Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Jaceosidin: A Natural Flavone with Versatile Pharmacological and Biological Activities

Author(s): Bushra Nageen, Azhar Rasul*, Ghulam Hussain, Muhammad A. Shah*, Haseeb Anwar, Syed M. Hussain, Md. Sahab Uddin, Iqra Sarfraz, Ammara Riaz and Zeliha Selamoglu

Volume 27, Issue 4, 2021

Published on: 29 April, 2020

Page: [456 - 466] Pages: 11

DOI: 10.2174/1381612826666200429095101

Price: $65

Abstract

Nature always remains an inexhaustible source of treasures for mankind. It remains a mystery for every challenge until the completion of the challenge. While we talk about the complicated health issues, nature offers us a great variety of chemical scaffolds and their various moieties packed in the form of natural products e.g., plants, microorganisms (fungi, algae, protozoa), and terrestrial vertebrates and invertebrates. This review article is an update about jaceosidin, a bioactive flavone, from genus Artemisia. This potentially active compound exhibits a variety of pharmacological activities including anti-inflammatory, anti-oxidant, anti-bacterial, antiallergic and anti-cancer activities. The bioactivities and the therapeutic action of jaceosidin, especially the modulation of different cell signaling pathways (ERK1/2, NF-κB, PI3K/Akt and ATM-Chk1/2) which become deregulated in various pathological disorders, have been focused here. The reported data suggest that the bioavailability of this anti-cancer compound should be enhanced by utilizing various chemical, biological and computational techniques. Moreover, it is recommended that researchers and scientists should work on exploring the mode of action of this particular flavone to precede it further as a potent anti-cancer compound.

Keywords: Jaceosidin, natural products, antioxidant, anti-inflammatory, anti-cancer, anti-mutagenic.

[1]
Luo Y, Cobb RE, Zhao H. Recent advances in natural product discovery. Curr Opin Biotechnol 2014; 30: 230-7.
[http://dx.doi.org/10.1016/j.copbio.2014.09.002]
[2]
Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X. Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. BioMed Res Int 2013; 13379850
[http://dx.doi.org/10.1155/2013/379850]
[3]
Oon SF, Nallappan M, Tee TT, et al. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int 2015; 15: 100.
[http://dx.doi.org/10.1186/s12935-015-0255-4]
[4]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A Rev. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[5]
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008] [PMID: 23428572]
[6]
Sen T, Samanta SK. Medicinal plants, human health and biodiversity: a broad review. Adv Biochem Eng Biotechnol 2015; 147: 59-110.
[7]
Soares-Bezerra RJ, Calheiros AS, da Silva Ferreira NC, da Silva Frutuoso V, Alves LA. Natural Products as a Source for New Anti-Inflammatory and Analgesic Compounds through the Inhibition of Purinergic P2X Receptors. Pharmaceuticals (Basel) 2013; 6(5): 650-8.
[http://dx.doi.org/10.3390/ph6050650] [PMID: 24276172]
[8]
Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci 2005; 78(5): 431-41.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[9]
Sharma SB, Gupta R. Drug development from natural resource: a systematic approach. Mini Rev Med Chem 2015; 15(1): 52-7.
[http://dx.doi.org/10.2174/138955751501150224160518] [PMID: 25986040]
[10]
Engel N, Falodun A, Kuhn J, Kragl U, Langer P, Nebe B. Pro-apoptotic and anti-adhesive effects of four African plant extracts on the breast cancer cell line MCF-7. BMC 2014; 14: 334.
[http://dx.doi.org/10.1186/1472-6882-14-334]
[11]
Solowey E, Lichtenstein M, Sallon S, Paavilainen H, Solowey E, Lorberboum-Galski H. Evaluating medicinal plants for anticancer activity. Sci World JentificWorldJournal 2014; 2014721402
[http://dx.doi.org/10.1155/2014/721402]
[12]
Skrovankova S, Misurcova L, Machu L. Antioxidant activity and protecting health effects of common medicinal plants. Adv Food Nutr Res 2012; 67: 75-139.
[13]
Martelli G, Giacomini D. Antibacterial and antioxidant activities for natural and synthetic dual-active compounds. Eur J Med Chem 2018; 158: 91-105.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.009]
[14]
Rauha JP, Remes S, Heinonen M, et al. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 2000; 56(1): 3-12.
[http://dx.doi.org/10.1016/S0168-1605(00)00218-X] [PMID: 10857921]
[15]
Sieber SA. [Natural products as lead structure for antibacterial 57 agents Drug Res 2014; 64(Suppl 1): S8.
[16]
Cheung RCF, Ng TB, Wong JH, Chen Y, Chan WY. Marine natural products with anti-inflammatory activity. Appl Microbiol Biotechnol 2016; 100(4): 1645-66.
[http://dx.doi.org/10.1007/s00253-015-7244-3] [PMID: 26711278]
[17]
Azab A, Nassar A, Azab AN. Anti-Inflammatory Activity of Natural Products. Molecules 2016; 21(10)E1321
[http://dx.doi.org/10.3390/molecules21101321] [PMID: 27706084]
[18]
Chattopadhyay D, Sarkar MC, Chatterjee T, et al. Recent advancements for the evaluation of anti-viral activities of natural products. N Biotechnol 2009; 25(5): 347-68.
[http://dx.doi.org/10.1016/j.nbt.2009.03.007] [PMID: 19464980]
[19]
Parvez MK, Arbab AH, Al-Dosari MS, Al-Rehaily AJ. Antiviral Natural Products Against Chronic Hepatitis B: Recent Developments. Curr Pharm Des 2016; 22(3): 286-93.
[http://dx.doi.org/10.2174/1381612822666151112152733] [PMID: 26561057]
[20]
He SP, Tan GY, Li G, et al. Development of a sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the antimalaria active ingredient artemisinin in the Chinese herb Artemisia annua L. Anal Bioanal Chem 2009; 393(4): 1297-303.
[http://dx.doi.org/10.1007/s00216-008-2527-5] [PMID: 19066864]
[21]
Koulu M, Orma S, Liljeblad A, Niemela P. Artemisaiae as medicinal and herbal medicinal plants from ancient times to the present day. Duodecim. Laaketieteellinen Aikakauskirja 2016; 132(19): 1763-70.
[22]
Cheynier V, Tomas-Barberan FA, Yoshida K. Polyphenols: From Plants to a Variety of Food and Nonfood Uses. J Agric Food Chem 2015; 63(35): 7589-94.
[http://dx.doi.org/10.1021/acs.jafc.5b01173] [PMID: 26281949]
[23]
Fan DM, Fan K, Yu CP, Lu YT, Wang XC. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition. J Zhejiang Univ Sci B 2017; 18(2): 99-108.
[http://dx.doi.org/10.1631/jzus.B1600044] [PMID: 28124839]
[24]
Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 2010; 15(10): 7313-52.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[25]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World JentificWorldJournal 2013; 2013162750
[http://dx.doi.org/10.1155/2013/162750]
[26]
González Mosquera DM, Hernández Ortega Y, Fernández PL, et al. Flavonoids from Boldoa purpurascens inhibit proinflammatory cytokines (TNF-α and IL-6) and the expression of COX-2. Phytother Res 2018; 32(9): 1750-4.
[http://dx.doi.org/10.1002/ptr.6104] [PMID: 29726034]
[27]
Woo SM, Kwon TK. Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells. Chem Biol Interact 2016; 260: 168-75.
[http://dx.doi.org/10.1016/j.cbi.2016.10.011]
[28]
Min SW, Kim NJ, Baek NI, Kim DH. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. J Ethnopharmacol 2009; 125(3): 497-500.
[http://dx.doi.org/10.1016/j.jep.2009.06.001] [PMID: 19505561]
[29]
Kim MJ, Han JM, Jin YY, et al. In vitro antioxidant and anti-inflammatory activities of Jaceosidin from Artemisia princeps Pampanini cv. Sajabal. Arch Pharm Res 2008; 31(4): 429-37.
[http://dx.doi.org/10.1007/s12272-001-1175-8] [PMID: 18449499]
[30]
Zater H, Huet J, Fontaine V, et al. Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.) Maire. Asian Pac J Trop Med 2016; 9(6): 554-61.
[http://dx.doi.org/10.1016/j.apjtm.2016.04.016] [PMID: 27262066]
[31]
Algreiby AA, Hammer KA, Durmic Z, Vercoe P, Flematti GR. Antibacterial compounds from the Australian native plant Eremophila glabra. Fitoterapia 2018; 126: 45-52.
[http://dx.doi.org/10.1016/j.fitote.2017.11.008]
[32]
Lee SH, Bae EA, Park EK, et al. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps in IgE-induced hypersensitivity. Int Immunopharmacol 2007; 7(13): 1678-84.
[http://dx.doi.org/10.1016/j.intimp.2007.08.028] [PMID: 17996677]
[33]
Yin Y, Sun Y, Gu L, et al. Jaceosidin inhibits contact hypersensitivity in mice via down-regulating IFN-γ/STAT1/T-bet signaling in T cells. Eur J Pharmacol 2011; 651(1-3): 205-11.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.068] [PMID: 21093428]
[34]
Nakasugi T, Nakashima M, Komai K. Antimutagens in gaiyou (Artemisia argyi levl. et vant.). J Agric Food Chem 2000; 48(8): 3256-66.
[http://dx.doi.org/10.1021/jf9906679] [PMID: 10956099]
[35]
Katinas L, Hernández MP, Arambarri AM, Funk VA. The origin of the bifurcating style in Asteraceae (Compositae). Ann Bot 2016; 117(6): 1009-21.
[http://dx.doi.org/10.1093/aob/mcw033] [PMID: 27098086]
[36]
Bora KS, Sharma A. The genus Artemisia: a comprehensive review. Pharm Biol 2011; 49(1): 101-9.
[http://dx.doi.org/10.3109/13880209.2010.497815] [PMID: 20681755]
[37]
Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends. Crit Rev Biotechnol 2017; 37(7): 833-51.
[http://dx.doi.org/10.1080/07388551.2016.1261082] [PMID: 28049347]
[38]
Liu PY, Liu D, Li WH, et al. Chemical Constituents of Plants from the Genus Eupatorium (1904-2014). Chem Biodivers 2015; 12(10): 1481-515.
[http://dx.doi.org/10.1002/cbdv.201400227] [PMID: 26460556]
[39]
Sait S, Hamri-Zeghichi S, Boulekbache-Makhlouf L, et al. HPLC-UV/DAD and ESI-MS(n) analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam. J Pharm Biomed Anal 2015; 111: 231-40.
[40]
Fletcher JN, Kinghorn AD, Slack JP, McCluskey TS, Odley A, Jia Z. In vitro evaluation of flavonoids from Eriodictyon californicum for antagonist activity against the bitterness receptor hTAS2R31. J Agric Food Chem 2011; 59(24): 13117-21.
[http://dx.doi.org/10.1021/jf204359q] [PMID: 22059530]
[41]
Barnes EC, Kavanagh AM, Ramu S, Blaskovich MA, Cooper MA, Davis RA. Antibacterial serrulatane diterpenes from the Australian native plant Eremophila microtheca. Phytochemistry 2013; 93: 162-9.
[http://dx.doi.org/10.1016/j.phytochem.2013.02.021]
[42]
Woerdenbag HJ, Merfort I, Passreiter CM, et al. Cytotoxicity of flavonoids and sesquiterpene lactones from Arnica species against the GLC4 and the COLO 320 cell lines. Planta Med 1994; 60(5): 434-7.
[http://dx.doi.org/10.1055/s-2006-959526] [PMID: 7997472]
[43]
Merfort I. Methylated Flavonoids from Arnica montana and Arnica chamissonis. Planta Med 1984; 50(1): 107-8.
[http://dx.doi.org/10.1055/s-2007-969637] [PMID: 17340267]
[44]
Lee JG, Kim JH, Ahn JH, Lee KT, Baek NI, Choi JH. Jaceosidin, isolated from dietary mugwort (Artemisia princeps), induces G2/M cell cycle arrest by inactivating cdc25C-cdc2 via ATM-Chk1/2 activation. Food Chem Toxicol 2013; 55: 214-21.
[45]
Ryu R, Jung UJ, Kim HJ, et al. Anticoagulant and Antiplatelet Activities of Artemisia princeps Pampanini and Its Bioactive Components. Prev Nutr Food Sci 2013; 18(3): 181-7.
[http://dx.doi.org/10.3746/pnf.2013.18.3.181] [PMID: 24471130]
[46]
Yuan H, Lu X, Ma Q, Li D, Xu G, Piao G. Flavonoids from Artemisia sacrorum Ledeb. and their cytotoxic activities against human cancer cell lines. Exp Ther Med 2016; 12(3): 1873-8.
[http://dx.doi.org/10.3892/etm.2016.3556] [PMID: 27602097]
[47]
Yahagi T, Yakura N, Matsuzaki K, Kitanaka S. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in RAW 264.7 cells. J Nat Med 2014; 68(2): 414-20.
[http://dx.doi.org/10.1007/s11418-013-0799-3] [PMID: 24142543]
[48]
Lee HG, Yu KA, Oh WK, et al. Inhibitory effect of jaceosidin isolated from Artemisiaargyi on the function of E6 and E7 oncoproteins of HPV 16. J Ethnopharmacol 2005; 98(3): 339-43.
[http://dx.doi.org/10.1016/j.jep.2005.01.054] [PMID: 15814270]
[49]
Kim MJ, Kim DH, Lee KW, Yoon DY, Surh YJ. Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species. Annals of the New York Academy of Sciences 2007; 1095: 483-95.
[http://dx.doi.org/10.1196/annals.1397.052]
[50]
Li S, Zhou S, Yang W, Meng D. Gastro-protective effect of edible plant Artemisia argyi in ethanol-induced rats via normalizing inflammatory responses and oxidative stress. J Ethnopharmacol 2018; 214: 207-17.
[http://dx.doi.org/10.1016/j.jep.2017.12.023]
[51]
Hammoud L, Seghiri R, Benayache S, et al. A new flavonoid and other constituents from Centaurea nicaeensis All. var. walliana M. Nat Prod Res 2012; 26(3): 203-8.
[http://dx.doi.org/10.1080/14786419.2010.534995] [PMID: 21815723]
[52]
Uehara A, Kitajima J, Kokubugata G, Iwashina T. Further characterization of foliar flavonoids in Crossostephium chinense and their geographic variation. Nat Prod Commun 2014; 9(2): 163-4.
[http://dx.doi.org/10.1177/1934578X1400900207] [PMID: 24689280]
[53]
Qian SH, Yang NY, Duan JA, Yuan LH, Tian LJ. [Study on the flavonoids of Eupatorium lindleyanum Zhongguo Zhongyao Zazhi 2004; 29(1): 50-2.
[PMID: 15709382]
[54]
Wu S, Sun Q, Chu C, Zhang J. [Chemical constituents of Eupatorium lindleyanum Zhongguo Zhongyao Zazhi 2012; 37(7): 937-40.
[PMID: 22792793]
[55]
Tomas-Barberan FA, Harborne JB, Self R. Twelve 6-oxygenated flavone sulphates from Lippia nodiflora and L. canescens. Phytochemistry 1987; 26(8): 2281-4.
[http://dx.doi.org/10.1016/S0031-9422(00)84701-9]
[56]
Polatoğlu K, Karakoç OC, Demirci F, Gökçe A, Gören N. Chemistry and biological activities of Tanacetum chiliophyllum var. oligocephalum extracts. J AOAC Int 2013; 96(6): 1222-7.
[http://dx.doi.org/10.5740/jaoacint.SGEPolatoglu] [PMID: 24645497]
[57]
Schinella GR, Giner RM, Recio MC, Mordujovich de Buschiazzo P, Ríos JL, Máñez S. Anti-inflammatory effects of South American Tanacetum vulgare. J Pharm Pharmacol 1998; 50(9): 1069-74.
[http://dx.doi.org/10.1111/j.2042-7158.1998.tb06924.x] [PMID: 9811170]
[58]
Trendafilova A, Todorova M, Genova V, et al. Phenolic Profile of Artemisia alba Turra. Chem Biodivers 2018; 15(7)e1800109
[http://dx.doi.org/10.1002/cbdv.201800109] [PMID: 29772115]
[59]
Hajdú Z, Hohmann J, Forgo P, Máthé I, Molnár J, Zupkó I. Antiproliferative activity of Artemisia asiatica extract and its constituents on human tumor cell lines. Planta Med 2014; 80(18): 1692-7.
[http://dx.doi.org/10.1055/s-0034-1383146] [PMID: 25295671]
[60]
Allison BJ, Allenby MC, Bryant SS, Min JE, Hieromnimon M, Joyner PM. Antibacterial activity of fractions from three Chumash medicinal plant extracts and in vitro inhibition of the enzyme enoyl reductase by the flavonoid jaceosidin. Nat Prod Res 2017; 31(6): 707-12.
[http://dx.doi.org/10.1080/14786419.2016.1217201] [PMID: 27482826]
[61]
Moscatelli V, Hnatyszyn O, Acevedo C, Megías J, Alcaraz MJ, Ferraro G. Flavonoids from Artemisia copa with anti-inflammatory activity. Planta Med 2006; 72(1): 72-4.
[http://dx.doi.org/10.1055/s-2005-873177] [PMID: 16450301]
[62]
Kim AR, Zou YN, Park TH, et al. Active components from Artemisia iwayomogi displaying ONOO(-) scavenging activity. Phytother Res 2004; 18(1): 1-7.
[http://dx.doi.org/10.1002/ptr.1358] [PMID: 14750192]
[63]
Anaya-Eugenio GD, Rivero-Cruz I, Rivera-Chávez J, Mata R. Hypoglycemic properties of some preparations and compounds from Artemisia ludoviciana Nutt. J Ethnopharmacol 2014; 155(1): 416-25.
[http://dx.doi.org/10.1016/j.jep.2014.05.051] [PMID: 24892833]
[64]
Carvalho AR Jr, Diniz RM, Suarez M A M, et al. Use of Some Asteraceae Plants for the Treatment of Wounds: From Ethnopharmacological Studies to Scientific Evidences. Front Pharmacol 2018; 9: 784.
[65]
Lv W, Sheng X, Chen T, Xu Q, Xie X. Jaceosidin induces apoptosis in human ovary cancer cells through mitochondrial pathway. J Biomed Biotechnol 2008; 2008394802
[http://dx.doi.org/10.1155/2008/394802]
[66]
Karamenderes C, Bedir E, Pawar R, Baykan S, Khan IA. Elemanolide sesquiterpenes and eudesmane sesquiterpene glycosides from Centaurea hierapolitana. Phytochemistry 2007; 68(5): 609-15.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.013] [PMID: 17126864]
[67]
Twaij HA, Kery A, Al-Khazraji NK. Some pharmacological, toxicological and phytochemical investigations on Centaurea phyllocephala. J Ethnopharmacol 1983; 9(2-3): 299-314.
[http://dx.doi.org/10.1016/0378-8741(83)90037-5] [PMID: 6677820]
[68]
Clavin M, Gorzalczany S, Macho A, et al. Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J Ethnopharmacol 2007; 112(3): 585-9.
[http://dx.doi.org/10.1016/j.jep.2007.04.007] [PMID: 17570627]
[69]
Zhou BD, Zhang XL, Niu HY, Guan CY, Liu YP, Fu YH. Chemical constituents from stems and leaves of Psychotria serpens Zhongguo Zhongyao Zazhi 2018; 43(24): 4878-83.
[PMID: 30717534]
[70]
Fu CX, Cheng LQ, Lv XF, Zhao DX, Ma F. Methyl jasmonate stimulates jaceosidin and hispidulin production in cell cultures of Saussurea medusa. Appl Biochem Biotechnol 2006; 134(1): 89-96.
[http://dx.doi.org/10.1385/ABAB:134:1:89] [PMID: 16891669]
[71]
de Lima R, Guex CG, da Silva ARH, et al. Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. Appl Biochem Biotechnol 2018; 134(1): 89-96.
[http://dx.doi.org/10.1016/j.jep.2018.05.012]
[72]
Riaz A, Saleem B, Hussain G, et al. Biological Activity: A Review on Its Mechanism of Action. Nat Prod Commun 2019; 14(8): 1-9.
[http://dx.doi.org/10.1177/1934578X19868598]
[73]
Choi E, Kim G. Effect of artemisia species on cellular proliferation and apoptosis in human breast cancer cells via estrogen receptor-related pathway. J Tradit Chin Med 2013; 33(5): 658-63.
[74]
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034]
[75]
Arumuggam N, Bhowmick NA, Rupasinghe HPAA. Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer. Phytother Res 2015; 29(6): 805-17.
[http://dx.doi.org/10.1002/ptr.5327] [PMID: 25787773]
[76]
Estrela JM, Mena S, Obrador E, et al. Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy. J Med Chem 2017; 60(23): 9413-36.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01026] [PMID: 28654265]
[77]
Giancotti FG. Deregulation of cell signaling in cancer. FEBS Lett 2014; 588(16): 2558-70.
[http://dx.doi.org/10.1016/j.febslet.2014.02.005] [PMID: 24561200]
[78]
Sarfraz I, Rasul A, Jabeen F, et al. et al Fraxinus: A Plant with Versatile Pharmacological and Biological Activities Evidence-based complementary and alternative medicine eCAM 2017; 2017: 4269868
[79]
Singh P, Ngcoya N, Kumar V. A Review of the Recent Developments in Synthetic Anti-Breast Cancer Agents. Anticancer Agents Med Chem 2016; 16(6): 668-85.
[http://dx.doi.org/10.2174/1871520616666151120122120] [PMID: 26584726]
[80]
Millimouno FM, Dong J, Yang L, Li J, Li X. Targeting apoptosis pathways in cancer and perspectives with natural compounds from mother nature. Cancer Prev Res (Phila) 2014; 7(11): 1081-107.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0136] [PMID: 25161295]
[81]
Rasul A, Bao R, Malhi M, et al. Induction of apoptosis by costunolide in bladder cancer cells is mediated through ROS generation and mitochondrial dysfunction. Molecules 2013; 18(2): 1418-33.
[http://dx.doi.org/10.3390/molecules18021418] [PMID: 23348995]
[82]
Rasul A, Khan M, Yu B, Ma T, Yang H. Xanthoxyletin, a coumarin induces S phase arrest and apoptosis in human gastric adenocarcinoma SGC-7901 cells. Asian Pac J Cancer Prev 2011; 12(5): 1219-23.
[PMID: 21875271]
[83]
Rasul A, Khan M, Yu B, et al. Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways. Arch Pharm Res 2013; 36(10): 1262-9.
[http://dx.doi.org/10.1007/s12272-013-0217-0] [PMID: 23881702]
[84]
Rasul A, Ding C, Li X, et al. Dracorhodin perchlorate inhibits PI3K/Akt and NF-kappaB activation, up-regulates the expression of p53, and enhances apoptosis. Apoptosis Inter J Programmed cell Death 2012; 17(10): 1104-19.
[85]
Rasul A, Yu B, Yang LF, et al. Induction of mitochondria-mediated apoptosis in human gastric adenocarcinoma SGC-7901 cells by kuraridin and Nor-kurarinone isolated from Sophora flavescens. Asian Pac J Cancer Prev 2011; 12(10): 2499-504.
[PMID: 22320946]
[86]
Rasul A, Yu B, Khan M, et al. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int J Oncol 2012; 40(4): 1153-61.
[http://dx.doi.org/10.3892/ijo.2011.1277] [PMID: 22139054]
[87]
Nageen B, Sarfraz I, Rasul A, et al. Eupatilin: a natural pharmacologically active flavone compound with its wide range applications. J Asian Nat Prod Res 2020; 22(1): 1-16.
[http://dx.doi.org/10.1080/10286020.2018.1492565] [PMID: 29973097]
[88]
Riaz A, Rasul A, Hussain G, et al. Astragalin: A Bioactive Phytochemical with Potential Therapeutic Activities. Adv Pharmacol Sci 2018; 20189794625
[http://dx.doi.org/10.1155/2018/9794625]
[89]
Rasul A, Yu B, Zhong L, Khan M, Yang H, Ma T. Cytotoxic effect of evodiamine in SGC-7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncol Rep 2012; 27(5): 1481-7.
[PMID: 22367117]
[90]
Khan M, Zheng B, Yi F, et al. Pseudolaric Acid B induces caspasedependent and caspase-independent apoptosis in u87 glioblastoma cells. Evidence-based complementary and alternative medicine. eCAM 2012; 2012: 957568.
[91]
Rasul A, Di J, Millimouno FM, et al. Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells. Molecules 2013; 18(8): 9382-96.
[http://dx.doi.org/10.3390/molecules18089382] [PMID: 23921797]
[92]
Khan M, Rasul A, Yi F, Zhong L, Ma T. Jaceosidin induces p53-dependent G2/M phase arrest in U87 glioblastoma cells. Asian Pac J Cancer Prev 2011; 12(12): 3235-8.
[PMID: 22471459]
[93]
Khan M, Yu B, Rasul A, et al. Jaceosidin Induces Apoptosis in U87 386 Glioblastoma Cells through G2/M Phase Arrest. Evidence-based 387 complementary and alternative medicine. eCAM 2012; 2012: 388 703034. 389 2012.
[94]
Han H Y, Kim H J, Jeong S H, et al. The Flavonoid Jaceosidin from Artemisia princeps Induces Apoptotic Cell Death and Inhibits the Akt Pathway in Oral Cancer Cells. Evidence-based complementary and alternative medicine. eCAM, 2018; 2018: 5765047.
[95]
Nam Y, Choi M, Hwang H, et al. Natural flavone jaceosidin is a neuroinflammation inhibitor. Phytother Res 2013; 27(3): 404-11.
[http://dx.doi.org/10.1002/ptr.4737] [PMID: 22619052]
[96]
Latruffe N. Natural Products and Inflammation. Molecules 2017; 22(1)E120
[http://dx.doi.org/10.3390/molecules22010120] [PMID: 28085099]
[97]
Buckley CD, Barone F, Nayar S, Benezech C, Caamano J. Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu Rev Immunol 2015; 33: 715-45.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120252]
[98]
Urbanska AM, Zhang X, Prakash S. Bioengineered Colorectal Cancer Drugs: Orally Delivered Anti-Inflammatory Agents. Cell Biochem Biophys 2015; 72(3): 757-69.
[http://dx.doi.org/10.1007/s12013-015-0528-5] [PMID: 27352189]
[99]
Strzyga-Lach P, Czeczot H. [The role of flavonoids in the modulation of inflammation Polski merkuriusz lekarski. Organ Polskiego Towarzystwa Lekarskiego 2016; 40(236): 134-40.
[100]
Freitas M, Ribeiro D, Tome SM, Silva AM, Fernandes E. Synthesis of chlorinated flavonoids with anti-inflammatory and pro-apoptotic activities in human neutrophils. Eur J Med Chem 2014; 86: 153-64.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.035]
[101]
Urban MK. COX-2 specific inhibitors offer improved advantages over traditional NSAIDs. Orthopedics 2000; 23(7)(Suppl.): S761-4.
[PMID: 10914695]
[102]
Pelzer LE, Guardia T, Osvaldo Juarez A, Guerreiro E. Acute and chronic antiinflammatory effects of plant flavonoids. Farmaco 1998; 53(6): 421-4.
[http://dx.doi.org/10.1016/S0014-827X(98)00046-9] [PMID: 9764475]
[103]
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. Physiology of microglia. Physiol Rev 2011; 91(2): 461-553.
[http://dx.doi.org/10.1152/physrev.00011.2010] [PMID: 21527731]
[104]
Marsh DT, Das S, Ridell J, Smid SD. Structure-activity relationships for flavone interactions with amyloid β reveal a novel anti-aggregatory and neuroprotective effect of 2′,3′,4′-trihydroxyflavone (2-D08). Bioorg Med Chem 2017; 25(14): 3827-34.
[http://dx.doi.org/10.1016/j.bmc.2017.05.041] [PMID: 28559058]
[105]
Sanchez C. Reactive oxygen species and antioxidant properties from mushrooms. Synthetic Sys Biotechnol 2017; 2(1): 13-22.
[106]
Kozarski M, Klaus A, Jakovljevic D, et al. Antioxidants of Edible Mushrooms. Molecules 2015; 20(10): 19489-525.
[http://dx.doi.org/10.3390/molecules201019489] [PMID: 26516828]
[107]
Andersson KE. Oxidative stress and its possible relation to lower urinary tract functional pathology. BJU Int 2018; 121(4): 527-33.
[PMID: 29063681]
[108]
Pietta PG. Flavonoids as antioxidants. J Nat Prod 2000; 63(7): 1035-42.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[109]
Farkas O, Jakus J, Héberger K. Quantitative structure-antioxidant activity relationships of flavonoid compounds. Molecules 2004; 9(12): 1079-88.
[http://dx.doi.org/10.3390/91201079] [PMID: 18007505]
[110]
Kang YJ, Jung UJ, Jeon SM, et al. Antihyperglycemic and Antioxidant Properties of Jaceosidin, a Flavonoid Isolated from Artemisia Princeps, in Type 2 Diabetic Mice. Diabetes 2007; •••: 56.
[111]
Park E, Kwon BM, Jung IK, Kim JH. Hypoglycemic and antioxidant effects of jaceosidin in streptozotocin-induced diabetic mice. J Nutr Health 2014; 47(5): 313-20.
[http://dx.doi.org/10.4163/jnh.2014.47.5.313]
[112]
Song GC, Ryu SY, Kim YS, Lee JY, Choi JS, Ryu CM. Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae by specific individual compounds derived from native Korean plant species. Molecules 2013; 18(10): 12877-95.
[http://dx.doi.org/10.3390/molecules181012877] [PMID: 24135942]
[113]
Kumar R, Lu Y, Elliott AG, Kavanagh AM, Cooper MA, Davis RA. Semi-synthesis and NMR spectral assignments of flavonoid and chalcone derivatives. Magn Reson Chem 2016; 54(11): 880-6.
[http://dx.doi.org/10.1002/mrc.4482] [PMID: 27379746]
[114]
Ouyang Z, Li W, Meng Q, et al. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b Biomedicine pharmacotherapy = Biomedecine & pharmacotherapie 2017; 89: 1286-96
[115]
Ji HY, Kim SY, Kim DK, Jeong JH, Lee HS. Effects of eupatilin and jaceosidin on cytochrome p450 enzyme activities in human liver microsomes. Molecules 2010; 15(9): 6466-75.
[http://dx.doi.org/10.3390/molecules15096466] [PMID: 20877236]
[116]
Vranikova B, Gajdziok J. Bioavailability and factors influencing its rate]. Ceska A Slovenska Farmacie: Casopis Ceske Farmaceuticke Spolecnosti A Slovenske Farmaceuticke Spolecnosti 2015; 64(1-2): 7-13.
[117]
Al-Kassas R, Bansal M, Shaw J. Nanosizing techniques for improving bioavailability of drugs. J Controlled Release: Official J Controlled Release Soc 2017; 260(202)
[118]
Passamonti S, Terdoslavich M, Franca R, et al. Bioavailability of flavonoids: a review of their membrane transport and the function of bilitranslocase in animal and plant organisms. Curr Drug Metab 2009; 10(4): 369-94.
[http://dx.doi.org/10.2174/138920009788498950] [PMID: 19519345]
[119]
Song WY, Kim NJ, Kim SY, Lee HS. Liquid chromatography-tandem mass spectrometry for the determination of jaceosidin in rat plasma. J Pharm Biomed Anal 2009; 49(2): 381-6.
[http://dx.doi.org/10.1016/j.jpba.2008.10.021] [PMID: 19070985]
[120]
Zhou Y, Chen B, Chen J, et al. Determination and pharmacokinetic study of jaceosidin in rat plasma by UPLC-MS/MS. Acta Chromatogr 2017; 30(2)
[http://dx.doi.org/10.1556/1326.2017.00104]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy