Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Mesoporous Silica Nanoparticles of Hydroxyurea: Potentially Active Therapeutic Agents

Author(s): Kumar Nishchaya*, Swatantra K.S. Kushwaha and Awani K. Rai

Volume 11, Issue 2, 2021

Published on: 29 April, 2020

Page: [211 - 223] Pages: 13

DOI: 10.2174/2210681210999200430010457

Price: $65

Abstract

Background: Present malignant cancer medicines have the advantage of magnetic nanoparticles as delivery carriers to magnetically accumulate anticancer medication in malignant growth tissue.

Aim: In the present investigation, silica nanoparticles (MSNs) stacked with hydroxyurea were combined and optimized for dependent and independent variables.

Methods: In this study, microporous silica nanoparticles stacked with neoplastic medication were prepared through emulsification followed by the solvent evaporation method. Prepared MSNs were optimized for dependent and independent variables. Different formulations were prepared with varying ratios of polymer, lipid and surfactant which affect drug release and kinetics of drug release pattern. The obtained MSNs were identified by FTIR, SEM, drug entrapment, in-vitro drug release, drug release kinetics study, and stability testing in order to investigate the nanoparticle characteristics.

Results: The percentage drug entrapment of the drug for the formulations F1, F2, F3 was found to be 27.78%, 65.52% and 48.26%. The average particle size for F2 formulation was found to be 520 nm through SEM. The cumulative drug release for the formulations F1, F2, F3 was found to be 64.17%, 71.82% and 32.68%. The formulations were found to be stable which gives controlled drug delivery for 6 hours.

Conclusion: From the stability studies data, it can be concluded that formulations are most stable when stored at a lower temperature or in a refrigerator, i.e. 5°C ± 3°C. It can be concluded that MSNs loaded with hydroxyurea is a promising approach towards the management of cancer due to sustained release and few side effects.

Keywords: MSNs, solvent evaporation, kinetics, SEM, hydroxyurea, ribonucleotide reductase.

Graphical Abstract

[1]
Brincker, H.; Christensen, B.E. Acute mucocutaneous toxicity following high-dose hydroxyurea. Cancer Chemother. Pharmacol., 1993, 32(6), 496-497.
[http://dx.doi.org/10.1007/BF00685897] [PMID: 8258201]
[2]
Platt, O.S.; Orkin, S.H.; Dover, G.; Beardsley, G.P.; Miller, B.; Nathan, D.G. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J. Clin. Invest., 1984, 74(2), 652-656.
[http://dx.doi.org/10.1172/JCI111464] [PMID: 6205021]
[3]
Cokic, V.P.; Smith, R.D.; Beleslin-Cokic, B.B.; Njoroge, J.M.; Miller, J.L.; Gladwin, M.T.; Schechter, A.N. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J. Clin. Invest., 2003, 111(2), 231-239.
[http://dx.doi.org/10.1172/JCI200316672] [PMID: 12531879]
[4]
Stein, E.W.; Zwass, V. Actualizing organizational memory with information systems. Inf. Syst. Res., 1995, 6(2), 85-117.
[http://dx.doi.org/10.1287/isre.6.2.85]
[5]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[6]
Siddik, ZH Mechanisms of action of cancer chemotherapeutic agents: DNA-interactive alkylating agents and antitumour platinum-based drugs. Cancer Handbook, 2002, 2002, 1.
[7]
Feng, S.S.; Mu, L.; Win, K.Y.; Huang, G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem., 2004, 11(4), 413-424.
[http://dx.doi.org/10.2174/0929867043455909] [PMID: 14965222]
[8]
Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M. J. Cancer statistics, 2009. CA Cancer J. Clin., 2009, 59(4), 225-249.
[http://dx.doi.org/10.3322/caac.20006] [PMID: 19474385]
[9]
Weledji, E.P.; Tambe, J. Breast cancer detection and screening. Med. Clin. Rev., 2018, 4, 8.
[http://dx.doi.org/10.21767/2471-299X.1000071]
[10]
Rowlands, B.; Scholefield, J. The new Aird’s companion in surgical studies; Burnand, K.G.; Young, A.E; Lucas, J., Ed.; Churchill Livingstone, 1992.
[11]
Bookchin, R.M.; Lew, V.L. Pathophysiology of sickle cell anemia. Hematol. Oncol. Clin. North Am., 1996, 10(6), 1241-1253.
[http://dx.doi.org/10.1016/S0889-8588(05)70397-X] [PMID: 8956013]
[12]
Herrick, J.B. Peculiar elongated and sickle-shaped red blood corpuscles in a case of severe anemia. JAMA, 2014, 312(10), 1063.
[http://dx.doi.org/10.1001/jama.2014.11011] [PMID: 25203098]
[13]
Reddy, C.S.K.; Khan, K.K.A.; Nagaraja, C. A review on the determination of melting. Int. J. Adv. Res. Electr. Electron Instrum. Eng., 2016, 5, 975-979.
[http://dx.doi.org/10.15662/IJAREEIE.2016.0502059]
[14]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharm., 2012., 2012195727.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[15]
Ma, B.; He, L.; You, Y.; Mo, J.; Chen, T. Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Deliv., 2018, 25(1), 293-306.
[http://dx.doi.org/10.1080/10717544.2018.1425779] [PMID: 29334793]
[16]
Siregar, C.; Martono, S.; Rohman, A. Application of Fourier transform infrared (FTIR) spectroscopy coupled with multivariate calibration for quantitative analysis of curcuminoid in tablet dosage form. J. Appl. Pharm. Sci., 2018, 8, 151-156.
[http://dx.doi.org/10.7324/JAPS.2018.8821]
[17]
Mohammed, TO; Elbashir, AA Spectrophotometric method for determination of gabapentin in pharmaceutical formulation by derivatization with 4-chloro-7-Nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl). Int. J. Drug Dev. Res., 2015, 7(4), 001-004.
[18]
Ahmed, M.J.; Roy, U.K. A simple spectrophotometric method for the determination of iron (II) aqueous solutions. Turk. J. Chem., 2009, 33(5), 709-726.
[19]
Kaur, D.; Kaur, J. Kamal, SS pre and post formulation compatibility study of diacerein based on atr-ftir study for the design of transfersomal carriers. Int. J. Pharmaceut. Sci. Res., 2019, 10(1), 412-417.
[20]
Lu, J.; Liong, M.; Sherman, S.; Xia, T.; Kovochich, M.; Nel, A.E.; Zink, J.I.; Tamanoi, F. Mesoporous silica nanoparticles for cancer therapy: Energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. NanoBiotechnol., 2007, 3(2), 89-95.
[http://dx.doi.org/10.1007/s12030-008-9003-3] [PMID: 19936038]
[21]
Ménard, M.; Meyer, F.; Parkhomenko, K.; Leuvrey, C.; Francius, G.; Bégin-Colin, S.; Mertz, D. Mesoporous silica templated-albumin nanoparticles with high doxorubicin payload for drug delivery assessed with a 3-D tumor cell model. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(2), 332-341.
[http://dx.doi.org/10.1016/j.bbagen.2018.10.020] [PMID: 30391506]
[22]
Saraswathy, A.; Ruckmani, S. Arun mozhi devi, S. Ariyanathan. Chemical analysis of vanga bhasma. Int. J. Res. Ayurveda Pharm., 2013, 4(5), 676-679.
[http://dx.doi.org/10.7897/2277-4343.04509]
[23]
Pauling, L.; Itano, H.A.; Singer, S.J.; Wells, I.C. Sickle cell anemia a molecular disease. Science, 1949, 110(2865), 543-548.
[http://dx.doi.org/10.1126/science.110.2865.543] [PMID: 15395398]
[24]
Zhang, W.; Zheng, N.; Chen, L.; Xie, L.; Cui, M.; Li, S.; Xu, L. Effect of shape on mesoporous silica nanoparticles for oral delivery of indomethacin. Pharmaceutics, 2018, 11(1), 4.
[http://dx.doi.org/10.3390/pharmaceutics11010004] [PMID: 30583601]
[25]
Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exper., 2017, 8(1), 1325708.
[http://dx.doi.org/10.1080/20022727.2017.1325708]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy