Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Matrix Metalloproteinases in Invertebrates

Author(s): Xi Liu, Dongwu Liu, Yangyang Shen, Mujie Huang, Lili Gao, Zonghan Zhang, Baohua Liu, Bosheng Zhao and Qiuxiang Pang*

Volume 27, Issue 11, 2020

Page: [1068 - 1081] Pages: 14

DOI: 10.2174/0929866527666200429110945

Price: $65

Abstract

Matrix Metalloproteinases (MMPs) belong to a family of metal-dependent endopeptidases which contain a series of conserved pro-peptide domains and catalytic domains. MMPs have been widely found in plants, animals, and microorganisms. MMPs are involved in regulating numerous physiological processes, pathological processes, and immune responses. In addition, MMPs play a key role in disease occurrence, including tumors, cardiovascular diseases, and other diseases. Compared with invertebrate MMPs, vertebrate MMPs have diverse subtypes and complex functions. Therefore, it is difficult to study the function of MMPs in vertebrates. However, it is relatively easy to study invertebrate MMPs because there are fewer subtypes of MMPs in invertebrates. In the present review, the structure and function of MMPs in invertebrates were summarized, which will provide a theoretical basis for investigating the regulatory mechanism of MMPs in invertebrates.

Keywords: MMPs, invertebrate, vertebrate, structure, function, disease.

Graphical Abstract

[1]
Boon, L.; Ugarte-Berzal, E.; Vandooren, J.; Opdenakker, G. Glycosylation of matrix metalloproteases and tissue inhibitors: Present state, challenges and opportunities. Biochem. J., 2016, 473(11), 1471-1482.[http://dx.doi.org/10.1042/BJ20151154] [PMID: 27234584]
[2]
Han, K.Y.; Fahd, D.C.; Tshionyi, M.; Allemann, N.; Jain, S.; Chang, J.H.; Azar, D.T. MT1-MMP modulates bFGF-induced VEGF-A expression in corneal fibroblasts. Protein Pept. Lett., 2012, 19(12), 1334-1339.[http://dx.doi.org/10.2174/092986612803521639] [PMID: 22670674]
[3]
Camargo, K.C.; Gomes, J.R.; Loddi, M.M.; de Sordi, R.; Costa-Ayub, C.L.; Soares, M.A. MT1-MMP and its potential role in the vertebrate intestinal morphogenesis. Acta Histochem., 2016, 118(7), 729-735.[http://dx.doi.org/10.1016/j.acthis.2016.07.009] [PMID: 27640084]
[4]
Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol., 2004, 4(8), 617-629.[http://dx.doi.org/10.1038/nri1418] [PMID: 15286728]
[5]
Lin, C.; He, H.; Cui, N.; Ren, Z.; Zhu, M.; Khalil, R.A. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and -9 in hypertensive pregnancy. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(1), H165-H180.[http://dx.doi.org/10.1152/ajpheart.00602.2019] [PMID: 31834839]
[6]
Chen, J.; Zhou, J.; Li, F.; Sun, J.; Li, G.; Zou, S.; Ye, Q. Expression of MMP-2 and TIMP-1 during rapid maxillary expansion in rats. Arch. Oral Biol., 2017, 76, 30-35.[http://dx.doi.org/10.1016/j.archoralbio.2017.01.002
] [PMID: 28092867]
[7]
Paiva, K.B.S.; Granjeiro, J.M. Matrix metalloproteinases in bone resorption, remodeling, and repair. Prog. Mol. Biol. Transl. Sci., 2017, 148, 203-303.[http://dx.doi.org/10.1016/bs.pmbts.2017.05.001] [PMID: 28662823]
[8]
Grzechocinska, B.; Dabrowski, F.A.; Cyganek, A.; Chlebus, M.; Kobierzycki, C.; Michalowski, L.; Gornicka, B.; Wielgos, M. Matrix metalloproteinases-2, -7 and tissue metalloproteinase inhibitor-1 expression in human endometrium. Folia Histochem. Cytobiol., 2018, 56(3), 133-140.[http://dx.doi.org/10.5603/FHC.a2018.0017] [PMID: 30187906]
[9]
Delassus, G.S.; Cho, H.; Hoang, S.; Eliceiri, G.L. Many new down- and up-regulatory signaling pathways, from known cancer progression suppressors to matrix metalloproteinases, differ widely in cells of various cancers. J. Cell. Physiol., 2010, 224(2), 549-558.[http://dx.doi.org/10.1002/jcp.22157] [PMID: 20432456]
[10]
Han, J.K.; Kim, H.L.; Jeon, K.H.; Choi, Y.E.; Lee, H.S.; Kwon, Y.W.; Jang, J.J.; Cho, H.J.; Kang, H.J.; Oh, B.H.; Park, Y.B.; Kim, H.S. Peroxisome proliferator-activated receptor-δ activates endothelial progenitor cells to induce angio-myogenesis through matrix metallo-proteinase-9-mediated insulin-like growth factor-1 paracrine networks. Eur. Heart J., 2013, 34(23), 1755-1765.[http://dx.doi.org/10.1093/eurheartj/ehr365] [PMID: 21920965]
[11]
Rivera, S.; García-González, L.; Khrestchatisky, M.; Baranger, K. Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell. Mol. Life Sci., 2019, 76(16), 3167-3191.[http://dx.doi.org/10.1007/s00018-019-03178-2] [PMID: 31197405]
[12]
Furuzawa-Carballeda, J.; Boon, L.; Torres-Villalobos, G.; Romero-Hernández, F.; Ugarte-Berzal, E.; Martens, E.; Vandooren, J.; Rybakin, V.; Coss-Adame, E.; Valdovinos, M.; Velazquez-Fernández, D.; Opdenakker, G. Gelatinase B/Matrix Metalloproteinase-9 as innate immune effector molecule in Achalasia. Clin. Transl. Gastroenterol., 2018, 9(11), 208.[http://dx.doi.org/10.1038/s41424-018-0076-6] [PMID: 30449890]
[13]
Haukioja, A.; Tervahartiala, T.; Sorsa, T.; Syrjänen, S. Persistent oral human papillomavirus (HPV) infection is associated with low salivary levels of matrix metalloproteinase 8 (MMP-8). J. Clin. Virol., 2017, 97, 4-9.[http://dx.doi.org/10.1016/j.jcv.2017.10.011] [PMID: 29078079]
[14]
Ye, J.; Wang, C.; Wang, D.; Yuan, H. LncRBA GSA5, up-regulated by ox-LDL, aggravates inflammatory response and MMP expression in THP-1 macrophages by acting like a sponge for miR-221. Exp. Cell Res., 2018, 369(2), 348-355.[http://dx.doi.org/10.1016/j.yexcr.2018.05.039] [PMID: 29859752]
[15]
Rohani, M.G.; Parks, W.C. Matrix remodeling by MMPs during wound repair. Matrix Biol., 2015, 44-46, 113-121.[http://dx.doi.org/10.1016/j.matbio.2015.03.002] [PMID: 25770908]
[16]
Buckley, J.J.; Jessen, J.R. Matrix metalloproteinase function in non-mammalian model organisms. Front. Biosci. (Schol. Ed.), 2015, 7, 168-183.[http://dx.doi.org/10.2741/s431] [PMID: 25961693]
[17]
Zitka, O.; Kukacka, J.; Krizkova, S.; Huska, D.; Adam, V.; Masarik, M.; Prusa, R.; Kizek, R. Matrix metalloproteinases. Curr. Med. Chem., 2010, 17(31), 3751-3768.[http://dx.doi.org/10.2174/092986710793213724] [PMID: 20846107]
[18]
Marino-Puertas, L.; Goulas, T.; Gomis-Rüth, F.X. Matrix metalloproteinases outside vertebrates. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11 Pt A), 2026-2035.[http://dx.doi.org/10.1016/j.bbamcr.2017.04.003] [PMID: 28392403]
[19]
Miyamoto, N.; Yoshida, M.A.; Koga, H.; Fujiwara, Y. Genetic mechanisms of bone digestion and nutrient absorption in the bone-eating worm Osedax japonicus inferred from transcriptome and gene expression analyses. BMC Evol. Biol., 2017, 17(1), 17.[http://dx.doi.org/10.1186/s12862-016-0844-4] [PMID: 28086748]
[20]
Spanier, K.I.; Leese, F.; Mayer, C.; Colbourne, J.K.; Gilbert, D.; Pfrender, M.E.; Tollrian, R. Predator-induced defences in Daphnia pulex: Selection and evaluation of internal reference genes for gene expression studies with real-time PCR. BMC Mol. Biol., 2010, 11, 50.[http://dx.doi.org/10.1186/1471-2199-11-50] [PMID: 20587017]
[21]
Dong, S.; Balaraman, V.; Kantor, A.M.; Lin, J.; Grant, D.G.; Held, N.L.; Franz, A.W.E. Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLoS Negl. Trop. Dis., 2017, 11(9) e0005976[http://dx.doi.org/10.1371/journal.pntd.0005976] [PMID: 28961239]
[22]
Goulielmaki, E.; Sidén-Kiamos, I.; Loukeris, T.G. Functional characterization of Anopheles matrix metalloprotease 1 reveals its agonistic role during sporogonic development of malaria parasites. Infect. Immun., 2014, 82(11), 4865-4877.[http://dx.doi.org/10.1128/IAI.02080-14] [PMID: 25183733]
[23]
Jia, Q.; Chen, X.; Wu, L.; Ruan, Z.; Li, K.; Li, S. Matrix metalloproteinases promote fat body cell dissociation and ovary development in Bombyx mori. J. Insect Physiol., 2018, 111, 8-15.[http://dx.doi.org/10.1016/j.jinsphys.2018.10.002] [PMID: 30300619]
[24]
Kawasaki, H.; Manickam, A.; Shahin, R.; Ote, M.; Iwanaga, M. Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori. Gene, 2018, 638, 26-35.[http://dx.doi.org/10.1016/j.gene.2017.09.031] [PMID: 28943345]
[25]
Llano, E.; Pendás, A.M.; Aza-Blanc, P.; Kornberg, T.B.; López-Otín, C. Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J. Biol. Chem., 2000, 275(46), 35978-35985.[http://dx.doi.org/10.1074/jbc.M006045200] [PMID: 10964925]
[26]
Llano, E.; Adam, G.; Pendás, A.M.; Quesada, V.; Sánchez, L.M.; Santamariá, I.; Noselli, S.; López-Otín, C. Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J. Biol. Chem., 2002, 277(26), 23321-23329.[http://dx.doi.org/10.1074/jbc.M200121200] [PMID: 11967260]
[27]
Zhang, S.; Dailey, G.M.; Kwan, E.; Glasheen, B.M.; Sroga, G.E.; Page-McCaw, A. An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev., 2006, 20(14), 1899-1910.[http://dx.doi.org/10.1101/gad.1426906] [PMID: 16815999]
[28]
LaFever, K.S.; Wang, X.; Page-McCaw, P.; Bhave, G.; Page-McCaw, A. Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. Sci. Rep., 2017, 7, 44560.[http://dx.doi.org/10.1038/srep44560] [PMID: 28300207]
[29]
Altincicek, B.; Vilcinskas, A. Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth, Galleria mellonella. Dev. Comp. Immunol., 2006, 30(12), 1108-1118.[http://dx.doi.org/10.1016/j.dci.2006.03.002] [PMID: 16682078]
[30]
Altincicek, B.; Vilcinskas, A. Identification of a lepidopteran matrix metalloproteinase with dual roles in metamorphosis and innate immunity. Dev. Comp. Immunol., 2008, 32(4), 400-409.[http://dx.doi.org/10.1016/j.dci.2007.08.001] [PMID: 17850869]
[31]
Vishnuvardhan, S.; Ahsan, R.; Jackson, K.; Iwanicki, R.; Boe, J.; Haring, J.; Greenlee, K.J. Identification of a novel metalloproteinase and its role in juvenile development of the tobacco hornworm, Manduca sexta (Linnaeus). J. Exp. Zoolog. B Mol. Dev. Evol., 2013, 320(2), 105-117.[http://dx.doi.org/10.1002/jez.b.22487] [PMID: 23475557]
[32]
Knorr, E.; Schmidtberg, H.; Vilcinskas, A.; Altincicek, B. MMPs regulate both development and immunity in the tribolium model insect. PLoS One, 2009, 4(3), e4751.[http://dx.doi.org/10.1371/journal.pone.0004751] [PMID: 19270735]
[33]
Mitten, E.K.; Jing, D.; Suzuki, Y. Matrix metalloproteinases (MMPs) are required for wound closure and healing during larval leg regeneration in the flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol., 2012, 42(11), 854-864.[http://dx.doi.org/10.1016/j.ibmb.2012.08.001] [PMID: 22940602]
[34]
Cancemi, P.; Di Falco, F.; Feo, S.; Arizza, V.; Vizzini, A. The gelatinase MMP-9like is involved in regulation of LPS inflammatory response in Ciona robusta. Fish Shellfish Immunol., 2019, 86, 213-222.[http://dx.doi.org/10.1016/j.fsi.2018.11.028] [PMID: 30453047]
[35]
Zhang, Y.; Zhang, H.; Kong, Y.; Feng, L. Identification and characterization of an amphioxus matrix metalloproteinase homolog BbMMPL2 responding to bacteria challenge. Dev. Comp. Immunol., 2012, 37(3-4), 371-380.[http://dx.doi.org/10.1016/j.dci.2012.02.015] [PMID: 22440860]
[36]
Leontovich, A.A.; Zhang, J.; Shimokawa, K.; Nagase, H.; Sarras, M.P. Jr. A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development, 2000, 127(4), 907-920.
[37]
Li, A.; Yu, H.; Li, R.; Liu, S.; Xing, R.; Li, P. Inhibitory effect of metalloproteinase inhibitors on skin cell inflammation induced by jellyfish Nemopilema nomurai nematocyst venom. Toxins (Basel), 2019, 11(3), E156.[http://dx.doi.org/10.3390/toxins11030156] [PMID: 30857352]
[38]
Kang, C.; Han, D.Y.; Park, K.I.; Pyo, M.J.; Heo, Y.; Lee, H.; Kim, G.S.; Kim, E. Characterization and neutralization of Nemopilema nomurai (Scyphozoa: Rhizostomeae) jellyfish venom using polyclonal antibody. Toxicon, 2014, 86, 116-125.[http://dx.doi.org/10.1016/j.toxicon.2014.04.005] [PMID: 24751365]
[39]
Ribeiro, A.R.; Barbaglio, A.; Oliveira, M.J.; Ribeiro, C.C.; Wilkie, I.C.; Candia Carnevali, M.D.; Barbosa, M.A. Matrix metalloproteinases in a sea urchin ligament with adaptable mechanical properties. PLoS One, 2012, 7(11), e49016.[http://dx.doi.org/10.1371/journal.pone.0049016] [PMID: 23173042]
[40]
Ghiglione, C.; Lhomond, G.; Lepage, T.; Gache, C. Structure of the sea urchin hatching enzyme gene. Eur. J. Biochem., 1994, 219(3), 845-854.[http://dx.doi.org/10.1111/j.1432-1033.1994.tb18566.x
] [PMID: 8112336]
[41]
Angerer, L.; Hussain, S.; Wei, Z.; Livingston, B.T. Sea urchin metalloproteases: A genomic survey of the BMP-1/tolloid-like, MMP and ADAM families. Dev. Biol., 2006, 300(1), 267-281.[http://dx.doi.org/10.1016/j.ydbio.2006.07.046] [PMID: 17059814]
[42]
Miao, T.; Wan, Z.; Sun, L.; Li, X.; Xing, L.; Bai, Y.; Wang, F.; Yang, H. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2017, 212, 12-23.[http://dx.doi.org/10.1016/j.cbpb.2017.06.011] [PMID: 28687360]
[43]
Nikapitiya, C.; McDowell, I.C.; Villamil, L.; Muñoz, P.; Sohn, S.; Gomez-Chiarri, M. Identification of potential general markers of disease resistance in American oysters, Crassostrea virginica through gene expression studies. Fish Shellfish Immunol., 2014, 41(1), 27-36.[http://dx.doi.org/10.1016/j.fsi.2014.06.015] [PMID: 24973516]
[44]
Ziegler, G.; Paynter, K.; Fisher, D. Matrix metalloproteinase-like activity from hemocytes of the eastern oyster, Crassostrea virginica. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2002, 131(3), 361-370.[http://dx.doi.org/10.1016/S1095-6433(01)00518-9
] [PMID: 11959018]
[45]
Hu, B.; Xiao, J.; Yi, P.; Hu, C.; Zhu, M.; Yin, S.; Wen, C.; Wu, J. Cloning and characteristic of MMP1 gene from Hyriopsis cumingii and collagen hydrolytic activity of its recombinant protein. Gene, 2019, 693, 92-100.[http://dx.doi.org/10.1016/j.gene.2018.12.087] [PMID: 30716434]
[46]
Indra, D.; Ramalingam, K.; Babu, M. Isolation, purification and characterization of collagenase from hepatopancreas of the land snail Achatina fulica. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2005, 142(1), 1-7.[http://dx.doi.org/10.1016/j.cbpc.2005.02.004] [PMID: 16005653]
[47]
Chovar-Vera, O.; Valenzuela-Muñoz, V.; Gallardo-Escárate, C. Molecular characterization of collagen IV evidences early transcription expression related to the immune response against bacterial infection in the red abalone (Haliotis rufescens). Fish Shellfish Immunol., 2015, 42(2), 241-248.[http://dx.doi.org/10.1016/j.fsi.2014.11.007] [PMID: 25463284]
[48]
Nguyen, V.T.; Qian, Z.J.; Ryu, B.; Kim, K.N.; Kim, D.; Kim, Y.M.; Jeon, Y.J.; Park, W.S.; Choi, I.W.; Kim, G.H.; Je, J.Y.; Jung, W.K. Matrix metalloproteinases (MMPs) inhibitory effects of an octameric oligopeptide isolated from abalone Haliotis discus hannai. Food Chem., 2013, 141(1), 503-509.[http://dx.doi.org/10.1016/j.foodchem.2013.03.038
] [PMID: 23768386]
[49]
Chen, Y.L.; Li, W.Y.; Hu, J.J.; Li, Y.; Liu, G.M.; Jin, T.C.; Cao, M.J. Nucleus-translocated matrix metalloprotease 1 regulates innate immune response in Pacific abalone (Haliotis discus hannai). Fish Shellfish Immunol., 2019, 84, 290-298.[http://dx.doi.org/10.1016/j.fsi.2018.10.017] [PMID: 30304710]
[50]
Sun, R.; Li, Z.Y.; He, H.J.; Wei, J.; Wang, J.; Zhang, Q.X.; Zhao, J.; Zhan, X.M.; Wu, Z.D. Molecular cloning and characterization of a matrix metalloproteinase, from Caenorhabditis elegans: Employed to identify homologous protein from Angiostrongylus cantonensis. Parasitol. Res., 2012, 110(5), 2001-2012.[http://dx.doi.org/10.1007/s00436-011-2729-1] [PMID: 22167371]
[51]
Wada, K.; Sato, H.; Kinoh, H.; Kajita, M.; Yamamoto, H.; Seiki, M. Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases. Gene, 1998, 211(1), 57-62.[http://dx.doi.org/10.1016/S0378-1119(98)00076-6
] [PMID: 9573338]
[52]
Kovaleva, E.S.; Masler, E.P.; Skantar, A.M.; Chitwood, D.J. Novel matrix metalloproteinase from the cyst nematodes Heterodera glycines and Globodera rostochiensis. Mol. Biochem. Parasitol., 2004, 136(1), 109-112.[http://dx.doi.org/10.1016/j.molbiopara.2004.03.001
] [PMID: 15138072]
[53]
Saenseeha, S.; Penchom, J.; Yamasaki, H.; Laummaunwai, P.; Tayapiwatana, C.; Kitkhuandee, A.; Maleewong, W.; Intapan, P.M. A dot-ELISA test using a Gnathostoma spinigerum recombinant matrix metalloproteinase protein for the serodiagnosis of human gnathostomiasis. Southeast Asian J. Trop. Med. Public Health, 2014, 45(5), 990-996.
[54]
Uparanukraw, P.; Morakote, N.; Harnnoi, T.; Dantrakool, A. Molecular cloning of a gene encoding matrix metalloproteinase-like protein from Gnathostoma spinigerum. Parasitol. Res., 2001, 87(9), 751-757.[http://dx.doi.org/10.1007/s004360100440] [PMID: 11570561]
[55]
Isolani, M.E.; Abril, J.F.; Saló, E.; Deri, P.; Bianucci, A.M.; Batistoni, R. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration. PLoS One, 2013, 8(2), e55649.[http://dx.doi.org/10.1371/journal.pone.0055649] [PMID: 23405188]
[56]
Dingwall, C.B.; King, R.S. Muscle-derived matrix metalloproteinase regulates stem cell proliferation in planarians. Dev. Dyn., 2016, 245(9), 963-970.[http://dx.doi.org/10.1002/dvdy.24428] [PMID: 27327381]
[57]
Altincicek, B.; Vilcinskas, A. Comparative analysis of septic injury-inducible genes in phylogenetically distant model organisms of regeneration and stem cell research, the planarian Schmidtea mediterranea and the cnidarian Hydra vulgaris. Front. Zool., 2008, 5, 6.[http://dx.doi.org/10.1186/1742-9994-5-6] [PMID: 18439314]
[58]
Page-McCaw, A. Remodeling the model organism: Matrix metalloproteinase functions in invertebrates. Semin. Cell Dev. Biol., 2008, 19(1), 14-23.[http://dx.doi.org/10.1016/j.semcdb.2007.06.004] [PMID: 17702617]
[59]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D
] [PMID: 12730128]
[60]
Gomis-Rüth, F.X. Catalytic domain architecture of metzincin metalloproteases. J. Biol. Chem., 2009, 284(23), 15353-15357.[http://dx.doi.org/10.1074/jbc.R800069200] [PMID: 19201757]
[61]
Cerdà-Costa, N.; Gomis-Rüth, F.X. Architecture and function of metallopeptidase catalytic domains. Protein Sci., 2014, 23(2), 123-144.[http://dx.doi.org/10.1002/pro.2400] [PMID: 24596965]
[62]
Maiorov, V.N.; Crippen, G.M. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J. Mol. Biol., 1994, 235(2), 625-634.[http://dx.doi.org/10.1006/jmbi.1994.1017] [PMID: 8289285]
[63]
Sargsyan, K.; Grauffel, C.; Lim, C. How molecular size impacts RMSD applications in molecular dynamics simulations. J. Chem. Theory Comput., 2017, 13(4), 1518-1524.[http://dx.doi.org/10.1021/acs.jctc.7b00028] [PMID: 28267328]
[64]
Page-McCaw, A.; Serano, J.; Santé, J.M.; Rubin, G.M. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev. Cell, 2003, 4(1), 95-106.[http://dx.doi.org/10.1016/S1534-5807(02)00400-8
] [PMID: 12530966]
[65]
Glasheen, B.M.; Kabra, A.T.; Page-McCaw, A. Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2659-2664.[http://dx.doi.org/10.1073/pnas.0804171106] [PMID: 19196956]
[66]
De Las Heras, J.M.; García-Cortés, C.; Foronda, D.; Pastor-Pareja, J.C.; Shashidhara, L.S.; Sánchez-Herrero, E. The Drosophila Hox gene Ultrabithorax controls appendage shape by regulating extracellular matrix dynamics. Development, 2018, 145(13), dev161844.[http://dx.doi.org/10.1242/dev.161844] [PMID: 29853618]
[67]
Pearson, J.R.; Zurita, F.; Tomás-Gallardo, L.; Díaz-Torres, A. Díaz de la Loza, Mdel.C.; Franze, K.; Martín-Bermudo, M.D.; González-Reyes, A. ECM-regulator timp is required for stem cell niche organization and cyst production in the Drosophila ovary. PLoS Genet., 2016, 12(1), e1005763.[http://dx.doi.org/10.1371/journal.pgen.1005763] [PMID: 26808525]
[68]
Miller, C.M.; Page-McCaw, A.; Broihier, H.T. Matrix metalloproteinases promote motor axon fasciculation in the Drosophila embryo. Development, 2008, 135(1), 95-109.[http://dx.doi.org/10.1242/dev.011072] [PMID: 18045838]
[69]
Yasunaga, K.; Kanamori, T.; Morikawa, R.; Suzuki, E.; Emoto, K. Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Dev. Cell, 2010, 18(4), 621-632.[http://dx.doi.org/10.1016/j.devcel.2010.02.010] [PMID: 20412776]
[70]
Srivastava, A.; Pastor-Pareja, J.C.; Igaki, T.; Pagliarini, R.; Xu, T. Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc. Natl. Acad. Sci. USA, 2007, 104(8), 2721-2726.[http://dx.doi.org/10.1073/pnas.0611666104] [PMID: 17301221]
[71]
Beaucher, M.; Hersperger, E.; Page-McCaw, A.; Shearn, A. Metastatic ability of Drosophila tumors depends on MMP activity. Dev. Biol., 2007, 303(2), 625-634.[http://dx.doi.org/10.1016/j.ydbio.2006.12.001] [PMID: 17239363]
[72]
Srivastava, A. A novel link between FMR gene and the JNK pathway provides clues to possible role in malignant pleural mesothelioma. FEBS Open Bio, 2015, 5, 705-711.[http://dx.doi.org/10.1016/j.fob.2015.07.005] [PMID: 26425438]
[73]
Uhlirova, M.; Bohmann, D. JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J., 2006, 25(22), 5294-5304.[http://dx.doi.org/10.1038/sj.emboj.7601401] [PMID: 17082773]
[74]
Andersen, D.S.; Colombani, J.; Palmerini, V.; Chakrabandhu, K.; Boone, E.; Röthlisberger, M.; Toggweiler, J.; Basler, K.; Mapelli, M.; Hueber, A.O.; Léopold, P. The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature, 2015, 522(7557), 482-486.[http://dx.doi.org/10.1038/nature14298] [PMID: 25874673]
[75]
Small, C.D.; Crawford, B.D. Matrix metalloproteinases in neural development: A phylogenetically diverse perspective. Neural Regen. Res., 2016, 11(3), 357-362.[http://dx.doi.org/10.4103/1673-5374.179030] [PMID: 27127457]
[76]
Sears, J.C.; Broadie, K.; Fragile, X. Fragile X mental retardation protein regulates activity-dependent membrane trafficking and trans-synaptic signaling mediating synaptic remodeling. Front. Mol. Neurosci., 2018, 10, 440.[http://dx.doi.org/10.3389/fnmol.2017.00440] [PMID: 29375303]
[77]
Siller, S.S.; Broadie, K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis. Model. Mech., 2011, 4(5), 673-685.[http://dx.doi.org/10.1242/dmm.008045] [PMID: 21669931]
[78]
Dear, M.L.; Shilts, J.; Broadie, K. Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. Sci. Signal., 2017, 10(504), eaan3181.[http://dx.doi.org/10.1126/scisignal.aan3181] [PMID: 29114039]
[79]
Shilts, J.; Broadie, K. Secreted tissue inhibitor of matrix metalloproteinase restricts trans-synaptic signaling to coordinate synaptogenesis. J. Cell Sci., 2017, 130(14), 2344-2358.[http://dx.doi.org/10.1242/jcs.200808] [PMID: 28576972]
[80]
Lovelace, J.W.; Wen, T.H.; Reinhard, S.; Hsu, M.S.; Sidhu, H.; Ethell, I.M.; Binder, D.K.; Razak, K.A. Matrix metalloproteinase-9 deletion rescues auditory evoked potential habituation deficit in a mouse model of Fragile X Syndrome. Neurobiol. Dis., 2016, 89, 126-135.[http://dx.doi.org/10.1016/j.nbd.2016.02.002] [PMID: 26850918]
[81]
Siller, S.S.; Broadie, K. Matrix metalloproteinases and minocycline: Therapeutic avenues for fragile X syndrome. Neural Plast., 2012, 2012, 124548.[http://dx.doi.org/10.1155/2012/124548] [PMID: 22685676]
[82]
Kanda, H.; Shimamura, R.; Koizumi-Kitajima, M.; Okano, H. Degradation of extracellular matrix by matrix metalloproteinase 2 is essential for the establishment of the blood-brain barrier in Drosophila. iScience, 2019, 16, 218-229.
[83]
Raza, Q.S.; Vanderploeg, J.L.; Jacobs, J.R. Matrix Metalloproteinases are required for membrane motility and lumenogenesis during Drosophila heart development. PLoS One, 2017, 12(2), e0171905.[http://dx.doi.org/10.1371/journal.pone.0171905] [PMID: 28192468]
[84]
Hughes, C.J.R.; Jacobs, J.R. Dissecting the role of the extracellular matrix in heart disease: Lessons from the Drosophila genetic model. Vet. Sci., 2017, 4(2), E24.[http://dx.doi.org/10.3390/vetsci4020024] [PMID: 29056683]
[85]
Stevens, L.J.; Page-McCaw, A. A secreted MMP is required for reepithelialization during wound healing. Mol. Biol. Cell, 2012, 23(6), 1068-1079.[http://dx.doi.org/10.1091/mbc.e11-09-0745] [PMID: 22262460]
[86]
Sawada, T.; Oofusa, K.; Yoshizato, K. Characterization of a collagenolytic enzyme released from wounded planarians Dugesia japonica. Wound Repair Regen., 1999, 7(6), 458-466.[http://dx.doi.org/10.1046/j.1524-475X.1999.00458.x
] [PMID: 10633005]
[87]
Altincicek, B.; Fischer, M.; Fischer, M.; Lüersen, K.; Boll, M.; Wenzel, U.; Vilcinskas, A. Role of matrix metalloproteinase ZMP-2 in pathogen resistance and development in Caenorhabditis elegans. Dev. Comp. Immunol., 2010, 34(11), 1160-1169.[http://dx.doi.org/10.1016/j.dci.2010.06.010] [PMID: 20600277]
[88]
Sherwood, D.R.; Butler, J.A.; Kramer, J.M.; Sternberg, P.W. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell, 2005, 121(6), 951-962.[http://dx.doi.org/10.1016/j.cell.2005.03.031] [PMID: 15960981]
[89]
Hwang, B.J.; Meruelo, A.D.; Sternberg, P.W. C. elegans EVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion. Development, 2007, 134(4), 669-679.[http://dx.doi.org/10.1242/dev.02769] [PMID: 17215301]
[90]
Sudevan, S.; Takiura, M.; Kubota, Y.; Higashitani, N.; Cooke, M.; Ellwood, R.A.; Etheridge, T.; Szewczyk, N.J.; Higashitani, A. Mitochondrial dysfunction causes Ca2+ overload and ECM degradation-mediated muscle damage in C. elegans. FASEB J., 2019, 33(8), 9540-9550.[http://dx.doi.org/10.1096/fj.201802298R] [PMID: 31162948]
[91]
Sarras, M.P. Jr.; Zhang, X.; Huff, J.K.; Accavitti, M.A.; St John, P.L.; Abrahamson, D.R. Extracellular matrix (mesoglea) of Hydra vulgaris III. Formation and function during morphogenesis of hydra cell aggregates. Dev. Biol., 1993, 157(2), 383-398.[http://dx.doi.org/10.1006/dbio.1993.1143] [PMID: 8500651]
[92]
Shimizu, H.; Zhang, X.; Zhang, J.; Leontovich, A.; Fei, K.; Yan, L.; Sarras, M.P.Jr. Epithelial morphogenesis in hydra requires de novo expression of extracellular matrix components and matrix metalloproteinases. Development, 2002, 129(6), 1521-1532.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy