Abstract
Many studies have shown that the spatial distribution of genes within a single chromosome exhibits distinct patterns. However, little is known about the characteristics of inter-chromosomal distribution of genes (including protein-coding genes, processed transcripts and pseudogenes) in different genomes. In this study, we explored these issues using the available genomic data of both human and model organisms. Moreover, we also analyzed the distribution pattern of protein-coding genes that have been associated with 14 common diseases and the insert/deletion mutations and single nucleotide polymorphisms detected by whole genome sequencing in an acute promyelocyte leukemia patient. We obtained the following novel findings. Firstly, inter-chromosomal distribution of genes displays a nonstochastic pattern and the gene densities in different chromosomes are heterogeneous. This kind of heterogeneity is observed in genomes of both lower and higher species. Secondly, protein-coding genes involved in certain biological processes tend to be enriched in one or a few chromosomes. Our findings have added new insights into our understanding of the spatial distribution of genome and disease- related genes across chromosomes. These results could be useful in improving the efficiency of disease-associated gene screening studies by targeting specific chromosomes.
Keywords: Inter-chromosomal distribution, gene, protein-coding, disease-associated, non-stochastic pattern, density, DNA.
Graphical Abstract
[http://dx.doi.org/10.3390/genes8110294] [PMID: 29068386]
[http://dx.doi.org/10.1093/gbe/evy109] [PMID: 29860303]
[http://dx.doi.org/10.1371/journal.pone.0191228] [PMID: 29389947]
[http://dx.doi.org/10.1046/j.1365-294X.2003.02004.x] [PMID: 15012760]
[http://dx.doi.org/10.1186/s12864-017-3934-9] [PMID: 28716036]
[http://dx.doi.org/10.1126/science.aaj2114] [PMID: 28302794]
[http://dx.doi.org/10.1093/mutage/12.6.437] [PMID: 9412997]
[http://dx.doi.org/10.1101/gr.10.12.1986] [PMID: 11116093]
[http://dx.doi.org/10.1016/S0378-1119(01)00641-2] [PMID: 11591471]
[http://dx.doi.org/10.1016/S0378-1119(02)01038-7] [PMID: 12468098]
[http://dx.doi.org/10.1007/s00412-005-0039-z] [PMID: 16404627]
[http://dx.doi.org/10.1023/A:1021589031769] [PMID: 12575798]
[http://dx.doi.org/10.1128/MCB.25.18.8379-8386.2005] [PMID: 16135824]
[http://dx.doi.org/10.1093/hmg/10.3.211] [PMID: 11159939]
[http://dx.doi.org/10.1186/1471-2121-6-44] [PMID: 16336643]
[http://dx.doi.org/10.1371/journal.pone.0037423] [PMID: 22701567]
[http://dx.doi.org/10.1093/bioinformatics/btp324] [PMID: 19451168]
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[http://dx.doi.org/10.1101/gr.088013.108] [PMID: 19420381]
[http://dx.doi.org/10.1038/nmeth.1363] [PMID: 19668202]
[http://dx.doi.org/10.1093/nar/gkq603] [PMID: 20601685]
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[http://dx.doi.org/10.1093/nar/gkw1138] [PMID: 27899595]
[http://dx.doi.org/10.1016/j.cbpa.2008.04.619]
[http://dx.doi.org/10.1038/nrg1319] [PMID: 15131653]
[http://dx.doi.org/10.1016/j.ygeno.2007.11.002] [PMID: 18082363]
[http://dx.doi.org/10.1093/bioinformatics/btl673] [PMID: 17237058]
[http://dx.doi.org/10.1093/molbev/msp002] [PMID: 19150803]
[http://dx.doi.org/10.1038/ng1165] [PMID: 12740579]
[http://dx.doi.org/10.1016/j.ygeno.2007.01.010] [PMID: 17369017]
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090816] [PMID: 14527286]
[http://dx.doi.org/10.3389/fgene.2013.00004] [PMID: 23408347]
[http://dx.doi.org/10.1016/j.ccell.2014.12.001] [PMID: 25584892]
[http://dx.doi.org/10.1089/gtmb.2010.0081] [PMID: 20642358]