev, A.Y.; Kushnareva, Y.E.; Starkov, A.A. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc.), 2005, 70(2), 200-214.
[http://dx.doi.org/10.1007/s10541-005-0102-7] [PMID: 15807660]
[75]
Rieusset, J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? Diabetes Metab., 2015, 41(5), 358-368.
[http://dx.doi.org/10.1016/j.diabet.2015.02.006] [PMID: 25797073]
[76]
Bogdanovic, E.; Kraus, N.; Patsouris, D.; Diao, L.; Wang, V.; Abdullahi, A.; Jeschke, M.G. Endoplasmic reticulum stress in adipose tissue augments lipolysis. J. Cell. Mol. Med., 2015, 19(1), 82-91.
[http://dx.doi.org/10.1111/jcmm.12384] [PMID: 25381905]
[77]
Pagliassotti, M.J.; Kim, P.Y.; Estrada, A.L.; Stewart, C.M.; Gentile, C.L. Endoplasmic reticulum stress in obesity and obesity-related disorders: An expanded view. Metabolism, 2016, 65(9), 1238-1246.
[http://dx.doi.org/10.1016/j.metabol.2016.05.002] [PMID: 27506731]
[78]
Sullivan, J.E.; Brocklehurst, K.J.; Marley, A.E.; Carey, F.; Carling, D.; Beri, R.K. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett., 1994, 353(1), 33-36.
[http://dx.doi.org/10.1016/0014-5793(94)01006-4] [PMID: 7926017]
[79]
Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.; Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest., 2004, 114(12), 1752-1761.
[http://dx.doi.org/10.1172/JCI21625] [PMID: 15599400]
[80]
Hosogai, N.; Fukuhara, A.; Oshima, K.; Miyata, Y.; Tanaka, S.; Segawa, K.; Furukawa, S.; Tochino, Y.; Komuro, R.; Matsuda, M.; Shimomura, I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 2007, 56(4), 901-911.
[http://dx.doi.org/10.2337/db06-0911] [PMID: 17395738]
[81]
Halberg, N.; Khan, T.; Trujillo, M.E.; Wernstedt-Asterholm, I.; Attie, A.D.; Sherwani, S.; Wang, Z.V.; Landskroner-Eiger, S.; Dineen, S.; Magalang, U.J.; Brekken, R.A.; Scherer, P.E. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol., 2009, 29(16), 4467-4483.
[http://dx.doi.org/10.1128/MCB.00192-09] [PMID: 19546236]
[82]
Sun, K.; Halberg, N.; Khan, M.; Magalang, U.J.; Scherer, P.E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol., 2013, 33(5), 904-917.
[http://dx.doi.org/10.1128/MCB.00951-12] [PMID: 23249949]
[83]
Koh, E.H.; Park, J-Y.; Park, H-S.; Jeon, M.J.; Ryu, J.W.; Kim, M.; Kim, S.Y.; Kim, M-S.; Kim, S-W.; Park, I.S.; Youn, J.H.; Lee, K.U. Essential role of mitochondrial function in adiponectin synthesis in adipocytes. Diabetes, 2007, 56(12), 2973-2981.
[http://dx.doi.org/10.2337/db07-0510] [PMID: 17827403]
[84]
Priest, C.; Tontonoz, P. Inter-organ cross-talk in metabolic syndrome. Nature Metabolism, 2019, 1(12), 1177-1188.
[http://dx.doi.org/10.1038/s42255-019-0145-5]
[85]
Paniagua, J.A. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J. Diabetes, 2016, 7(19), 483-514.
[http://dx.doi.org/10.4239/wjd.v7.i19.483] [PMID: 27895819]
[86]
Sun, K.; Tordjman, J.; Clément, K.; Scherer, P.E. Fibrosis and adipose tissue dysfunction. Cell Metab., 2013, 18(4), 470-477.
[http://dx.doi.org/10.1016/j.cmet.2013.06.016] [PMID: 23954640]
[87]
Divoux, A.; Tordjman, J.; Lacasa, D.; Veyrie, N.; Hugol, D.; Aissat, A.; Basdevant, A.; Guerre-Millo, M.; Poitou, C.; Zucker, J-D.; Bedossa, P.; Clément, K. Fibrosis in human adipose tissue: composition, distribution and link with lipid metabolism and fat mass loss. Diabetes, 2010, 59(11), 2817-2825.
[http://dx.doi.org/10.2337/db10-0585] [PMID: 20713683]
[88]
Heinonen, S.; Buzkova, J.; Muniandy, M.; Kaksonen, R.; Ollikainen, M.; Ismail, K.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Vuolteenaho, K.; Moilanen, E.; Kaprio, J.; Rissanen, A.; Suomalainen, A.; Pietiläinen, K.H. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes, 2015, 64(9), 3135-3145.
[http://dx.doi.org/10.2337/db14-1937] [PMID: 25972572]
[89]
Heinonen, S.; Muniandy, M.; Buzkova, J.; Mardinoglu, A.; Rodríguez, A.; Frühbeck, G.; Hakkarainen, A.; Lundbom, J.; Lundbom, N.; Kaprio, J.; Rissanen, A.; Pietiläinen, K.H. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia, 2017, 60(1), 169-181.
[http://dx.doi.org/10.1007/s00125-016-4121-2] [PMID: 27734103]
[90]
Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol., 2011, 11(2), 85-97.
[http://dx.doi.org/10.1038/nri2921] [PMID: 21252989]
[91]
Shulman, G.I. Ectopic fat in insulin resistance, dyslipidemia and cardiometabolic disease. N. Engl. J. Med., 2014, 371(12), 1131-1141.
[http://dx.doi.org/10.1056/NEJMra1011035] [PMID: 25229917]
[92]
Summers, S.A. Could ceramides become the new cholesterol? Cell Metab., 2018, 27(2), 276-280.
[http://dx.doi.org/10.1016/j.cmet.2017.12.003] [PMID: 29307517]
[93]
Blachnio-Zabielska, A.U.; Chacinska, M.; Vendelbo, M.H.; Zabielski, P. The crucial role of C18-Cer in fat-induced skeletal muscle insulin resistance. Cell. Physiol. Biochem., 2016, 40(5), 1207-1220.
[http://dx.doi.org/10.1159/000453174] [PMID: 27960149]
[94]
Chaurasia, B.; Kaddai, V.A.; Lancaster, G.I.; Henstridge, D.C.; Sriram, S.; Galam, D.L.A.; Gopalan, V.; Prakash, K.N.B.; Velan, S.S.; Bulchand, S.; Tsong, T.J.; Wang, M.; Siddique, M.M.; Yuguang, G.; Sigmundsson, K.; Mellet, N.A.; Weir, J.M.; Meikle, P.J.; Bin, M. Yassin, M.S.; Shabbir, A.; Shayman, J.A.; Hirabayashi, Y.; Shiow, S.T.; Sugii, S.; Summers, S.A. Adipocyte ceramides regulate subcutaneous adipose browning, inflammation and metabolism. Cell Metab., 2016, 24(6), 820-834.
[http://dx.doi.org/10.1016/j.cmet.2016.10.002] [PMID: 27818258]
[95]
Lafontan, M. Adipose tissue and adipocyte dysregulation. Diabetes Metab., 2014, 40(1), 16-28.
[http://dx.doi.org/10.1016/j.diabet.2013.08.002] [PMID: 24139247]
[96]
Jackson, E.; Shoemaker, R.; Larian, N.; Cassis, L. Adipose tissue as a site of toxin accumulation. Compr. Physiol., 2017, 7(4), 1085-1135.
[http://dx.doi.org/10.1002/cphy.c160038] [PMID: 28915320]
[97]
Brown, R.H.; Ng, D.K.; Steele, K.; Schweitzer, M.; Groopman, J.D. Mobilization of environmental toxicants following bariatric surgery. Obesity (Silver Spring), 2019, 27(11), 1865-1873.
[http://dx.doi.org/10.1002/oby.22618] [PMID: 31689012]
[98]
Pereira-Fernandes, A.; Demaegdt, H.; Vandermeiren, K.; Hectors, T.L.M.; Jorens, P.G.; Blust, R.; Vanparys, C. Evaluation of a screening system for obesogenic compounds: screening of endocrine disrupting compounds and evaluation of the PPAR dependency of the effect. PLoS One, 2013, 8(10), e77481-e77481.
[http://dx.doi.org/10.1371/journal.pone.0077481] [PMID: 24155963]
[99]
Mazioti, M. The impact of endocrine disrupting chemicals on adipose tissue. Rev, Clin. Pharmacol. Pharmacokinet. Int. Ed., 2015, 29(3), 125-129.
[100]
Darbre, P.D. Endocrine disruptors and obesity. Curr. Obes. Rep., 2017, 6(1), 18-27.
[http://dx.doi.org/10.1007/s13679-017-0240-4] [PMID: 28205155]
[101]
Gore, A.C. Endocrine-disrupting chemicals. JAMA Intern. Med., 2016, 176(11), 1705-1706.
[http://dx.doi.org/10.1001/jamainternmed.2016.5766] [PMID: 27668954]
[102]
Thayer, K.A.; Heindel, J.J.; Bucher, J.R.; Gallo, M.A. Role of environmental chemicals in diabetes and obesity: a national toxicology program workshop review. Environ. Health Perspect., 2012, 120(6), 779-789.
[http://dx.doi.org/10.1289/ehp.1104597] [PMID: 22296744]
[103]
Kirchner, S.; Kieu, T.; Chow, C.; Casey, S.; Blumberg, B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol., 2010, 24(3), 526-539.
[http://dx.doi.org/10.1210/me.2009-0261] [PMID: 20160124]
[104]
Iavicoli, I.; Fontana, L.; Bergamaschi, A. The effects of metals as endocrine disruptors. J. Toxicol. Environ. Health. B, 2009, 12(3), 206-223.
[http://dx.doi.org/10.1080/10937400902902062] [PMID: 19466673]
[105]
Gore, A.C.; Martien, K.M.; Gagnidze, K.; Pfaff, D. Implications of prenatal steroid perturbations for neurodevelopment, behavior and autism. Endocr. Rev., 2014, 35(6), 961-991.
[http://dx.doi.org/10.1210/er.2013-1122] [PMID: 25211453]
[106]
Lim, Y.C.; Chia, S.Y.; Jin, S.; Han, W.; Ding, C.; Sun, L. Dynamic DNA methylation landscape defines brown and white cell specificity during adipogenesis. Mol. Metab., 2016, 5(10), 1033-1041.
[http://dx.doi.org/10.1016/j.molmet.2016.08.006] [PMID: 27689016]
[107]
Chen, Y-S.; Wu, R.; Yang, X.; Kou, S.; MacDougald, O.A.; Yu, L.; Shi, H.; Xue, B. Inhibiting DNA methylation switches adipogenesis to osteoblastogenesis by activating Wnt10a. Sci. Rep., 2016, 6, 25283.
[http://dx.doi.org/10.1038/srep25283] [PMID: 27136753]
[108]
Yoo, Y.; Park, J.H.; Weigel, C.; Liesenfeld, D.B.; Weichenhan, D.; Plass, C.; Seo, D.G.; Lindroth, A.M.; Park, Y.J. TET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiation. Int. J. Obes., 2017, 41(4), 652-659.
[http://dx.doi.org/10.1038/ijo.2017.8] [PMID: 28100914]
[109]
Kamei, Y.; Suganami, T.; Ehara, T.; Kanai, S.; Hayashi, K.; Yamamoto, Y.; Miura, S.; Ezaki, O.; Okano, M.; Ogawa, Y. Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity (Silver Spring), 2010, 18(2), 314-321.
[http://dx.doi.org/10.1038/oby.2009.246] [PMID: 19680236]
[110]
Kim, C-S.; Kwon, Y.; Choe, S-Y.; Hong, S-M.; Yoo, H.; Goto, T.; Kawada, T.; Choi, H-S.; Joe, Y.; Chung, H.T.; Yu, R. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr. Metab. (Lond.), 2015, 12(1), 33.
[http://dx.doi.org/10.1186/s12986-015-0030-5] [PMID: 26445592]
[111]
You, D.; Nilsson, E.; Tenen, D.E.; Lyubetskaya, A.; Lo, J.C.; Jiang, R.; Deng, J.; Dawes, B.A.; Vaag, A.; Ling, C.; Rosen, E.D.; Kang, S. Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife, 2017., 6e30766.
[http://dx.doi.org/10.7554/eLife.30766] [PMID: 29091029]
[112]
Christensen, D.P.; Dahllöf, M.; Lundh, M.; Rasmussen, D.N.; Nielsen, M.D.; Billestrup, N.; Grunnet, L.G.; Mandrup-Poulsen, T. Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol. Med., 2011, 17(5-6), 378-390.
[http://dx.doi.org/10.2119/molmed.2011.00021] [PMID: 21274504]
[113]
Daneshpajooh, M.; Bacos, K.; Bysani, M.; Bagge, A.; Ottosson Laakso, E.; Vikman, P.; Eliasson, L.; Mulder, H.; Ling, C. HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia, 2017, 60(1), 116-125.
[http://dx.doi.org/10.1007/s00125-016-4113-2] [PMID: 27796421]
[114]
Sharma, S.; Taliyan, R. Histone deacetylase inhibitors: future therapeutics for insulin resistance and type 2 diabetes. Pharmacol. Res., 2016, 113(Pt A), 320-326.
[http://dx.doi.org/10.1016/j.phrs.2016.09.009] [PMID: 27620069]
[115]
Fujiki, K.; Shinoda, A.; Kano, F.; Sato, R.; Shirahige, K.; Murata, M. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat. Commun., 2013, 4, 2262.
[http://dx.doi.org/10.1038/ncomms3262] [PMID: 23912449]
[116]
Bian, F.; Ma, X.; Villivalam, S.D.; You, D.; Choy, L.R.; Paladugu, A.; Fung, S.; Kang, S. TET2 facilitates PPARγ agonist-mediated gene regulation and insulin sensitization in adipocytes. Metabolism, 2018, 89, 39-47.
[http://dx.doi.org/10.1016/j.metabol.2018.08.006] [PMID: 30193945]
[117]
Rissman, E.F.; Adli, M. Minireview: transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology, 2014, 155(8), 2770-2780.
[http://dx.doi.org/10.1210/en.2014-1123] [PMID: 24885575]
[118]
Jirtle, R.L.; Skinner, M.K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet., 2007, 8(4), 253-262.
[http://dx.doi.org/10.1038/nrg2045] [PMID: 17363974]
[119]
Song, L.; Xia, W.; Zhou, Z.; Li, Y.; Lin, Y.; Wei, J.; Wei, Z.; Xu, B.; Shen, J.; Li, W.; Xu, S. Low-level phenolic estrogen pollutants impair islet morphology and β-cell function in isolated rat islets. J. Endocrinol., 2012, 215(2), 303-311.
[http://dx.doi.org/10.1530/JOE-12-0219] [PMID: 22946080]
[120]
Lin, Y.; Sun, X.; Qiu, L.; Wei, J.; Huang, Q.; Fang, C.; Ye, T.; Kang, M.; Shen, H.; Dong, S. Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis., 2013, 4(1), , e460..
[http://dx.doi.org/10.1038/cddis.2012.206] [PMID: 23328667]
[121]
Carchia, E.; Porreca, I.; Almeida, P.J.; D’Angelo, F.; Cuomo, D.; Ceccarelli, M.; De Felice, M.; Mallardo, M.; Ambrosino, C. Evaluation of low doses BPA-induced perturbation of glycemia by toxicogenomics points to a primary role of pancreatic islets and to the mechanism of toxicity. Cell Death Dis., 2015, 6(10), , e1959..
[http://dx.doi.org/10.1038/cddis.2015.319] [PMID: 26512966]
[122]
Bansal, A.; Rashid, C.; Xin, F.; Li, C.; Polyak, E.; Duemler, A.; van der Meer, T.; Stefaniak, M.; Wajid, S.; Doliba, N.; Bartolomei, M.S.; Simmons, R.A. Sex-and dose-specific effects of maternal bisphenol A exposure on pancreatic islets of first-and second-generation adult mice offspring. Environ. Health Perspect., 2017, 125(9), , 097022..
[http://dx.doi.org/10.1289/EHP1674] [PMID: 29161229]
[123]
Tsou, T.C.; Yeh, S.C.; Hsu, J.W.; Tsai, F.Y. Estrogenic chemicals at body burden levels attenuate energy metabolism in 3T3-L1 adipocytes. J. Appl. Toxicol., 2017, 37(12), 1537-1546.
[http://dx.doi.org/10.1002/jat.3508] [PMID: 28849599]
[124]
Bogacka, I.; Xie, H.; Bray, G.A.; Smith, S.R. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes, 2005, 54(5), 1392-1399.
[http://dx.doi.org/10.2337/diabetes.54.5.1392] [PMID: 15855325]
[125]
Dahlman, I.; Forsgren, M.; Sjögren, A.; Nordström, E.A.; Kaaman, M.; Näslund, E.; Attersand, A.; Arner, P. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-α. Diabetes, 2006, 55(6), 1792-1799.
[http://dx.doi.org/10.2337/db05-1421] [PMID: 16731844]
[126]
Rong, J.X.; Qiu, Y.; Hansen, M.K.; Zhu, L.; Zhang, V.; Xie, M.; Okamoto, Y.; Mattie, M.D.; Higashiyama, H.; Asano, S.; Strum, J.C.; Ryan, T.E. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes, 2007, 56(7), 1751-1760.
[http://dx.doi.org/10.2337/db06-1135] [PMID: 17456854]
[127]
Rahman, M.L.; Zhang, C.; Smarr, M.M.; Lee, S.; Honda, M.; Kannan, K.; Tekola-Ayele, F.; Buck Louis, G.M. Persistent organic pollutants and gestational diabetes: A multi-center prospective cohort study of healthy US women. Environ. Int., 2019, 124, 249-258.
[http://dx.doi.org/10.1016/j.envint.2019.01.027] [PMID: 30660025]
[128]
Kim, Y.A.; Park, J.B.; Woo, M.S.; Lee, S.Y.; Kim, H.Y.; Yoo, Y.H. Persistent organic pollutant-mediated insulin resistance. Int. J. Environ. Res. Public Health, 2019, 16(3), 448.
[http://dx.doi.org/10.3390/ijerph16030448] [PMID: 30717446]
[129]
West, A.P. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology, 2017, 391, 54-63.
[http://dx.doi.org/10.1016/j.tox.2017.07.016] [PMID: 28765055]
[130]
Meyer, J.N.; Hartman, J.H.; Mello, D.F. Mitochondrial Toxicity. Toxicol. Sci., 2018, 162(1), 15-23.
[http://dx.doi.org/10.1093/toxsci/kfy008] [PMID: 29340618]
[131]
Skolarczyk, J.; Pekar, J.; Skórzyńska-Dziduszko, K.; Łabądź, D. Role of heavy metals in the development of obesity: A review of research. J. Elem., 2018, 23(4), 1271-1280.
[http://dx.doi.org/10.5601/jelem.2018.23.1.1545]
[132]
Sato, S.; Shirakawa, H.; Tomita, S.; Tohkin, M.; Gonzalez, F.J.; Komai, M. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A. Toxicol. Appl. Pharmacol., 2013, 273(1), 90-99.
[http://dx.doi.org/10.1016/j.taap.2013.08.017] [PMID: 23994556]
[133]
Lindeque, J.Z.; Levanets, O.; Louw, R.; van der Westhuizen, F.H. The involvement of metallothioneins in mitochondrial function and disease. Curr. Protein Pept. Sci., 2010, 11(4), 292-309.
[http://dx.doi.org/10.2174/138920310791233378] [PMID: 20408794]
[134]
Haynes, V.; Connor, T.; Tchernof, A.; Vidal, H.; Dubois, S. Metallothionein 2a gene expression is increased in subcutaneous adipose tissue of type 2 diabetic patients. Mol. Genet. Metab., 2013, 108(1), 90-94.
[http://dx.doi.org/10.1016/j.ymgme.2012.10.012] [PMID: 23148893]
[135]
Hussain, S.; Slikker, W., Jr; Ali, S.F. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem. Int., 1996, 29(2), 145-152.
[http://dx.doi.org/10.1016/0197-0186(95)00114-X] [PMID: 8837043]
[136]
Fliss, H.; Ménard, M. Oxidant-induced mobilization of zinc from metallothionein. Arch. Biochem. Biophys., 1992, 293(1), 195-199.
[http://dx.doi.org/10.1016/0003-9861(92)90384-9] [PMID: 1309984]
[137]
Reinecke, F.; Levanets, O.; Olivier, Y.; Louw, R.; Semete, B.; Grobler, A.; Hidalgo, J.; Smeitink, J.; Olckers, A.; Van der Westhuizen, F.H. Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem. J., 2006, 395(2), 405-415.
[http://dx.doi.org/10.1042/BJ20051253] [PMID: 16402917]
[138]
Zhou, Z.; Kang, Y.J. Immunocytochemical localization of metallothionein and its relation to doxorubicin toxicity in transgenic mouse heart. Am. J. Pathol., 2000, 156(5), 1653-1662.
[http://dx.doi.org/10.1016/S0002-9440(10)65036-5] [PMID: 10793076]
[139]
Wang, B.; Wood, I.S.; Trayhurn, P. PCR arrays identify metallothionein-3 as a highly hypoxia-inducible gene in human adipocytes. Biochem. Biophys. Res. Commun., 2008, 368(1), 88-93.
[http://dx.doi.org/10.1016/j.bbrc.2008.01.036] [PMID: 18206644]
[140]
Jones, D.S.; Quinn, S. Textbook of functional medicine; Institute for Functional Medicine: Washington, 2010.
[141]
Roden, M.; Shulman, G.I. The integrative biology of type 2 diabetes. Nature, 2019, 576(7785), 51-60.
[http://dx.doi.org/10.1038/s41586-019-1797-8] [PMID: 31802013]
[142]
Goodpaster, B.H.; Sparks, L.M. Metabolic flexibility in health and disease. Cell Metab., 2017, 25(5), 1027-1036.
[http://dx.doi.org/10.1016/j.cmet.2017.04.015] [PMID: 28467922]
[143]
Gonzalez, J.T.; Richardson, J.D.; Chowdhury, E.A.; Koumanov, F.; Holman, G.D.; Cooper, S.; Thompson, D.; Tsintzas, K.; Betts, J.A. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults. J. Physiol., 2018, 596(4), 609-622.
[http://dx.doi.org/10.1113/JP275113] [PMID: 29193093]
[144]
Wilkinson, M.J.; Manoogian, E.N.C.; Zadourian, A.; Lo, H.; Fakhouri, S.; Shoghi, A.; Wang, X.; Fleischer, J.G.; Navlakha, S.; Panda, S.; Taub, P.R. Ten-hour time-restricted eating reduces weight, blood pressure and atherogenic lipids in patients with metabolic syndrome. Cell Metab., 2020, 31(1), 92-104.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.11.004] [PMID: 31813824]
[145]
Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent fasting and time-restricted feeding compared to continuous energy restriction for weight loss. Nutrients, 2019, 11(10), 2442.
[http://dx.doi.org/10.3390/nu11102442] [PMID: 31614992]
[146]
Ravussin, E.; Beyl, R.A.; Poggiogalle, E.; Hsia, D.S.; Peterson, C.M. Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity (Silver Spring), 2019, 27(8), 1244-1254.
[http://dx.doi.org/10.1002/oby.22518] [PMID: 31339000]
[147]
Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging and autophagy in humans. Nutrients, 2019, 11(6), , E1234..
[http://dx.doi.org/10.3390/nu11061234] [PMID: 31151228]
[148]
Hutchison, A.T.; Regmi, P.; Manoogian, E.N.C.; Fleischer, J.G.; Wittert, G.A.; Panda, S.; Heilbronn, L.K. Time-restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity (Silver Spring), 2019, 27(5), 724-732.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[149]
Chaix, A.; Manoogian, E.N.C.; Melkani, G.C.; Panda, S. Time-restricted eating to prevent and manage chronic metabolic diseases. Annu. Rev. Nutr., 2019, 39, 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320] [PMID: 31180809]
[150]
Li, G.; Xie, C.; Lu, S.; Nichols, R.G.; Tian, Y.; Li, L.; Patel, D.; Ma, Y.; Brocker, C.N.; Yan, T.; Krausz, K.W.; Xiang, R.; Gavrilova, O.; Patterson, A.D.; Gonzalez, F.J. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab., 2017, 26(4), 672-685.e4.
[http://dx.doi.org/10.1016/j.cmet.2017.08.019] [PMID: 28918936]
[151]
Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; Zhou, Y.; Piccio, L. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab., 2018, 27(6), 1222-1235.e6.
[http://dx.doi.org/10.1016/j.cmet.2018.05.006] [PMID: 29874567]
[152]
Unwin, D.J.; Tobin, S.D.; Murray, S.W.; Delon, C.; Brady, A.J. Substantial and sustained improvements in blood pressure, weight and lipid profiles from a carbohydrate restricted diet: an observational study of insulin resistant patients in primary care. Int. J. Environ. Res. Public Health, 2019, 16(15), 2680.
[http://dx.doi.org/10.3390/ijerph16152680] [PMID: 31357547]
[153]
Turton, J.; Brinkworth, G.D.; Field, R.; Parker, H.; Rooney, K. An evidence-based approach to developing low-carbohydrate diets for type 2 diabetes management: A systematic review of interventions and methods. Diabetes Obes. Metab., 2019, 21(11), 2513-2525.
[http://dx.doi.org/10.1111/dom.13837] [PMID: 31347236]
[154]
Liu, Y-S.; Wu, Q-J.; Xia, Y.; Zhang, J-Y.; Jiang, Y-T.; Chang, Q.; Zhao, Y-H. Carbohydrate intake and risk of metabolic syndrome: A dose-response meta-analysis of observational studies. Nutr. Metab. Cardiovasc. Dis., 2019, 29(12), 1288-1298.
[http://dx.doi.org/10.1016/j.numecd.2019.09.003] [PMID: 31653521]
[155]
Jacobi, N.; Rodin, H.; Erdosi, G.A.K. Long-term effects of very low-carbohydrate diet with intermittent fasting on metabolic profile in a social media-based support group, Integr; Food Nutr. Metab, 2019, p. 6.
[http://dx.doi.org/10.15761/IFNM.1000260]
[156]
Hyde, P.N.; Sapper, T.N.; Crabtree, C.D.; LaFountain, R.A.; Bowling, M.L.; Buga, A.; Fell, B.; McSwiney, F.T.; Dickerson, R.M.; Miller, V.J.; Scandling, D.; Simonetti, O.P.; Phinney, S.D.; Kraemer, W.J.; King, S.A.; Krauss, R.M.; Volek, J.S. Dietary carbohydrate restriction improves metabolic syndrome independent of weight loss. JCI Insight, 2019, 4(12), , 128308..
[http://dx.doi.org/10.1172/jci.insight.128308] [PMID: 31217353]
[157]
Gyorkos, A.; Baker, M.H.; Miutz, L.N.; Lown, D.A.; Jones, M.A.; Houghton-Rahrig, L.D. Carbohydrate-restricted diet and exercise increase brain-derived neurotrophic factor and cognitive function: a randomized crossover trial. Cureus, 2019, 11(9), , e5604..
[http://dx.doi.org/10.7759/cureus.5604] [PMID: 31700717]
[158]
Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B.; Cipryan, L. Effects of a 12-week very-low carbohydrate high-fat diet on maximal aerobic capacity, high-intensity intermittent exercise and cardiac autonomic regulation: non-randomized parallel-group study. Front. Physiol., 2019, 10, 912.
[http://dx.doi.org/10.3389/fphys.2019.00912] [PMID: 31379612]
[159]
Kroemer, G.; López-Otín, C.; Madeo, F.; de Cabo, R. Carbotoxicity-noxious effects of carbohydrates. Cell, 2018, 175(3), 605-614.
[http://dx.doi.org/10.1016/j.cell.2018.07.044] [PMID: 30340032]
[160]
Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; Donini, L.M.; Basciani, S.; Cignarelli, A.; Conte, E.; Ceccarini, G.; Bogazzi, F.; Cimino, L.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E.; Gambineri, A.; Vignozzi, L.; Prodam, F.; Aimaretti, G.; Linsalata, G.; Buralli, S.; Monzani, F.; Aversa, A.; Vettor, R.; Santini, F.; Vitti, P.; Gnessi, L.; Pagotto, U.; Giorgino, F.; Colao, A.; Lenzi, A. Cardiovascular Endocrinology Club of the Italian Society of Endocrinology. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Invest., 2019, 42(11), 1365-1386.
[http://dx.doi.org/10.1007/s40618-019-01061-2] [PMID: 31111407]
[161]
Senyilmaz-Tiebe, D.; Pfaff, D.H.; Virtue, S.; Schwarz, K.V.; Fleming, T.; Altamura, S.; Muckenthaler, M.U.; Okun, J.G.; Vidal-Puig, A.; Nawroth, P.; Teleman, A.A. Dietary stearic acid regulates mitochondria in vivo in humans. Nat. Commun., 2018, 9(1), 3129.
[http://dx.doi.org/10.1038/s41467-018-05614-6] [PMID: 30087348]
[162]
Lepretti, M.; Martucciello, S.; Burgos Aceves, M.A.; Putti, R.; Lionetti, L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients, 2018, 10(3), 350.
[http://dx.doi.org/10.3390/nu10030350] [PMID: 29538286]
[163]
Wesselink, E.; Koekkoek, W.A.C.; Grefte, S.; Witkamp, R.F.; van Zanten, A.R.H. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin. Nutr., 2019, 38(3), 982-995.
[http://dx.doi.org/10.1016/j.clnu.2018.08.032] [PMID: 30201141]
[164]
Voloboueva, L.A.; Liu, J.; Suh, J.H.; Ames, B.N.; Miller, S.S. (R)-α-lipoic acid protects retinal pigment epithelial cells from oxidative damage. Invest. Ophthalmol. Vis. Sci., 2005, 46(11), 4302-4310.
[http://dx.doi.org/10.1167/iovs.04-1098] [PMID: 16249512]
[165]
Shen, W.; Liu, K.; Tian, C.; Yang, L.; Li, X.; Ren, J.; Packer, L.; Cotman, C.W.; Liu, J. R-α-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia, 2008, 51(1), 165-174.
[http://dx.doi.org/10.1007/s00125-007-0852-4] [PMID: 18026715]
[166]
Ito, T.; Yoshikawa, N.; Ito, H.; Schaffer, S.W. Impact of taurine depletion on glucose control and insulin secretion in mice. J. Pharmacol. Sci., 2015, 129(1), 59-64.
[http://dx.doi.org/10.1016/j.jphs.2015.08.007] [PMID: 26382103]
[167]
Schaffer, S.; Kim, H.W. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. (Seoul), 2018, 26(3), 225-241.
[http://dx.doi.org/10.4062/biomolther.2017.251] [PMID: 29631391]
[168]
Palikaras, K.; Daskalaki, I.; Markaki, M.; Tavernarakis, N. Mitophagy and age-related pathologies: Development of new therapeutics by targeting mitochondrial turnover. Pharmacol. Ther., 2017, 178, 157-174.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.005] [PMID: 28461251]
[169]
Kobori, M.; Takahashi, Y.; Sakurai, M.; Akimoto, Y.; Tsushida, T.; Oike, H.; Ippoushi, K. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice. Mol. Nutr. Food Res., 2016, 60(2), 300-312.
[http://dx.doi.org/10.1002/mnfr.201500595] [PMID: 26499876]
[170]
Nichols, M.; Zhang, J.; Polster, B.M.; Elustondo, P.A.; Thirumaran, A.; Pavlov, E.V.; Robertson, G.S. Synergistic neuroprotection by epicatechin and quercetin: Activation of convergent mitochondrial signaling pathways. Neuroscience, 2015, 308, 75-94.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.012] [PMID: 26363153]
[171]
Ramírez-Sánchez, I.; Rodríguez, A.; Moreno-Ulloa, A.; Ceballos, G.; Villarreal, F. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase. Diab. Vasc. Dis. Res., 2016, 13(3), 201-210.
[http://dx.doi.org/10.1177/1479164115620982] [PMID: 26993496]
[172]
Keller, A.C.; Hull, S.E.; Knaub, L.; Johnston, A.; Reusch, J.E. Epicatechin modulates vasoreactivity and mitochondrial function in endothelium. Diabetes, 2018, 67(Suppl 1)
[http://dx.doi.org/10.2337/db18-1494-P]
[173]
Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr., 2017, 57(8), 1729-1741.
[http://dx.doi.org/10.1080/10408398.2015.1030064] [PMID: 26192537]
[174]
Liu, J.; Gao, F.; Ji, B.; Wang, R.; Yang, J.; Liu, H.; Zhou, F. Anthocyanins-rich extract of wild Chinese blueberry protects glucolipotoxicity-induced INS832/13 β-cell against dysfunction and death. J. Food Sci. Technol., 2015, 52(5), 3022-3029.
[http://dx.doi.org/10.1007/s13197-014-1379-6] [PMID: 25892804]
[175]
Pizzorno, J. Mitochondria-Fundamental to Life and Health. Integr. Med. (Encinitas), 2014, 13(2), 8-15.
[PMID: 26770084]
[176]
Tisdale, M.J. Zinc-α2-glycoprotein in cachexia and obesity. Curr. Opin. Support. Palliat. Care, 2009, 3(4), 288-293.
[http://dx.doi.org/10.1097/SPC.0b013e328331c897] [PMID: 19823091]
[177]
Bing, C.; Bao, Y.; Jenkins, J.; Sanders, P.; Manieri, M.; Cinti, S.; Tisdale, M.J.; Trayhurn, P. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc. Natl. Acad. Sci. USA, 2004, 101(8), 2500-2505.
[http://dx.doi.org/10.1073/pnas.0308647100] [PMID: 14983038]
[178]
Russell, S.T.; Tisdale, M.J. Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 72(6), 409-414.
[http://dx.doi.org/10.1016/j.plefa.2005.03.002] [PMID: 15899583]
[179]
Russell, S.T.; Tisdale, M.J. The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia. Br. J. Cancer, 2005, 92(5), 876-881.
[http://dx.doi.org/10.1038/sj.bjc.6602404] [PMID: 15714206]
[180]
Cabassi, A.; Tedeschi, S. Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(3), 267-271.
[http://dx.doi.org/10.1097/MCO.0b013e32835f816c] [PMID: 23448999]
[181]
Emilsson, V.; Summers, R.J.; Hamilton, S.; Liu, Y-L.; Cawthorne, M.A. The effects of the β3-adrenoceptor agonist BRL 35135 on UCP isoform mRNA expression. Biochem. Biophys. Res. Commun., 1998, 252(2), 450-454.
[http://dx.doi.org/10.1006/bbrc.1998.9667] [PMID: 9826550]
[182]
Gómez-Ambrosi, J.; Frühbeck, G.; Martínez, J.A. Interactions between an α2-adrenergic antagonist and a β3-adrenergic agonist on the expression of UCP2 and UCP3 in rats. J. Physiol. Biochem., 2002, 58(1), 17-23.
[http://dx.doi.org/10.1007/BF03179834] [PMID: 12222743]
[183]
Schrauwen, P.; Walder, K.; Ravussin, E. Human uncoupling proteins and obesity. Obes. Res., 1999, 7(1), 97-105.
[http://dx.doi.org/10.1002/j.1550-8528.1999.tb00396.x] [PMID: 10023736]
[184]
Berraondo, B.; Bonafonte, A.; Fernández-Otero, M.P.; Martinez, J.A. Effects on energy utilization of a beta3-adrenergic agonist in rats fed on a cafeteria diet. Eat. Weight Disord., 1997, 2(3), 130-137.
[http://dx.doi.org/10.1007/BF03339963] [PMID: 14655836]
[185]
Maguire, D.; Neytchev, O.; Talwar, D.; McMillan, D.; Shiels, P.G. Telomere homeostasis: interplay with magnesium. Int. J. Mol. Sci., 2018, 19(1), 157.
[http://dx.doi.org/10.3390/ijms19010157] [PMID: 29303978]
[186]
Wang, P.; Wang, Z-Y. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res. Rev., 2017, 35, 265-290.
[http://dx.doi.org/10.1016/j.arr.2016.10.003] [PMID: 27829171]
[187]
Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J., 2012, 5(Suppl. 1), i3-i14.
[http://dx.doi.org/10.1093/ndtplus/sfr163] [PMID: 26069819]
[188]
Yamanaka, R.; Tabata, S.; Shindo, Y.; Hotta, K.; Suzuki, K.; Soga, T.; Oka, K. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Sci. Rep., 2016, 6, 30027.
[http://dx.doi.org/10.1038/srep30027] [PMID: 27458051]
[189]
Bertinato, J.; Wang, K.C.; Hayward, S. Serum magnesium concentrations in the Canadian population and associations with diabetes, glycemic regulation and insulin resistance. Nutrients, 2017, 9(3), 296.
[http://dx.doi.org/10.3390/nu9030296] [PMID: 28304338]
[190]
Mikalsen, S.M.; Bjørke-Monsen, A-L.; Whist, J.E.; Aaseth, J. Improved Magnesium Levels in Morbidly Obese Diabetic and Non-diabetic Patients After Modest Weight Loss. Biol. Trace Elem. Res., 2019, 188(1), 45-51.
[http://dx.doi.org/10.1007/s12011-018-1349-3] [PMID: 29705834]
[191]
Larsson, S.C.; Wolk, A. Magnesium intake and risk of type 2 diabetes: a meta-analysis. J. Intern. Med., 2007, 262(2), 208-214.
[http://dx.doi.org/10.1111/j.1365-2796.2007.01840.x] [PMID: 17645588]
[192]
Dong, J-Y.; Xun, P.; He, K.; Qin, L-Q. Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies. Diabetes Care, 2011, 34(9), 2116-2122.
[http://dx.doi.org/10.2337/dc11-0518] [PMID: 21868780]
[193]
Yeo, J.E.; Kang, S.K. Selenium effectively inhibits ROS-mediated apoptotic neural precursor cell death in vitro and in vivo in traumatic brain injury. Biochim. Biophys. Acta, 2007, 1772(11-12), 1199-1210.
[http://dx.doi.org/10.1016/j.bbadis.2007.09.004] [PMID: 17997286]
[194]
Stranges, S.; Marshall, J.R.; Natarajan, R.; Donahue, R.P.; Trevisan, M.; Combs, G.F.; Cappuccio, F.P.; Ceriello, A.; Reid, M.E. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann. Intern. Med., 2007, 147(4), 217-223.
[http://dx.doi.org/10.7326/0003-4819-147-4-200708210-00175] [PMID: 17620655]
[195]
Brigelius-Flohé, R.; Friedrichs, B.; Maurer, S.; Schultz, M.; Streicher, R. Interleukin-1-induced nuclear factor κ B activation is inhibited by overexpression of phospholipid hydroperoxide glutathione peroxidase in a human endothelial cell line. Biochem. J., 1997, 328(Pt 1), 199-203.
[http://dx.doi.org/10.1042/bj3280199] [PMID: 9359853]
[196]
Kelly, E.; Greene, C.M.; Carroll, T.P.; McElvaney, N.G.; O’Neill, S.J. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant α1-antitrypsin deficiency. J. Biol. Chem., 2009, 284(25), 16891-16897.
[http://dx.doi.org/10.1074/jbc.M109.006288] [PMID: 19398551]
[197]
Stranges, S.; Rayman, M.P.; Winther, K.H.; Guallar, E.; Cold, S.; Pastor-Barriuso, R. Effect of selenium supplementation on changes in HbA1c: Results from a multiple-dose, randomized controlled trial. Diabetes Obes. Metab., 2019, 21(3), 541-549.
[http://dx.doi.org/10.1111/dom.13549] [PMID: 30280459]
[198]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[199]
Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.; Auwerx, J.; Schrauwen, P. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab., 2011, 14(5), 612-622.
[http://dx.doi.org/10.1016/j.cmet.2011.10.002] [PMID: 22055504]
[200]
Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients, 2010, 2(3), 355-374.
[http://dx.doi.org/10.3390/nu2030355] [PMID: 22254027]
[201]
DiNicolantonio, J.J.; O’Keefe, J.H. Importance of maintaining a low omega-6/omega-3 ratio for reducing inflammation. Open Heart, 2018, 5(2), , e000946..
[http://dx.doi.org/10.1136/openhrt-2018-000946] [PMID: 30564378]
[202]
Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother., 2002, 56(8), 365-379.
[http://dx.doi.org/10.1016/S0753-3322(02)00253-6] [PMID: 12442909]
[203]
Simopoulos, A.P. Omega-6/omega-3 essential fatty acid ratio and chronic diseases. Food Rev. Int., 2004, 20(1), 77-90.
[http://dx.doi.org/10.1081/FRI-120028831]
[204]
Ameur, A.; Enroth, S.; Johansson, A.; Zaboli, G.; Igl, W.; Johansson, A.C.; Rivas, M.A.; Daly, M.J.; Schmitz, G.; Hicks, A.A.; Meitinger, T.; Feuk, L.; van Duijn, C.; Oostra, B.; Pramstaller, P.P.; Rudan, I.; Wright, A.F.; Wilson, J.F.; Campbell, H.; Gyllensten, U. Genetic adaptation of fatty-acid metabolism: a human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet., 2012, 90(5), 809-820.
[http://dx.doi.org/10.1016/j.ajhg.2012.03.014] [PMID: 22503634]
[205]
Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables and food legumes: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1260-1270.
[http://dx.doi.org/10.1080/10408398.2016.1251390] [PMID: 28605204]
[206]
Yang, H.; Jia, X.; Chen, X.; Yang, C.S.; Li, N. Time-selective chemoprevention of vitamin E and selenium on esophageal carcinogenesis in rats: the possible role of nuclear factor kappaB signaling pathway. Int. J. Cancer, 2012, 131(7), 1517-1527.
[http://dx.doi.org/10.1002/ijc.27423] [PMID: 22223226]
[207]
Tian, L.P.; Zhang, S.; Xu, L.; Li, W.; Wang, Y.; Chen, S.D.; Ding, J.Q. Selenite benefits embryonic stem cells therapy in Parkinson’s disease. Curr. Mol. Med., 2012, 12(8), 1005-1014.
[http://dx.doi.org/10.2174/156652412802480880] [PMID: 22804247]
[208]
Moon, P-D.; Kim, H-M. The suppression of thymic stromal lymphopoietin expression by selenium. Amino Acids, 2012, 43(2), 999-1004.
[http://dx.doi.org/10.1007/s00726-011-1156-z] [PMID: 22086213]
[209]
Panicker, S.; Swathy, S.S.; John, F.; Madambath, I. Impact of selenium on NFκB translocation in isoproterenol-induced myocardial infarction in rats. Biol. Trace Elem. Res., 2010, 138(1-3), 202-211.
[http://dx.doi.org/10.1007/s12011-009-8597-1] [PMID: 20107922]
[210]
Faure, P.; Ramon, O.; Favier, A.; Halimi, S. Selenium supplementation decreases nuclear factor-kappa B activity in peripheral blood mononuclear cells from type 2 diabetic patients. Eur. J. Clin. Invest., 2004, 34(7), 475-481.
[http://dx.doi.org/10.1111/j.1365-2362.2004.01362.x] [PMID: 15255784]
[211]
Tsiloulis, T.; Watt, M.J. Chapter eight - exercise and the regulation of adipose tissue metabolism. In Progress in Molecular Biology and Translational Science; Bouchard, C., Ed.; Academic Press, Massachusetts, 2015, 135, pp. 175-201.
[http://dx.doi.org/10.1016/bs.pmbts.2015.06.016]
[212]
Mika, A.; Macaluso, F.; Barone, R.; Di Felice, V.; Sledzinski, T. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. Front. Physiol., 2019, 10(26), 26.
[http://dx.doi.org/10.3389/fphys.2019.00026] [PMID: 30745881]
[213]
Thompson, D.; Karpe, F.; Lafontan, M.; Frayn, K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol. Rev., 2012, 92(1), 157-191.
[http://dx.doi.org/10.1152/physrev.00012.2011] [PMID: 22298655]
[214]
Stanford, K.I.; Goodyear, L.J. Exercise regulation of adipose tissue. Adipocyte, 2016, 5(2), 153-162.
[http://dx.doi.org/10.1080/21623945.2016.1191307] [PMID: 27386159]
[215]
Lehnig, A.C.; Dewal, R.S.; Baer, L.A.; Kitching, K.M.; Munoz, V.R.; Arts, P.J.; Sindeldecker, D.A.; May, F.J.; Lauritzen, H.P.M.M.; Goodyear, L.J.; Stanford, K.I. Exercise training induces depot-specific adaptations to white and brown adipose tissue. iScience, 2019, 11, 425-439.
[http://dx.doi.org/10.1016/j.isci.2018.12.033] [PMID: 30661000]
[216]
Giolo De Carvalho, F.; Sparks, L.M. Targeting white adipose tissue with exercise or bariatric surgery as therapeutic strategies in obesity. Biology (Basel), 2019, 8(1), 16.
[http://dx.doi.org/10.3390/biology8010016] [PMID: 30875990]
[217]
Cedernaes, J.; Schönke, M.; Westholm, J.O.; Mi, J.; Chibalin, A.; Voisin, S.; Osler, M.; Vogel, H.; Hörnaeus, K.; Dickson, S.L.; Lind, S.B.; Bergquist, J.; Schiöth, H.B.; Zierath, J.R.; Benedict, C. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci. Adv., 2018, 4(8), , eaar8590..
[http://dx.doi.org/10.1126/sciadv.aar8590] [PMID: 30140739]
[218]
Al Khatib, H.K.; Harding, S.V.; Darzi, J.; Pot, G.K. The effects of partial sleep deprivation on energy balance: a systematic review and meta-analysis. Eur. J. Clin. Nutr., 2017, 71(5), 614-624.
[http://dx.doi.org/10.1038/ejcn.2016.201] [PMID: 27804960]
[219]
Mullins, E.N.; Miller, A.L.; Cherian, S.S.; Lumeng, J.C.; Wright, K.P., Jr; Kurth, S.; Lebourgeois, M.K. Acute sleep restriction increases dietary intake in preschool-age children. J. Sleep Res., 2017, 26(1), 48-54.
[http://dx.doi.org/10.1111/jsr.12450] [PMID: 27641365]
[220]
Wilms, B.; Leineweber, E.M.; Mölle, M.; Chamorro, R.; Pommerenke, C.; Salinas-Riester, G.; Sina, C.; Lehnert, H.; Oster, H.; Schmid, S.M. Sleep loss disrupts morning-to-evening differences in human white adipose tissue transcriptome. J. Clin. Endocrinol. Metab., 2019, 104(5), 1687-1696.
[http://dx.doi.org/10.1210/jc.2018-01663] [PMID: 30535338]
[221]
Christou, S.; Wehrens, S.M.T.; Isherwood, C.; Möller-Levet, C.S.; Wu, H.; Revell, V.L.; Bucca, G.; Skene, D.J.; Laing, E.E.; Archer, S.N.; Johnston, J.D. Circadian regulation in human white adipose tissue revealed by transcriptome and metabolic network analysis. Sci. Rep., 2019, 9(1), 2641.
[http://dx.doi.org/10.1038/s41598-019-39668-3] [PMID: 30804433]
[222]
Pagano, E.S.; Spinedi, E.; Gagliardino, J.J. White adipose tissue and circadian rhythm dysfunctions in obesity: pathogenesis and available therapies. Neuroendocrinology, 2017, 104(4), 347-363.
[http://dx.doi.org/10.1159/000453317] [PMID: 27846625]
[223]
Broussard, J.; Brady, M.J. The impact of sleep disturbances on adipocyte function and lipid metabolism. Best Pract. Res. Clin. Endocrinol. Metab., 2010, 24(5), 763-773.
[http://dx.doi.org/10.1016/j.beem.2010.08.007] [PMID: 21112024]
[224]
Froy, O.; Garaulet, M. The circadian clock in white and brown adipose tissue: mechanistic, endocrine and clinical aspects. Endocr. Rev., 2018, 39(3), 261-273.
[http://dx.doi.org/10.1210/er.2017-00193] [PMID: 29490014]
[225]
Adlanmerini, M.; Carpenter, B.J.; Remsberg, J.R.; Aubert, Y.; Peed, L.C.; Richter, H.J.; Lazar, M.A. Circadian lipid synthesis in brown fat maintains murine body temperature during chronic cold. Proc. Natl. Acad. Sci. USA, 2019, 116(37), 18691-18699.
[http://dx.doi.org/10.1073/pnas.1909883116] [PMID: 31451658]
[226]
Ryan, S.; Arnaud, C.; Fitzpatrick, S.F.; Gaucher, J.; Tamisier, R.; Pépin, J-L. Adipose tissue as a key player in obstructive sleep apnoea. Eur. Respir. Rev., 2019, 28(152), , 190006..
[http://dx.doi.org/10.1183/16000617.0006-2019] [PMID: 31243096]
[227]
Lekkas, D.; Paschos, G.K. The circadian clock control of adipose tissue physiology and metabolism. Auton. Neurosci., 2019, 219, 66-70.
[http://dx.doi.org/10.1016/j.autneu.2019.05.001] [PMID: 31122604]
[228]
Xenaki, N.; Bacopoulou, F.; Kokkinos, A.; Nicolaides, N.C.; Chrousos, G.P.; Darviri, C. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: a randomized controlled trial. J. Mol. Biochem., 2018, 7(2), 78-84.
[PMID: 30568922]
[229]
Rabasa, C.; Dickson, S.L. Impact of stress on metabolism and energy balance. Curr. Opin. Behav. Sci., 2016, 9, 71-77.
[http://dx.doi.org/10.1016/j.cobeha.2016.01.011]
[230]
Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: implications for health and disease. Hormones (Athens), 2018, 17(1), 33-43.
[http://dx.doi.org/10.1007/s42000-018-0023-7] [PMID: 29858868]
[231]
Koski, M.; Naukkarinen, H. The Relationship between stress and severe obesity: a case-control study. Biomed. Hub, 2017, 2(1), 1-13.
[http://dx.doi.org/10.1159/000458771] [PMID: 31988895]
[232]
Epel, E.S.; McEwen, B.; Seeman, T.; Matthews, K.; Castellazzo, G.; Brownell, K.D.; Bell, J.; Ickovics, J.R. Stress and body shape: stress-induced cortisol secretion is consistently greater among women with central fat. Psychosom. Med., 2000, 62(5), 623-632.
[http://dx.doi.org/10.1097/00006842-200009000-00005] [PMID: 11020091]
[233]
Drapeau, V.; Therrien, F.; Richard, D.; Tremblay, A. Is visceral obesity a physiological adaptation to stress? Panminerva Med., 2003, 45(3), 189-195.
[PMID: 14618117]
[234]
Freitas, F.V.; Barbosa, W.M.; Silva, L.A.A.; Garozi, M.J.O.; Pinheiro, J.A.; Borçoi, A.R.; Conti, C.L.; Arpini, J.K.; de Paula, H.; de Oliveira, M.M.; Archanjo, A.B.; de Freitas, É.A.S.; de Oliveira, D.R.; Borloti, E.B.; Louro, I.D.; Alvares-da-Silva, A.M. Psychosocial stress and central adiposity: A Brazilian study with a representative sample of the public health system users. PLoS One, 2018, 13(7), , e0197699..
[http://dx.doi.org/10.1371/journal.pone.0197699] [PMID: 30063700]
[235]
Daubenmier, J.; Kristeller, J.; Hecht, F.M.; Maninger, N.; Kuwata, M.; Jhaveri, K.; Lustig, R.H.; Kemeny, M.; Karan, L.; Epel, E. Mindfulness intervention for stress eating to reduce cortisol and abdominal fat among overweight and obese women: an exploratory randomized controlled study. J. Obes., 2011, 2011, , 651936..
[http://dx.doi.org/10.1155/2011/651936] [PMID: 21977314]
[236]
La Merrill, M.; Emond, C.; Kim, M.J.; Antignac, J-P.; Le Bizec, B.; Clément, K.; Birnbaum, L.S.; Barouki, R. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ. Health Perspect., 2013, 121(2), 162-169.
[http://dx.doi.org/10.1289/ehp.1205485] [PMID: 23221922]
[237]
Latini, G.; Gallo, F.; Iughetti, L. Toxic environment and obesity pandemia: is there a relationship? Ital. J. Pediatr., 2010, 36, 8.
[http://dx.doi.org/10.1186/1824-7288-36-8] [PMID: 20205780]
[238]
van Marken Lichtenbelt, W.D.; Hanssen, M.J.W.; Hoeks, J.; van der Lans, A.A.J.J.; Brans, B.; Mottaghy, F.M.; Schrauwen, P. Cold acclimation and health: effect on brown fat, energetics and insulin sensitivity. Extrem. Physiol. Med., 2015, 4(1), A45.
[http://dx.doi.org/10.1186/2046-7648-4-S1-A45]
[239]
Blondin, D.P.; Tingelstad, H.C.; Noll, C.; Frisch, F.; Phoenix, S.; Guérin, B.; Turcotte, É.E.; Richard, D.; Haman, F.; Carpentier, A.C. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat. Commun., 2017, 8(1), 14146.
[http://dx.doi.org/10.1038/ncomms14146] [PMID: 28134339]
[240]
Blondin, D.P.; Labbé, S.M.; Tingelstad, H.C.; Noll, C.; Kunach, M.; Phoenix, S.; Guérin, B.; Turcotte, E.E.; Carpentier, A.C.; Richard, D.; Haman, F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab., 2014, 99(3), E438-E446.
[http://dx.doi.org/10.1210/jc.2013-3901] [PMID: 24423363]
[241]
Vosselman, M.J.; Vijgen, G.H.E.J.; Kingma, B.R.M.; Brans, B.; van Marken Lichtenbelt, W.D. Frequent extreme cold exposure and brown fat and cold-induced thermogenesis: a study in a monozygotic twin. PLoS One, 2014, 9(7), , e101653..
[http://dx.doi.org/10.1371/journal.pone.0101653] [PMID: 25014028]
[242]
van der Lans, A.A.J.J.; Hoeks, J.; Brans, B.; Vijgen, G.H.E.J.; Visser, M.G.W.; Vosselman, M.J.; Hansen, J.; Jörgensen, J.A.; Wu, J.; Mottaghy, F.M.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest., 2013, 123(8), 3395-3403.
[http://dx.doi.org/10.1172/JCI68993] [PMID: 23867626]
[243]
Hanssen, M.J.W.; van der Lans, A.A.J.J.; Brans, B.; Hoeks, J.; Jardon, K.M.C.; Schaart, G.; Mottaghy, F.M.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans. Diabetes, 2016, 65(5), 1179-1189.
[http://dx.doi.org/10.2337/db15-1372] [PMID: 26718499]
[244]
Gordon, K.; Blondin, D.P.; Friesen, B.J.; Tingelstad, H.C.; Kenny, G.P.; Haman, F. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J. Appl. Physiol., 2019, 126(6), 1598-1606.
[http://dx.doi.org/10.1152/japplphysiol.01133.2018] [PMID: 30896355]
[245]
Blondin, D.P.; Daoud, A.; Taylor, T.; Tingelstad, H.C.; Bézaire, V.; Richard, D.; Carpentier, A.C.; Taylor, A.W.; Harper, M-E.; Aguer, C.; Haman, F. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J. Physiol., 2017, 595(6), 2099-2113.
[http://dx.doi.org/10.1113/JP273395] [PMID: 28025824]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy