Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Catalytic Longevity of Hierarchical SAPO-34/AlMCM-41 Nanocomposite Molecular Sieve In Methanol-to-Olefins Process

Author(s): Hossein Roohollahi, Rouein Halladj* and Sima Askari

Volume 24, Issue 4, 2021

Published on: 28 April, 2020

Page: [521 - 533] Pages: 13

DOI: 10.2174/1386207323666200428092404

Price: $65

Abstract

Introduction: SAPO-34/AlMCM-41, as a hierarchical nanocomposite molecular sieve was prepared by sequential hydrothermal and dry-gel methods studied for catalytic conversion of methanol to light olefins. Pure AlMCM-41, SAPO-34, and their physical mixture were also produced and catalytically compared. Physicochemical properties of materials were mainly investigated using XRD, N2 isothermal adsorption-desorption, FESEM, FT-IR, NH3-TPD, and TG/DTG/DTA techniques.

Methods: Micro-meso hierarchy of prepared composite was demonstrated by XRD and BET analyses. Catalytic performance of materials illustrated that the methanol conversion of the prepared composite was about 98% for 120 min, showing a higher activity than the other catalysts. The initial reaction selectivity to light olefins of the composite was also comparable with those for the other catalysts. Furthermore, the results revealed that SAPO-34/AlMCM-41 preparation decreased the concentration and strength of active acid sites of the catalyst which could beneficially affect the deposition of heavy molecular products on the catalyst. However, as observed, the prepared composite was deactivated in olefins production faster than pure SAPO-34.

Results: The small mean pore diameter of composite could be mainly responsible for its pore blockage and higher deactivation rate. Meanwhile, since the SAPO-34 prepared by dry-gel method had inherently high mesoporosity, the AlMCM-41 introduction did not promote the molecular diffusion in the composite structure.

Conclusion: The coke content was found 15.5% for deactivated composite smaller than that for the SAPO- 34 catalyst which could be due to the pore blockage and deactivation of the composite in a shorter period.

Keywords: SAPO-34/AlMCM-41 nanocomposite, heterogeneous catalysis, hierarchical structure, characterization, methanol to olefins (MTO), reaction time.

[1]
Corma, A. State of the art and future challenges of zeolites as catalysts. J. Catal., 2003, 216, 298-312.
[http://dx.doi.org/10.1016/S0021-9517(02)00132-X]
[2]
Guisnet, M.; Costa, L.; Ribeiro, F.R. Prevention of zeolite deactivation by coking. J. Mol. Catal. Chem., 2009, 305, 69-83.
[http://dx.doi.org/10.1016/j.molcata.2008.11.012]
[3]
Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis: Synthesis, Reactions and Applications; John Wiley & Sons, 2010.
[http://dx.doi.org/10.1002/9783527630295]
[4]
Karge, H.G.; Weitkamp, J. Adsorption and Diffusion; Springer Science & Business Media, 2008, Vol. 7, .
[http://dx.doi.org/10.1007/3829_2008_020]
[5]
Bai, R.; Song, Y.; Li, Y.; Yu, J. Creating Hierarchical Pores in Zeolite Catalysts; Trends Chem, 2019.
[http://dx.doi.org/10.1016/j.trechm.2019.05.010]
[6]
Zhang, Z.; Wang, Q.; Zhang, X. Hydroconversion of waste cooking oil into bio-jet fuel over NiMo/SBUY-MCM-41. Catalysts, 2019, 9, 466.
[http://dx.doi.org/10.3390/catal9050466]
[7]
Wang, D.; Zhang, L.; Chen, L.; Wu, H.; Wu, P. Postsynthesis of mesoporous ZSM-5 zeolite by piperidine-assisted desilication and its superior catalytic properties in hydrocarbon cracking. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 3511-3521.
[http://dx.doi.org/10.1039/C4TA06438K]
[8]
Shen, Q.; Zhang, L.; Wu, M.; He, C.; Wei, W.; Sun, N.; Sun, Y. Postsynthesis of mesoporous ZSM-5 zeolites with TPAOH-assisted desilication and determination of activity performance in N2O decomposition. J. Porous Mater., 2017, 24, 759-767.
[http://dx.doi.org/10.1007/s10934-016-0313-x]
[9]
Rostamizadeh, M.; Yaripour, F. Dealumination of high silica H-ZSM-5 as long-lived nanocatalyst for methanol to olefin conversion. J. Taiwan Inst. Chem. Eng., 2017, 71, 454-463.
[http://dx.doi.org/10.1016/j.jtice.2016.12.003]
[10]
Ahmed, M.H.M.; Muraza, O.; Yoshioka, M.; Yokoi, T. Effect of multi-step desilication and dealumination treatments on the performance of hierarchical EU-1 zeolite for converting methanol to olefins. Microporous Mesoporous Mater., 2017, 241, 79-88.
[http://dx.doi.org/10.1016/j.micromeso.2016.12.008]
[11]
Sun, H.; Peng, P.; Wang, Y.; Li, C.; Subhan, F.; Bai, P.; Xing, W.; Zhang, Z.; Liu, Z.; Yan, Z. Preparation, scale-up and application of meso-ZSM-5 zeolite by sequential desilication–dealumination. J. Porous Mater., 2017, 1-13.
[http://dx.doi.org/10.1007/s10934-017-0391-4]
[12]
Suárez, N.; Pérez-Pariente, J.; Mondragón, F.; Moreno, A. generation of hierarchical porosity in beta zeolite by post-synthesis treatment with the cetyltrimethylammonium cationic surfactant under alkaline conditions. Microporous Mesoporous Mater., 2019, 280, 144-150.
[http://dx.doi.org/10.1016/j.micromeso.2019.02.001]
[13]
Mintova, S.; Gilson, J-P.; Valtchev, V. Advances in nanosized zeolites. Nanoscale, 2013, 5(15), 6693-6703.
[http://dx.doi.org/10.1039/c3nr01629c PMID: 23803972]
[14]
Li, T.; Duan, A.; Zhao, Z.; Liu, B.; Jiang, G.; Liu, J.; Wei, Y.; Pan, H. Synthesis of ordered hierarchically porous L-SBA-15 material and its hydro-upgrading performance for FCC gasoline. Fuel, 2014, 117, 974-980.
[http://dx.doi.org/10.1016/j.fuel.2013.10.035]
[15]
Zhang, L.; Jiang, Z-X.; Yu, Y.; Sun, C-S.; Wang, Y-J.; Wang, H-Y. Synthesis of core–shell ZSM-5@ Meso-SAPO-34 composite and its application in methanol to aromatics. RSC Advances, 2015, 5, 55825-55831.
[http://dx.doi.org/10.1039/C5RA10296K]
[16]
Moradiyan, E.; Halladj, R.; Askari, S.; Bijani, P.M. Ultrasonic-assisted hydrothermal synthesis and catalytic behavior of a novel SAPO-34/clinoptilolite nanocomposite catalyst for high propylene demand in MTO process. J. Phys. Chem. Solids, 2017, 107, 83-92.
[http://dx.doi.org/10.1016/j.jpcs.2017.03.021]
[17]
Li, H.; He, S.; Ma, K.; Wu, Q.; Jiao, Q.; Sun, K. Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: effect of SiO2/Al2O3 ratio in H-ZSM-5. Appl. Catal. A Gen., 2013, 450, 152-159.
[http://dx.doi.org/10.1016/j.apcata.2012.10.014]
[18]
Tang, Q.; Xu, H.; Zheng, Y.; Wang, J.; Li, H.; Zhang, J. Catalytic dehydration of methanol to dimethyl ether over micro–mesoporous ZSM-5/MCM-41 composite molecular sieves. Appl. Catal. A Gen., 2012, 413, 36-42.
[http://dx.doi.org/10.1016/j.apcata.2011.10.039]
[19]
Sang, Y.; Liu, H.; He, S.; Li, H.; Jiao, Q.; Wu, Q.; Sun, K. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether. J. Energy Chem., 2013, 22, 769-777.
[http://dx.doi.org/10.1016/S2095-4956(13)60102-3]
[20]
Diao, Z.; Wang, L.; Zhang, X.; Liu, G. Catalytic cracking of supercritical N-dodecane over Meso-HZSM-5@ Al-MCM-41 zeolites. Chem. Eng. Sci., 2015, 135, 452-460.
[http://dx.doi.org/10.1016/j.ces.2014.12.048]
[21]
Habib, S.; Launay, F.; Laforge, S.; Comparot, J-D.; Faust, A-C.; Millot, Y.; Onfroy, T.; Montouillout, V.; Magnoux, P.; Paillaud, J-L. High catalytic cracking activity of Al-MCM-41 type materials prepared from ZSM-5 zeolite crystals and fumed silica. Appl. Catal. A Gen., 2008, 344, 61-69.
[http://dx.doi.org/10.1016/j.apcata.2008.04.001]
[22]
Jermy, B.R.; Siddiqui, M.A.B.; Aitani, A.M.; Saeed, M.R.; Al-Khattaf, S. Utilization of ZSM-5/MCM-41 Composite as FCC Catalyst Additive for Enhancing Propylene Yield from VGO Cracking. J. Porous Mater., 2012, 19, 499-509.
[http://dx.doi.org/10.1007/s10934-011-9499-0]
[23]
Wang, L.; Diao, Z.; Tian, Y.; Xiong, Z.; Liu, G. Catalytic cracking of endothermic hydrocarbon fuels over ordered MESO-HZSM-5 zeolites with Al-MCM-41 shells. Energy Fuels, 2016, 30, 6977-6983.
[http://dx.doi.org/10.1021/acs.energyfuels.6b01160]
[24]
Wang, Y.; Cui, D.; Li, Q. Synthesis, Characterization and influence parameters on the overgrowth of micro/mesoporous y-zeolite-MCM-41 composite material under acidic conditions. Microporous Mesoporous Mater., 2011, 142, 503-510.
[http://dx.doi.org/10.1016/j.micromeso.2010.12.034]
[25]
Zhang, H.; Meng, X.; Li, Y.; Lin, Y.S. MCM-41 Overgrown on y composite zeolite as support of Pd− Pt catalyst for hydrogenation of polyaromatic compounds. Ind. Eng. Chem. Res., 2007, 46, 4186-4192.
[http://dx.doi.org/10.1021/ie061138e]
[26]
Liu, X.; Yang, T.; Bai, P.; Han, L. Y/MCM-41 composites assembled from nanocrystals. Microporous Mesoporous Mater., 2013, 181, 116-122.
[http://dx.doi.org/10.1016/j.micromeso.2013.07.005]
[27]
Namchot, W.; Jitkarnka, S. Catalytic pyrolysis of waste tire using HY/MCM-41 core-shell composite. J. Anal. Appl. Pyrolysis, 2016, 121, 297-306.
[http://dx.doi.org/10.1016/j.jaap.2016.08.009]
[28]
Jiao, W.Q.; Ding, J.; Shi, Z.B.; Liang, X.M.; Wang, Y.M.; Zhang, Y.H.; Tang, Y.; He, M-Y. Preparation of y zeolite composites with adjustable, highly dispersed intra-crystal mesoporosity: effect of lactic acid treatment in CTAB-assisted two-step approach. Microporous Mesoporous Mater., 2016, 228, 237-247.
[http://dx.doi.org/10.1016/j.micromeso.2016.03.045]
[29]
Zhang, Y.; Liu, D.; Lou, B.; Yu, R.; Men, Z.; Li, M.; Li, Z. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: effects of the MCM-41 incorporation with y zeolite. Fuel, 2018, 226, 204-212.
[http://dx.doi.org/10.1016/j.fuel.2018.04.007]
[30]
Qiu, Y.; Sun, W.; Liu, G.; Wang, L.; Zhang, X. Synthesis of highly crystalline beta/MCM-41 composites by controllable assembly of tailorable nano proto-zeolitic building blocks. Catal. Lett., 2017, 147, 1077-1085.
[http://dx.doi.org/10.1007/s10562-017-1996-6]
[31]
Wang, Z.; Yu, S. Synthesis of high-stability acidic β/Al-MCM-41 and the catalytic performance for the esterification of oleic acid. Adv. Chem. Eng. Sci., 2016, 6, 305.
[http://dx.doi.org/10.4236/aces.2016.64031]
[32]
Tang, W.; Zhang, H.; Lu, Y.; Yao, Y.; Lu, S. Two-step hydrothermal synthesis of β-MCM-41 composite molecular sieves as supports of bifunctional catalysts for hydroisomerization of n-heptane. J. Porous Mater., 2016, 23, 1489-1493.
[http://dx.doi.org/10.1007/s10934-016-0209-9]
[33]
Roohollahi, H.; Halladj, R.; Askari, S.; Yaripour, F. SAPO-34/AlMCM-41, as a novel hierarchical nanocomposite: preparation, characterization and investigation of synthesis factors using response surface methodology. J. Solid State Chem., 2018, 262, 273-281.
[http://dx.doi.org/10.1016/j.jssc.2018.03.009]
[34]
Wen, M.; Wang, X.; Han, L.; Ding, J.; Sun, Y.; Liu, Y.; Lu, Y. Monolithic metal-fiber@ HZSM-5 core–shell catalysts for methanol-to-propylene. Microporous Mesoporous Mater., 2015, 206, 8-16.
[http://dx.doi.org/10.1016/j.micromeso.2014.12.007]
[35]
Aghaei, E.; Haghighi, M. Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins. Powder Technol., 2015, 269, 358-370.
[http://dx.doi.org/10.1016/j.powtec.2014.09.036]
[36]
Xu, L.; Liu, Z.; Du, A.; Wei, Y.; Sun, Z. Synthesis, Characterization, and MTO Performance of MeAPSO-34 Molecular Sieves.Studies in surface science and catalysis; Elsevier, 2004, Vol. 147, pp. 445-450.
[37]
Salmasi, M.; Fatemi, S.; Najafabadi, A.T. Improvement of light olefins selectivity and catalyst lifetime in MTO reaction; using Ni and Mg-modified SAPO-34 synthesized by combination of two templateS. J. Ind. Eng. Chem., 2011, 17, 755-761.
[http://dx.doi.org/10.1016/j.jiec.2011.05.031]
[38]
Auerbach, S.M.; Carrado, K.A.; Dutta, P.K. Handbook of Zeolite Science and Technology; CRC press, 2003.
[http://dx.doi.org/10.1201/9780203911167]
[39]
Sadeghpour, P.; Haghighi, M. DEA/TEAOH templated synthesis and characterization of nanostructured NiAPSO-34 particles: effect of single and mixed templates on catalyst properties and performance in the methanol to olefin reaction. Particuology, 2015, 19, 69-81.
[http://dx.doi.org/10.1016/j.partic.2014.04.012]
[40]
Nyquist, R.A.; Kagel, R.O. Infrared Spectra of Inorganic CompoundsGoogle Sch; Academic New York, 1971, 94.
[41]
Bing, L.; Liu, X.; Zhang, B. Synthesis of thin CrAPSO-34 membranes by microwave-assisted secondary growth. J. Mater. Sci., 2016, 51, 1476-1483.
[http://dx.doi.org/10.1007/s10853-015-9467-1]
[42]
Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl. Chem., 1985, 57, 603-619.
[http://dx.doi.org/10.1351/pac198557040603]
[43]
Carmo, A.C.; de Souza, L.K.C.; da Costa, C.E.F.; Longo, E.; Zamian, J.R.; da Rocha Filho, G.N. Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel, 2009, 88, 461-468.
[http://dx.doi.org/10.1016/j.fuel.2008.10.007]
[44]
Souza, M.J.B.; Araujo, A.S.; Pedrosa, A.M.G.; Marinkovic, B.A.; Jardim, P.M.; Morgado, E. Textural features of highly ordered Al-MCM-41 molecular sieve studied by x-ray diffraction, nitrogen adsorption and transmission electron microscopy. Mater. Lett., 2006, 60, 2682-2685.
[http://dx.doi.org/10.1016/j.matlet.2006.01.066]
[45]
Naik, S.P.; Chiang, A.S.T.; Thompson, R.W. Synthesis of zeolitic mesoporous materials by dry gel conversion under controlled humidity. J. Phys. Chem. B, 2003, 107, 7006-7014.
[http://dx.doi.org/10.1021/jp034425u]
[46]
Liu, D.; Hu, S.; Lau, R.; Borgna, A.; Haller, G.L.; Yang, Y. Hydroconversion of N-heptane over Pt/Al-MCM-41 mesoporous molecular sieves. Chem. Eng. J., 2009, 151, 308-318.
[http://dx.doi.org/10.1016/j.cej.2009.03.052]
[47]
Vaschetto, E.G.; Pecchi, G.A.; Casuscelli, S.G.; Eimer, G.A. nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone Oxime toward ɛ-Caprolactam. Microporous Mesoporous Mater., 2014, 200, 110-116.
[http://dx.doi.org/10.1016/j.micromeso.2014.08.030]
[48]
Duan, C.; Zhang, X.; Zhou, R.; Hua, Y.; Zhang, L.; Chen, J. Comparative Studies of Ethanol to Propylene over HZSM-5/SAPO-34 Catalysts Prepared by Hydrothermal Synthesis and Physical Mixture. Fuel Process. Technol., 2013, 108, 31-40.
[http://dx.doi.org/10.1016/j.fuproc.2012.03.015]
[49]
Lisi, L.; Lasorella, G.; Malloggi, S.; Russo, G. Single and combined deactivating effect of alkali metals and HCl on commercial SCR catalysts. Appl. Catal. B, 2004, 50, 251-258.
[http://dx.doi.org/10.1016/j.apcatb.2004.01.007]
[50]
Gonçalves, V.L.C.; Pinto, B.P.; Silva, J.C.; Mota, C.J.A. Acetylation of glycerol catalyzed by different solid acids. Catal. Today, 2008, 133, 673-677.
[http://dx.doi.org/10.1016/j.cattod.2007.12.037]
[51]
Locus, R.; Verboekend, D.; Zhong, R.; Houthoofd, K.; Jaumann, T.; Oswald, S.; Giebeler, L.; Baron, G.; Sels, B.F. Enhanced acidity and accessibility in Al-MCM-41 through aluminum activation. Chem. Mater., 2016, 28, 7731-7743.
[http://dx.doi.org/10.1021/acs.chemmater.6b02874]
[52]
Min, H-K.; Park, M.B.; Hong, S.B. Methanol-to-Olefin Conversion over H-MCM-22 and H-ITQ-2 Zeolites. J. Catal., 2010, 271, 186-194.
[http://dx.doi.org/10.1016/j.jcat.2010.01.012]
[53]
Wang, P.; Lv, A.; Hu, J.; Xu, J.; Lu, G. The Synthesis of SAPO-34 with Mixed Template and Its Catalytic Performance for Methanol to Olefins Reaction. Microporous Mesoporous Mater., 2012, 152, 178-184.
[http://dx.doi.org/10.1016/j.micromeso.2011.11.037]
[54]
Prakash, A.M.; Unnikrishnan, S. Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template. J. Chem. Soc., Faraday Trans., 1994, 90, 2291-2296.
[http://dx.doi.org/10.1039/ft9949002291]
[55]
Masoumi, S.; Towfighi, J.; Mohamadalizadeh, A.; Kooshki, Z.; Rahimi, K. Tri-Templates synthesis of SAPO-34 and its performance in MTO reaction by statistical design of experiments. Appl. Catal. A Gen., 2015, 493, 103-111.
[http://dx.doi.org/10.1016/j.apcata.2014.12.033]
[56]
Lee, Y-J.; Baek, S-C.; Jun, K-W. Methanol conversion on SAPO-34 catalysts prepared by mixed template method. Appl. Catal. A Gen., 2007, 329, 130-136.
[http://dx.doi.org/10.1016/j.apcata.2007.06.034]
[57]
Xiu, F-R.; Wang, Y.; Yu, X.; Li, Y.; Lu, Y.; Zhou, K.; He, J.; Song, Z.; Gao, X. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment. Sci. Total Environ., 2020.708134532
[http://dx.doi.org/10.1016/j.scitotenv.2019.134532 PMID: 31785902]
[58]
Zhang, H.; Shao, C.; Kong, W.; Wang, Y.; Cao, W.; Liu, C.; Shen, C. Memory effect on the crystallization behavior of poly (lactic acid) probed by infrared spectroscopy. Eur. Polym. J., 2017, 91, 376-385.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.04.016]
[59]
Askari, S.; Halladj, R.; Sohrabi, M. Methanol conversion to light olefins over sonochemically prepared SAPO-34 nanocatalyst. Microporous Mesoporous Mater., 2012, 163, 334-342.
[http://dx.doi.org/10.1016/j.micromeso.2012.07.041]
[60]
Wei, Y.; Zhang, D.; He, Y.; Xu, L.; Yang, Y.; Su, B-L.; Liu, Z. Catalytic Performance of Chloromethane Transformation for Light Olefins Production over SAPO-34 with Different Si Content. Catal. Lett., 2007, 114, 30-35.
[http://dx.doi.org/10.1007/s10562-007-9038-4]
[61]
Ibarra, Á.; Veloso, A.; Bilbao, J.; Arandes, J.M.; Castaño, P. Dual coke deactivation pathways during the catalytic cracking of raw bio-oil and vacuum gasoil in FCC conditions. Appl. Catal. B, 2016, 182, 336-346.
[http://dx.doi.org/10.1016/j.apcatb.2015.09.044]
[62]
Xiu, F-R.; Li, Y.; Qi, Y.; Yu, X.; He, J.; Lu, Y.; Gao, X.; Deng, Y.; Song, Z. A novel treatment of waste printed circuit boards by low-temperature near-critical aqueous ammonia: Debromination and preparation of nitrogen-containing fine chemicals. Waste Manag., 2019, 84, 355-363.
[http://dx.doi.org/10.1016/j.wasman.2018.12.010 PMID: 30691910]
[63]
Morga, R. Chemical structure of semifusinite and fusinite of steam and coking coal from the upper silesian coal basin (poland) and its changes during heating as inferred from micro-FTIR analysis. Int. J. Coal Geol., 2010, 84, 1-15.
[http://dx.doi.org/10.1016/j.coal.2010.07.003]
[64]
Shin, S-M.; Park, J-K.; Jung, S-M. Changes of aromatic CH and aliphatic CH in in-situ FT-IR spectra of bituminous coals in the thermoplastic range. ISIJ Int., 2015, 55, 1591-1598.
[http://dx.doi.org/10.2355/isijinternational.ISIJINT-2014-625]
[65]
Zhang, H.; Shao, S.; Xiao, R.; Shen, D.; Zeng, J. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates. Energy Fuels, 2013, 28, 52-57.
[http://dx.doi.org/10.1021/ef401458y]
[66]
Aghamohammadi, S.; Haghighi, M. Dual-template synthesis of nanostructured CoAPSO-34 used in methanol to olefins: effect of template combinations on catalytic performance and coke formation. Chem. Eng. J., 2015, 264, 359-375.
[http://dx.doi.org/10.1016/j.cej.2014.11.102]
[67]
Sedighi, M.; Ghasemi, M.; Sadeqzadeh, M.; Hadi, M. Thorough study of the effect of metal-incorporated SAPO-34 molecular sieves on catalytic performances in MTO process. Powder Technol., 2016, 291, 131-139.
[http://dx.doi.org/10.1016/j.powtec.2015.11.066]
[68]
Guo, X.; Zheng, Y.; Zhang, B.; Chen, J. Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil. Biomass Bioenergy, 2009, 33, 1469-1473.
[http://dx.doi.org/10.1016/j.biombioe.2009.07.002]
[69]
Matsushita, K.; Hauser, A.; Marafi, A.; Koide, R.; Stanislaus, A. Initial coke deposition on hydrotreating catalysts. part 1. changes in coke properties as a function of time on stream. Fuel, 2004, 83, 1031-1038.
[http://dx.doi.org/10.1016/j.fuel.2003.10.015]
[70]
Zhang, X.; Wang, Y.; Xin, F. Coke deposition and characterization on titanium silicalite-1 catalyst in cyclohexanone ammoximation. Appl. Catal. A Gen., 2006, 307, 222-230.
[http://dx.doi.org/10.1016/j.apcata.2006.03.050]
[71]
Yuwapornpanit, R.; Jitkarnka, S. Cu-Doped catalysts and their impacts on tire-derived oil and sulfur removal. J. Anal. Appl. Pyrolysis, 2015, 111, 200-208.
[http://dx.doi.org/10.1016/j.jaap.2014.11.009]
[72]
Ahmed, R.; Sinnathambi, C.M.; Subbarao, D. Kinetics of de-coking of spent reforming catalyst. J. Appl. Sci. (Faisalabad), 2011, 11, 1225-1230.
[http://dx.doi.org/10.3923/jas.2011.1225.1230]
[73]
Liu, B.S.; Au, C.T. Sol–Gel-generated La 2 NiO 4 for CH 4/CO 2 reforming. Catal. Lett., 2003, 85, 165-170.
[http://dx.doi.org/10.1023/A:1022133511420]
[74]
Liu, B.; Yang, Y.; Sayari, A. Non-oxidative dehydroaromatization of methane over ga-promoted Mo/HZSM-5-based catalysts. Appl. Catal. A Gen., 2001, 214, 95-102.
[http://dx.doi.org/10.1016/S0926-860X(01)00470-7]
[75]
Zhang, W.D.; Liu, B.S.; Zhu, C.; Tian, Y.L. Preparation of La2NiO4/ZSM-5 catalyst and catalytic performance in CO2/CH4 reforming to syngas. Appl. Catal. A Gen, 2005, 292, 138-143.
[http://dx.doi.org/10.1016/j.apcata.2005.05.018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy