Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Progress in the Synthesis and Applications of Azaacenes

Author(s): Yuechao Wu, Yi Jin, Jianguo Xu, Yanwen Lv* and Jiangang Yu*

Volume 24, Issue 8, 2020

Page: [885 - 899] Pages: 15

DOI: 10.2174/1385272824999200427081309

Price: $65

Abstract

Partial substitution of CH groups in the skeletons of linearly fused phenyl rings provides an appreciable possibility to tailor their properties. Among them, azaacenes induced from a partial substitution of oligoacenes by nitrogen are one of the most promising derivatives with a view of their potential application in organic electronic devices as a novel organic n-type semiconductor. Hence this review focuses on recent progress in the synthesis of azaacenes and their applications beyond organic field-effect transistors (OFETs) such as organic light-emitting diodes (OLEDs), phototransistors, photoelectrical chemical cells, organic memory, solar cells, conductors and sensors.

Keywords: Azaacenes, electronic devices, light-emitting diodes, n-type semiconductors, organic sensors, solar cells.

Graphical Abstract

[1]
Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett., 1977, 39(17), 1098-1101.
[http://dx.doi.org/10.1103/PhysRevLett.39.1098]
[2]
Gelinck, G.H.; Huitema, H.E.A.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J.B.; Geuns, T.C.T.; Beenhakkers, M.; Giesbers, J.B.; Huisman, B.H.; Meijer, E.J.; Benito, E.M.; Touwslager, F.J.; Marsman, A.W.; van Rens, B.J.E.; de Leeuw, D.M. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater., 2004, 3(2), 106-110.
[http://dx.doi.org/10.1038/nmat1061] [PMID: 14743215]
[3]
Zhou, L.S.; Wanga, A.; Wu, S.C.; Sun, J.; Park, S.; Jackson, T.N. All-organic active matrix flexible display. Appl. Phys. Lett., 2006, 88 083502
[http://dx.doi.org/10.1063/1.2178213]
[4]
Lee, S.; Koo, B.; Park, J.G.; Moon, H.; Hahn, J.; Kim, J.M. Development of high-performance organic thin-film transistors for large-area displays. MRS Bull., 2006, 31, 455-459.
[http://dx.doi.org/10.1557/mrs2006.118]
[5]
Sirringhaus, H.; Kawase, T.; Friend, R.H. High-resolution ink-jet printing of all-polymer transistor circuits. MRS Bull., 2001, 26(7), 539-543.
[http://dx.doi.org/10.1557/mrs2001.127]
[6]
Rogers, J.A.; Bao, Z.; Baldwin, K.; Dodabalapur, A.; Crone, B.; Raju, V.R.; Kuck, V.; Katz, H.; Amundson, K.; Ewing, J.; Drzaic, P. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA, 2001, 98(9), 4835-4840.
[http://dx.doi.org/10.1073/pnas.091588098] [PMID: 11320233]
[7]
Li, J.B.; Zhang, Q.C. Mono- and oligocyclic aromatic ynes and diynes as building blocks to approach larger acenes, heteroacenes, and twistacenes. Synlett, 2013, 24, 686-696.
[http://dx.doi.org/10.1055/s-0032-1318157]
[8]
Qu, H.M.; Chi, C.Y. Synthetic chemistry of acenes and heteroacenes. Curr. Org. Chem., 2010, 14(18), 2070-2108.
[http://dx.doi.org/10.2174/138527210793351580]
[9]
Ye, Q.; Chi, C.Y. Recent highlights and perspectives on acene based molecules and materials. Chem. Mater., 2014, 26(14), 4046-4056.
[http://dx.doi.org/10.1021/cm501536p]
[10]
Jiang, W.; Li, Y.; Wang, Z. Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev., 2013, 42(14), 6113-6127.
[http://dx.doi.org/10.1039/c3cs60108k] [PMID: 23628866]
[11]
Stolar, M.; Baumgartner, T. Phosphorus-containing materials for organic electronics. Chem. Asian J., 2014, 9(5), 1212-1225.
[http://dx.doi.org/10.1002/asia.201301670] [PMID: 24678037]
[12]
Wang, X.Y.; Wang, J.Y.; Pei, J. BN heterosuperbenzenes: synthesis and properties. Chemistry, 2015, 21(9), 3528-3539.
[http://dx.doi.org/10.1002/chem.201405627] [PMID: 25469827]
[13]
Winkler, M.; Houk, K.N. Nitrogen-rich oligoacenes: candidates for n-channel organic semiconductors. J. Am. Chem. Soc., 2007, 129(6), 1805-1815.
[http://dx.doi.org/10.1021/ja067087u] [PMID: 17249669]
[14]
Constantinides, C.P.; Koutentis, P.A.; Schatz, J. A DFT study of the ground state multiplicities of linear vs angular polyheteroacenes. J. Am. Chem. Soc., 2004, 126(49), 16232-16241.
[http://dx.doi.org/10.1021/ja045006t] [PMID: 15584760]
[15]
Ahmed, R.; Simbrunner, C.; Baig, M.A.; Sitter, H. Grain size and interface dependence of bias stress stability of N-type organic field effect transistors. ACS Appl. Mater. Interfaces, 2015, 7(40), 22380-22384.
[http://dx.doi.org/10.1021/acsami.5b06210] [PMID: 26381018]
[16]
Endres, A.H.; Schaffroth, M.; Paulus, F.; Reiss, H.; Wadepohl, H.; Rominger, F.; Krämer, R.; Bunz, U.H.F. Coronene-containing N-heteroarenes: 13 rings in a row. J. Am. Chem. Soc., 2016, 138(6), 1792-1795.
[http://dx.doi.org/10.1021/jacs.5b12642] [PMID: 26808212]
[17]
Santhini, P.V.; Krishnan R, A.; Babu, S.A.; Simethy, B.S.; Das, G.; Praveen, V.K.; Varughese, S.; John, J. One-pot MCR-oxidation approach toward indole-fused heteroacenes. J. Org. Chem., 2017, 82(19), 10537-10548.
[http://dx.doi.org/10.1021/acs.joc.7b02039] [PMID: 28910533]
[18]
Chu, M.; Fan, J.X.; Yang, S.; Liu, D.; Ng, C.F.; Dong, H.; Ren, A.M.; Miao, Q. Halogenated tetraazapentacenes with electron mobility as high as 27.8 cm2V-1s-1 in solution-processed N-channel organic thin-film transistors. Adv. Mater., 2018, 30(38) e1803467
[http://dx.doi.org/10.1002/adma.201803467] [PMID: 30066472]
[19]
Li, J.; Shen, Y.; Wan, J.; Yu, X.; Zhang, Q. Recent progress in the usage of phenazinediamine and its analogues as building blocks to construct large N-heteroacenes. Eur. J. Org. Chem., 2018, 2018(26), 3375-3390.
[http://dx.doi.org/10.1002/ejoc.201800478]
[20]
Reiss, H.; Ji, L.; Han, J.; Koser, S.; Tverskoy, O.; Freudenberg, J.; Hinkel, F.; Moos, M.; Friedrich, A.; Krummenacher, I.; Lambert, C.; Braunschweig, H.; Dreuw, A.; Marder, T.B.; Bunz, U.H.F. Bromination improves the electron mobility of tetraazapentacene. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9543-9547.
[http://dx.doi.org/10.1002/anie.201805728] [PMID: 29851219]
[21]
Guevara-Level, P.; Pascal, S.; Siri, O.; Jacquemin, D. First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes. Phys. Chem. Chem. Phys., 2019, 21(41), 22910-22918.
[http://dx.doi.org/10.1039/C9CP04835A] [PMID: 31596289]
[22]
Li, G.; Wang, S.; Yang, S.; Liu, G.; Hao, P.; Zheng, Y.; Long, G.; Li, D.; Zhang, Y.; Yang, W.; Xu, L.; Gao, W.; Zhang, Q.; Cui, G.; Tang, B. Synthesis, photophysical properties and two-photon absorption study of tetraazachrysene-based N-heteroacenes. Chem. Asian J., 2019, 14(10), 1807-1813.
[http://dx.doi.org/10.1002/asia.201801656] [PMID: 30548955]
[23]
Lunchev, A.V.; Morris, S.A.; Ganguly, R.; Grimsdale, A.C. Synthesis and electronic properties of novel 5,7-diazapentacene derivatives. Chemistry, 2019, 25(7), 1819-1823.
[http://dx.doi.org/10.1002/chem.201805466] [PMID: 30478866]
[24]
Zhao, K.; Long, G.; Liu, W.; Li, D-S.; Gao, W.; Zhang, Q. U-shaped helical azaarenes: synthesis, structures, and properties. J. Org. Chem., 2020, 85(1), 291-295.
[http://dx.doi.org/10.1021/acs.joc.9b02895] [PMID: 31797673]
[25]
Li, J.; Zhang, Q. Linearly fused azaacenes: novel approaches and new applications beyond Field-Effect Transistors (FETs). ACS Appl. Mater. Interfaces, 2015, 7(51), 28049-28062.
[http://dx.doi.org/10.1021/acsami.5b00113] [PMID: 25992713]
[26]
Bunz, U.H.F. N-heteroacenes. Chemistry, 2009, 15(28), 6780-6789.
[http://dx.doi.org/10.1002/chem.200900990] [PMID: 19551789]
[27]
Richards, G.J.; Hill, J.P.; Mori, T.; Ariga, K. Putting the ‘N’ in ACENE: pyrazinacenes and their structural relatives. Org. Biomol. Chem., 2011, 9(14), 5005-5017.
[http://dx.doi.org/10.1039/c1ob05454f] [PMID: 21655575]
[28]
Miao, Q. N-Heteropentacenes and N-heteropentacenequinones: from molecules to semiconductors. Synlett, 2012, 23(3), 326-336.
[http://dx.doi.org/10.1055/s-0031-1290323]
[29]
Bunz, U.H.F.; Engelhart, J.U.; Lindner, B.D.; Schaffroth, M. Large N-heteroacenes: new tricks for very old dogs? Angew. Chem. Int. Ed. Engl., 2013, 52(14), 3810-3821.
[http://dx.doi.org/10.1002/anie.201209479] [PMID: 23420781]
[30]
Miao, Q. Ten years of N-heteropentacenes as semiconductors for organic thin-film transistors. Adv. Mater., 2014, 26(31), 5541-5549.
[http://dx.doi.org/10.1002/adma.201305497] [PMID: 24585514]
[31]
Jiang, H.; Hu, W. The emergence of organic single-crystal electronics. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1408-1428.
[http://dx.doi.org/10.1002/anie.201814439] [PMID: 30927312]
[32]
Liu, Y.Y.; Song, C.L.; Zeng, W.J.; Zhou, K.G.; Shi, Z.F.; Ma, C.B.; Yang, F.; Zhang, H.L.; Gong, X. High and balanced hole and electron mobilities from ambipolar thin-film transistors based on nitrogen-containing oligoacences. J. Am. Chem. Soc., 2010, 132(46), 16349-16351.
[http://dx.doi.org/10.1021/ja107046s] [PMID: 20979424]
[33]
He, Z.; Liu, D.; Mao, R.; Tang, Q.; Miao, Q. Hydrogen-bonded dihydrotetraazapentacenes. Org. Lett., 2012, 14(4), 1050-1053.
[http://dx.doi.org/10.1021/ol203404q] [PMID: 22292727]
[34]
Lindner, B.D.; Engelhart, J.U.; Märken, M.; Tverskoy, O.; Appleton, A.L.; Rominger, F.; Hardcastle, K.I.; Enders, M.; Bunz, U.H.F. Synthesis and optical properties of diaza- and tetraazatetracenes. Chemistry, 2012, 18(15), 4627-4633.
[http://dx.doi.org/10.1002/chem.201103227] [PMID: 22345054]
[35]
Tverskoy, O.; Rominger, F.; Peters, A.; Himmel, H.J.; Bunz, U.H.F. An efficient synthesis of tetraazapentacenes. Angew. Chem. Int. Ed. Engl., 2011, 50(15), 3557-3560.
[http://dx.doi.org/10.1002/anie.201007654] [PMID: 21416569]
[36]
Engelhart, J.U.; Lindner, B.D.; Tverskoy, O.; Rominger, F.; Bunz, U.H.F. Large azaacenes: pyridine rings reacting like carbonyl groups. Org. Lett., 2012, 14(4), 1008-1011.
[http://dx.doi.org/10.1021/ol203334u] [PMID: 22316051]
[37]
Appleton, A.L.; Barlow, S.; Marder, S.R.; Hardcastle, K.I.; Bunz, U.H.F.N. N-dihydrotetraazaheptacene: a synthetic strategy towards larger acenes with amibent stability. Synlett, 2011, 14, 1983-1986.
[38]
Appleton, A.L.; Brombosz, S.M.; Barlow, S.; Sears, J.S.; Bredas, J.L.; Marder, S.R.; Bunz, U.H.F. Effects of electronegative substitution on the optical and electronic properties of acenes and diazaacenes. Nat. Commun., 2010, 1(7), 91-97.
[http://dx.doi.org/10.1038/ncomms1088] [PMID: 20981019]
[39]
Song, C.L.; Ma, C.B.; Yang, F.; Zeng, W.J.; Zhang, H.L.; Gong, X. Synthesis of tetrachloro-azapentacene as an ambipolar organic semiconductor with high and balanced carrier mobilities. Org. Lett., 2011, 13(11), 2880-2883.
[http://dx.doi.org/10.1021/ol2008999] [PMID: 21548606]
[40]
Bunz, U.H.F. The larger N-heteroacenes. Pure Appl. Chem., 2010, 82(4), 953-968.
[http://dx.doi.org/10.1351/PAC-CON-09-09-17]
[41]
Kummer, F.; Zimmermann, H. Ãœber die elektronenspektren linearer Diaza- und tetraaza-acene. Ber. Bunsenges. Phys. Chem, 1967, 71(9-10), 1119-1126.
[42]
Bunz, U.H.F. The larger linear N-heteroacenes. Acc. Chem. Res., 2015, 48(6), 1676-1686.
[http://dx.doi.org/10.1021/acs.accounts.5b00118] [PMID: 25970089]
[43]
Muccini, M. A bright future for organic field-effect transistors. Nat. Mater., 2006, 5(8), 605-613.
[http://dx.doi.org/10.1038/nmat1699] [PMID: 16880804]
[44]
Liang, Z.; Tang, Q.; Xu, J.; Miao, Q. Soluble and stable N-heteropentacenes with high field-effect mobility. Adv. Mater., 2011, 23(13), 1535-1539.
[http://dx.doi.org/10.1002/adma.201004325] [PMID: 21449057]
[45]
Tang, C.W.; Van Slyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett., 1987, 51(12), 913-915.
[http://dx.doi.org/10.1063/1.98799]
[46]
Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M.E.; Adachi, C. 1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. J. Am. Chem. Soc., 2002, 124(33), 9945-9954.
[http://dx.doi.org/10.1021/ja0263588] [PMID: 12175257]
[47]
Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698), 151-154.
[http://dx.doi.org/10.1038/25954]
[48]
Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. A novel class of emitting amorphous molecular materials as bipolar radical formants: 2-4-[bis(4-methylphenyl)amino]phenyl- 5-(dimesitylboryl)thiophene and 2-4-[bis(9,9-dimethylfluorenyl)amino]phenyl- 5-(dimesitylboryl)thiophene. J. Am. Chem. Soc., 2000, 122(44), 11021-11022.
[http://dx.doi.org/10.1021/ja0023332]
[49]
Mitschke, U.; Bauerle, P. The electroluminescence of organic materials. J. Mater. Chem., 2000, 10(7), 1471-1507.
[http://dx.doi.org/10.1039/a908713c]
[50]
Kraft, A.; Grimsdale, A.C.; Holmes, A.B. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. Engl., 1998, 37(4), 402-428.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402:AID-ANIE402>3.0.CO;2-9] [PMID: 29711177]
[51]
Bernius, M.T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with light-emitting polymers. Adv. Mater., 2000, 12(23), 1737-1750.
[http://dx.doi.org/10.1002/1521-4095(200012)12:23<1737:AID-ADMA1737>3.0.CO;2-N]
[52]
Bao, Z.; Rogers, J.A.; Dodabalapur, A.; Lovinger, A.J.; Katz, H.E.; Raju, V.R.; Peng, Z.; Galvin, M.E. Polymer light emitting diodes: new materials and devices. Opt. Mater., 1999, 12(2), 177-182.
[http://dx.doi.org/10.1016/S0925-3467(99)00050-6]
[53]
Cao, Y.; Parker, I.D.; Yu, G.; Zhang, C.; Heeger, A.J. Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature, 1999, 397(6718), 414-417.
[http://dx.doi.org/10.1038/17087] [PMID: 29667982]
[54]
Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.C.C.; dos Santos, D.A.; Bredas, J.L.; Loglund, M.; Salaneck, W.R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715), 121-128.
[http://dx.doi.org/10.1038/16393]
[55]
Zheng, M.; Ding, L.; Gu¨rel, E.E.; Karasz, F.E. Synthesis and electroluminescent studies of blue-emitting copolymers containing phenylene vinylene and oxadiazole moieties in the main chain. J. Polym. Sci. A Polym. Chem., 2002, 40(2), 235-241.
[http://dx.doi.org/10.1002/pola.10095]
[56]
Peng, Z.; Bao, Z.; Galvin, M.E. Oxadiazole-containing conjugated polymers for light-emitting diodes. Adv. Mater., 1998, 10(9), 680-684.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199806)10:9<680:AID-ADMA680>3.0.CO;2-H]
[57]
Chen, J.P.; Markiewicz, D.; Lee, V.Y.; Klaerner, G.; Miller, R.D.; Scott, J.C. Improved efficiencies of light-emitting diodes through incorporation of charge transporting components in tri-block polymers. Synth. Met., 1999, 107(3), 203-207.
[http://dx.doi.org/10.1016/S0379-6779(99)00168-X]
[58]
Robinson, M.R.; Wang, S.; Bazan, G.C.; Cao, Y. Electroluminescence from well-defined tetrahedral oligophenylenevinylene tetramers. Adv. Mater., 2000, 12(22), 1701-1704.
[http://dx.doi.org/10.1002/1521-4095(200011)12:22<1701:AID-ADMA1701>3.0.CO;2-U]
[59]
Tarkka, R.M.; Zhang, X.; Jenekhe, S.A. Electrically generated intramolecular proton transfer: electroluminescence and stimulated emission from polymers. J. Am. Chem. Soc., 1996, 118(39), 9438-9439.
[http://dx.doi.org/10.1021/ja9613365]
[60]
Jenekhe, S.A.; Zhang, X.; Chen, X.L.; Choong, V.E.; Gao, Y.; Hsieh, B.R. Finite size effects on electroluminescence of nanoscale semiconducting polymer heterojunctions. Chem. Mater., 1997, 9(2), 409-412.
[http://dx.doi.org/10.1021/cm960474q]
[61]
Zhang, X.; Shetty, A.S.; Jenekhe, S.A. Electroluminescence and photophysical properties of polyquinolines. Macromolecules, 1999, 32(22), 7422-7429.
[http://dx.doi.org/10.1021/ma990960+]
[62]
Cui, Y.; Zhang, X.; Jenekhe, S.A. Thiophene-linked polyphenylquinoxaline: A new electron transport conjugated polymer for electroluminescent devices. Macromolecules, 1999, 32(11), 3824-3826.
[http://dx.doi.org/10.1021/ma9901994]
[63]
Zhang, X.; Jenekhe, S.A. Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 2000, 33(6), 2069-2082.
[http://dx.doi.org/10.1021/ma991913k]
[64]
Tonzola, C.J.; Alam, M.M.; Jenekhe, S.A. New soluble n-type conjugated copolymer for light-emitting diodes. Adv. Mater., 2002, 14(15), 1086-1090.
[http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1086:AID-ADMA1086>3.0.CO;2-9]
[65]
Zhang, X.; Kale, D.M.; Jenekhe, S.A. Electroluminescence of multicomponent conjugated polymers. 2. Photophysics and enhancement of electroluminescence from blends of polyquinolines. Macromolecules, 2002, 35(2), 382-393.
[http://dx.doi.org/10.1021/ma0112164]
[66]
Alam, M.M.; Jenekhe, S.A. Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes. Chem. Mater., 2002, 14(11), 4775-1780.
[http://dx.doi.org/10.1021/cm020600s]
[67]
Alam, M.M.; Tonzola, C.J.; Jenekhe, S.A. Nanophase-separated blends of acceptor and donor conjugated polymers. Efficient electroluminescence from binary polyquinoline/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevi-nylene) and polyquinoline/poly(3-octylthiophene) blends. Macromolecules, 2003, 36(17), 6577-6587.
[http://dx.doi.org/10.1021/ma0346299]
[68]
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev., 2012, 112(4), 2208-2267.
[http://dx.doi.org/10.1021/cr100380z] [PMID: 22111507]
[69]
Tadokoro, M.; Yasuzuka, S.; Nakamura, M.; Shinoda, T.; Tatenuma, T.; Mitsumi, M.; Ozawa, Y.; Toriumi, K.; Yoshino, H.; Shiomi, D.; Sato, K.; Takui, T.; Mori, T.; Murata, K. A high-conductivity crystal containing a copper(I) coordination polymer bridged by the organic acceptor tanc. Angew. Chem. Int. Ed. Engl., 2006, 45(31), 5144-5147.
[http://dx.doi.org/10.1002/anie.200600553] [PMID: 16927325]
[70]
Casu, M.B.; Imperia, P.; Schrader, S.; Falk, B.; Jandke, M.; Strohriegl, P. Ultraviolet photoelectron spectroscopy on new heterocyclic materials for multilayer organic light emitting diodes. Synth. Met., 2001, 124(1), 79-81.
[http://dx.doi.org/10.1016/S0379-6779(01)00427-1]
[71]
Ganschow, M.; Koser, S.; Hahn, S.; Rominger, F.; Freudenberg, J.; Bunz, U.H.F. Dibenzobarrelene-based azaacenes: emitters in organic light-emitting diodes. Chemistry, 2017, 23(18), 4415-4421.
[http://dx.doi.org/10.1002/chem.201605820] [PMID: 28124454]
[72]
Odom, S.A.; Parkin, S.R.; Anthony, J.E. Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett., 2003, 5(23), 4245-4248.
[http://dx.doi.org/10.1021/ol035415e] [PMID: 14601971]
[73]
Tonzola, C.J.; Alam, M.M.; Kaminsky, W.; Jenekhe, S.A. New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines. J. Am. Chem. Soc., 2003, 125(44), 13548-13558.
[http://dx.doi.org/10.1021/ja036314e] [PMID: 14583052]
[74]
Hayashi, H.; Kato, Y.; Matsumoto, A.; Shikita, S.; Aizawa, N.; Suzuki, M.; Aratani, N.; Yasuda, T.; Yamada, H. Synthesis of anthracene derivatives with azaacene-containing iptycene wings and the utilization as a dopant for solution-processed organic light-emitting diodes. Chemistry, 2019, 25(68), 15565-15571.
[http://dx.doi.org/10.1002/chem.201903476] [PMID: 31529654]
[75]
Duong, H.M.; Bendikov, M.; Steiger, D.; Zhang, Q.; Sonmez, G.; Yamada, J.; Wudl, F. Efficient synthesis of a novel, twisted and stable, electroluminescent “twistacene”. Org. Lett., 2003, 5(23), 4433-4436.
[http://dx.doi.org/10.1021/ol035751v] [PMID: 14602018]
[76]
Lindner, B.D.; Zhang, Y.X.; Hofle, S.; Berger, N.; Teusch, C.; Jesper, M.; Hardcastle, K.I.; Qian, X.H.; Lemmer, U.; Colsmann, A.; Bunz, U.H.F.; Hamburger, M. N-fused quionoxalines and benzoquinoxalines as attractive emitters for organic light emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(36), 5718-5724.
[http://dx.doi.org/10.1039/c3tc30828f]
[77]
Li, J.B.; Yan, F.; Gao, J.K.; Li, P.Z.; Xiong, W.W.; Zhao, Y.L.; Sun, X.W.; Zhang, Q.C. Synthesis, physical properties and OLED performance of azatetracenes. Dyes Pigm., 2015, 112, 93-98.
[http://dx.doi.org/10.1016/j.dyepig.2014.06.027]
[78]
Li, G.; Abiyasa, A.P.; Gao, J.K.; Divayana, Y.; Chen, W.Q.; Zhao, Y.; Sun, X.W.; Zhang, Q.C. Synthesis and properties of a diazopentacene analogue. Asian J. Org. Chem., 2012, 1(4), 346-351.
[http://dx.doi.org/10.1002/ajoc.201200120]
[79]
Guo, L.; Leobandung, E.; Chou, S.Y. A silicon single-electron transistor memory operating at room temperature. Science, 1997, 275(5300), 649-651.
[http://dx.doi.org/10.1126/science.275.5300.649] [PMID: 9005847]
[80]
Lankhorst, M.H.R.; Ketelaars, B.W.; Wolters, R.A.M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater., 2005, 4(4), 347-352.
[http://dx.doi.org/10.1038/nmat1350] [PMID: 15765107]
[81]
Alexe, M.; Harnagea, C.; Erfurth, W.; Hesse, D.; Gosele, U. 100-nm Lateral size ferroelectric memory cells fabricated by electron-beam direct writing. Appl. Phys., A Mater. Sci. Process., 2000, 70(3), 247-251.
[http://dx.doi.org/10.1007/s003390050043]
[82]
Jiang, G.Y.; Michinobu, T.; Yuan, W.F.; Feng, M.; Wen, Y.Q.; Du, S.X.; Gao, H.J.; Jiang, L.; Song, Y.L. Crystalline thin film of a donor-substituted cyanoethynylethene for nanoscale data recording through intermolecular charge-transfer interactions. Adv. Mater., 2005, 17(24), 2170-2173.
[http://dx.doi.org/10.1002/adma.200500559]
[83]
Li, G.; Wu, Y.; Gao, J.; Li, J.; Zhao, Y.; Zhang, Q. Synthesis, physical properties, and anion recognition of two novel larger azaacenes: benzannelated hexazaheptacene and benzannelated N,N′-dihydrohexazaheptacene. Chem. Asian J., 2013, 8(7), 1574-1578.
[http://dx.doi.org/10.1002/asia.201300208] [PMID: 23606661]
[84]
Gu, P.Y.; Zhou, F.; Gao, J.; Li, G.; Wang, C.; Xu, Q.F.; Zhang, Q.; Lu, J.M. Synthesis, characterization, and nonvolatile ternary memory behavior of a larger heteroacene with nine linearly fused rings and two different heteroatoms. J. Am. Chem. Soc., 2013, 135(38), 14086-14089.
[http://dx.doi.org/10.1021/ja408208c] [PMID: 24025023]
[85]
Gu, P.Y.; Gao, J.K.; Lu, C.J.; Chen, W.Q.; Wang, C.Y.; Li, G.; Zhou, F.; Xu, Q.F.; Lu, J.M.; Zhang, Q.C. Synthesis of tetranitro-oxacalix[4]arene with oligoheteroacene groups and its nonvolatile ternary memory performance. Mater. Horiz., 2014, 1(4), 446-451.
[http://dx.doi.org/10.1039/C4MH00022F]
[86]
Hu, B.L.; Wang, C.Y.; Wang, J.X.; Gao, J.K.; Wang, K.; Wu, J.S.; Zhang, G.D.; Cheng, W.Q.; Venkateswarlu, B.; Wang, M.F.; Lee, P.S.; Zhang, Q.C. Inorganic-organic hybrid polymer with multiple redox for high-density data storage. Chem. Sci. (Camb.), 2014, 5(9), 3404-3408.
[http://dx.doi.org/10.1039/C4SC00823E]
[87]
Wang, C.; Wang, J.; Li, P.Z.; Gao, J.; Tan, S.Y.; Xiong, W.W.; Hu, B.; Lee, P.S.; Zhao, Y.; Zhang, Q. Synthesis, characterization, and non-volatile memory device application of an N-substituted heteroacene. Chem. Asian J., 2014, 9(3), 779-783.
[http://dx.doi.org/10.1002/asia.201301547] [PMID: 24382807]
[88]
Wang, C.; Hu, B.; Wang, J.; Gao, J.; Li, G.; Xiong, W.W.; Zou, B.; Suzuki, M.; Aratani, N.; Yamada, H.; Huo, F.; Lee, P.S.; Zhang, Q. Rewritable multilevel memory performance of a tetraazatetracene donor-acceptor derivative with good endurance. Chem. Asian J., 2015, 10(1), 116-119.
[http://dx.doi.org/10.1002/asia.201402899] [PMID: 25252165]
[89]
Li, G.; Zheng, K.; Wang, C.; Leck, K.S.; Hu, F.; Sun, X.W.; Zhang, Q. Synthesis and nonvolatile memory behaviors of dioxatetraazapentacene derivatives. ACS Appl. Mater. Interfaces, 2013, 5(14), 6458-6462.
[http://dx.doi.org/10.1021/am4023434] [PMID: 23834348]
[90]
Zhao, K.; Yu, F.; Liu, W.; Huang, Y.; Said, A.A.; Li, Y.; Zhang, Q. Unexpected synthesis, properties, and nonvolatile memory device application of imidazole-fused azaacenes. J. Org. Chem., 2020, 85(1), 101-107.
[http://dx.doi.org/10.1021/acs.joc.9b02156] [PMID: 31650830]
[91]
Li, G.; Miao, J.; Cao, J.; Zhu, J.; Liu, B.; Zhang, Q. Preparation and photoelectrochemical behavior of 1,4,6,8,11,13-hexazapentacene (HAP). Chem. Commun. (Camb.), 2014, 50(57), 7656-7658.
[http://dx.doi.org/10.1039/C4CC02908A] [PMID: 24898147]
[92]
Gu, P-Y.; Wang, Z.; Xiao, F-X.; Lin, Z.; Song, R.; Xu, Q-F.; Lu, J-M.; Liu, B.; Zhang, Q. An ambipolar azaacene as a stable photocathode for metal-free light-driven water reduction. Mater. Chem. Front., 2017, 1, 495-498.
[http://dx.doi.org/10.1039/C6QM00113K]
[93]
Ding, F.; Xia, D.; Ge, C.; Kang, Z.; Yang, Y.; Fan, R.; Lin, K.; Gao, X. Indenone-fused N-heteroacenes. J. Mater. Chem. C, 2019, 45, 14314-14319.
[http://dx.doi.org/10.1039/C9TC04962B]
[94]
Tang, Q.X.; Li, L.Q.; Song, Y.B.; Liu, Y.L.; Li, H.X.; Xu, W.; Liu, Y.Q.; Hu, W.P.; Zhu, D.B. Photoswitches and phototransistors form organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater., 2007, 19(18), 2624-2628.
[http://dx.doi.org/10.1002/adma.200700208]
[95]
Ji, H.X.; Hu, J.S.; Wan, L.J. ZnOEP based phototransistor: signal amplification and light-controlled switch. Chem. Commun. (Camb.), 2008, 44(23), 2653-2655.
[http://dx.doi.org/10.1039/b805204b] [PMID: 18535697]
[96]
Wu, Y.; Yin, Z.; Xiao, J.; Liu, Y.; Wei, F.; Tan, K.J.; Kloc, C.; Huang, L.; Yan, Q.; Hu, F.; Zhang, H.; Zhang, Q. Crystal structure and phototransistor behavior of N-substituted heptacence. ACS Appl. Mater. Interfaces, 2012, 4(4), 1883-1886.
[http://dx.doi.org/10.1021/am3003389] [PMID: 22475002]
[97]
Gu, P-Y.; Wang, Z.; Zhang, Q. Azaacenes as active elements for sensing and bio applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(44), 7060-7074.
[http://dx.doi.org/10.1039/C6TB02052F] [PMID: 32263642]
[98]
Craig, I.M.; Duong, H.M.; Wudl, F.; Schwartz, B.J. A new route to dual fluorescence: spectroscopic properties of the valence tautomers of a 3-(2H)-isoquinolinone derivative. Chem. Phys. Lett., 2009, 477(4), 319-324.
[http://dx.doi.org/10.1016/j.cplett.2009.07.041]
[99]
Bryant, J.J.; Zhang, Y.; Lindner, B.D.; Davey, E.A.; Appleton, A.L.; Qian, X.; Bunz, U.H.F. Alkynylated phenazines: synthesis, characterization, and metal-binding properties of their bis-triazolyl cycloadducts. J. Org. Chem., 2012, 77(17), 7479-7486.
[http://dx.doi.org/10.1021/jo3012978] [PMID: 22894605]
[100]
Gao, G.Y.; Qu, W.J.; Shi, B.B.; Zhang, P.; Lin, Q.; Yao, H.; Yang, W.L.; Zhang, Y-M.; Wei, T.B. A highly selective fluorescent chemosensor for iron ion based on 1H-imidazo [4,5-b] phenazine derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121(37), 514-519.
[http://dx.doi.org/10.1016/j.saa.2013.11.004] [PMID: 24291427]
[101]
Shi, B.B.; Zhang, P.; Wei, T.B.; Yao, H.; Lin, Q.; Liu, J.; Zhang, Y.M. A Reversible fluorescent chemosensor for mercury ions based on 1H-imidazo[4,5-b0phenazine derivatives. Tetrahedron, 2013, 69(37), 7981-7987.
[http://dx.doi.org/10.1016/j.tet.2013.07.007]
[102]
Shi, B.B.; Zhang, Y.M.; Wei, T.B.; Lin, Q.; Yao, H.; Zhang, P.; You, X.M. A fluorescent and colorimetric chemosensor for dihydrogen phosphate ions based on 2-pyridine-1H-imidazo[4,5- b]phenazine-zinc ensemble. Sens. Actuators B Chem., 2014, 190, 555-561.
[http://dx.doi.org/10.1016/j.snb.2013.09.043]
[103]
Li, G.; Duong, H.M.; Zhang, Z.; Xiao, J.; Liu, L.; Zhao, Y.; Zhang, H.; Huo, F.; Li, S.; Ma, J.; Wudl, F.; Zhang, Q. Approaching a stable, green twisted heteroacene through “clean reaction” strategy. Chem. Commun. (Camb.), 2012, 48(48), 5974-5976.
[http://dx.doi.org/10.1039/c2cc32048g] [PMID: 22565156]
[104]
Li, J.; Gao, J.; Li, G.; Xiong, W.; Zhang, Q. Azaisoquinolinones: N positions tell you different stories in their optical properties. J. Org. Chem., 2013, 78(24), 12760-12768.
[http://dx.doi.org/10.1021/jo402338n] [PMID: 24299117]
[105]
Li, J.; Gao, J.; Xiong, W.W.; Li, P.Z.; Zhang, H.; Zhao, Y.; Zhang, Q. Pyridinium-fused pyridinone: a novel “turn-on” fluorescent chemodosimeter for cyanide. Chem. Asian J., 2014, 9(1), 121-125.
[http://dx.doi.org/10.1002/asia.201301144] [PMID: 24347071]
[106]
Zhao, J.F.; Li, G.; Wang, C.Y.; Chen, W.Q.; Loo, S.C.J.; Zhang, Q.C.A. New N-substituted heteroacene can detect CN and F anions via anion-π interaction. RSC Advances, 2013, 3(25), 9653-9657.
[http://dx.doi.org/10.1039/c3ra40845k]
[107]
Li, G.; Gao, J.K.; Zhang, Q.C. Synthesis, characterization, and sensing behavior of an N-heteropentacene. Asian J. Org. Chem., 2014, 3(2), 203-208.
[http://dx.doi.org/10.1002/ajoc.201300210]
[108]
Brosius, V.; Müller, M.; Borstelmann, J.; Rominger, F.; Freudenberg, J.; Bunz, U.H.F. Azaacenodibenzosuberones. J. Org. Chem., 2020, 85(1), 296-300.
[http://dx.doi.org/10.1021/acs.joc.9b02756] [PMID: 31686519]
[109]
Zhang, Q.; Xiao, J.; Yin, Z.; Duong, H.M.; Qiao, F.; Boey, F.; Hu, X.; Zhang, H.; Wudl, F. Synthesis, characterization, and physical properties of a conjugated heteroacene: 2-methyl-1,4,6,7,8,9-hexaphenylbenz(g)isoquinolin-3(2H)-one (BIQ). Chem. Asian J., 2011, 6(3), 856-862.
[http://dx.doi.org/10.1002/asia.201000659] [PMID: 21344661]
[110]
Gu, P-Y.; Wang, N.; Wu, A.; Wang, Z.; Tian, M.; Fu, Z.; Sun, X.W.; Zhang, Q. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem. Asian J., 2016, 11(15), 2135-2138.
[http://dx.doi.org/10.1002/asia.201600856] [PMID: 27378599]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy