Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Protein Markers in Osteoporosis

Author(s): Teresa Porcelli, Letizia Pezzaioli, Andrea Delbarba, Filippo Maffezzoni, Carlo Cappelli and Alberto Ferlin*

Volume 27, Issue 12, 2020

Page: [1253 - 1259] Pages: 7

DOI: 10.2174/1871530320666200425204634

Price: $65

Abstract

Osteoporosis is a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue. Biomarkers of bone turnover have been used for years in bone disease management, especially to determine response to treatment. They are substances found in biological fluids, produced during the bone remodelling process. Recently, new approaches for the detection of bone physiology and pathology biomarkers have been proposed, among which proteomics, with particular interest in osteoporosis. The objective of this manuscript is to review current knowledge on proteomics applied to osteoporosis in vivo. The analysis of the 14 studies published to date showed a range of proteins whose expression is altered in patients with osteoporosis. The relatively small number of papers depends mainly on high costs and technical limitations; due to the difficulty to collect osteoclasts, most of the studies performed proteomics on peripheral blood monocytes (PBMs), already accepted as an excellent osteoporosis cell model in vivo. Among the identified proteins, the most promising are represented by Gelsolin (GSN), Annexin A2 (ANXA2), and Prolyl 4-hydroxylase (P4HB). They have been related to bone mineral density (BMD), sometimes in apparent disagreement (some upregulated and others downregulated in patients with low BMD).

Finally, worthy of mention is the application of proteomics in the emerging field of microvesicles (MVs); they are important messengers, widely present in body fluids, and have recently emerged as novel targets for the diagnosis of multiple diseases, among which musculoskeletal diseases. In conclusion, the proteomic field is relatively novel in osteoporosis and has a considerable but theoretical potential; further investigations are needed in order to make proteome-derived markers applicable to clinical practice.

Keywords: Biomarkers, bone mineral density, bone remodelling, bone turnover, osteoporosis, proteomics.

Graphical Abstract

[1]
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA, 2001, 285, 785-795.
[2]
Hlaing, T.T.; Compston, J.E. Biochemical markers of bone turnover - uses and limitations. Ann. Clin. Biochem., 2014, 51(Pt 2), 189-202.
[http://dx.doi.org/10.1177/0004563213515190] [PMID: 24399365]
[3]
Martin, T.J.; Seeman, E. Bone remodelling: Its local regulation and the emergence of bone fragility. Best Pract. Res. Clin. Endocrinol. Metab., 2008, 22(5), 701-722.
[http://dx.doi.org/10.1016/j.beem.2008.07.006] [PMID: 19028353]
[4]
Eastell, R.; Szulc, P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol., 2017, 5(11), 908-923.
[http://dx.doi.org/10.1016/S2213-8587(17)30184-5] [PMID: 28689768]
[5]
Marcus, R. Normal and abnormal bone remodeling in man. Annu. Rev. Med., 1987, 38, 129-141.
[http://dx.doi.org/10.1146/annurev.me.38.020187.001021] [PMID: 3555287]
[6]
Wada, T.; Nakashima, T.; Hiroshi, N.; Penninger, J.M. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med., 2006, 12(1), 17-25.
[http://dx.doi.org/10.1016/j.molmed.2005.11.007] [PMID: 16356770]
[7]
Eghbali-Fatourechi, G.; Khosla, S.; Sanyal, A.; Boyle, W.J.; Lacey, D.L.; Riggs, B.L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Invest., 2003, 111(8), 1221-1230.
[http://dx.doi.org/10.1172/JCI200317215] [PMID: 12697741]
[8]
Brincat, S.D.; Borg, M.; Camilleri, G.; Calleja-Agius, J. The role of cytokines in postmenopausal osteoporosis. Minerva Ginecol., 2014, 66(4), 391-407.
[PMID: 25020058]
[9]
Kuo, T.R.; Chen, C.H. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark. Res., 2017, 5, 18.
[http://dx.doi.org/10.1186/s40364-017-0097-4] [PMID: 28529755]
[10]
Dai, Z.; Wang, R.; Ang, L.W.; Yuan, J.M.; Koh, W.P. Bone turnover biomarkers and risk of osteoporotic hip fracture in an Asian population. Bone, 2016, 83, 171-177.
[http://dx.doi.org/10.1016/j.bone.2015.11.005] [PMID: 26555636]
[11]
Zhang, H.; Recker, R.; Lee, W.N.; Xiao, G.G. Proteomics in bone research. Expert Rev. Proteomics, 2010, 7(1), 103-111.
[http://dx.doi.org/10.1586/epr.09.90] [PMID: 20121480]
[12]
Oyama, M.; Kozuka-Hata, H.; Suzuki, Y.; Semba, K.; Yamamoto, T.; Sugano, S. Diversity of translation start sites may define increased complexity of the human short ORFeome. Mol. Cell. Proteomics, 2007, 6(6), 1000-1006.
[http://dx.doi.org/10.1074/mcp.M600297-MCP200] [PMID: 17317662]
[13]
Jiménez, C.R.; Spijker, S.; de Schipper, S.; Lodder, J.C.; Janse, C.K.; Geraerts, W.P.; van Minnen, J.; Syed, N.I.; Burlingame, A.L.; Smit, A.B.; Li, K. Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J. Neurosci., 2006, 26(2), 518-529.
[http://dx.doi.org/10.1523/JNEUROSCI.2566-05.2006] [PMID: 16407549]
[14]
Kiernan, U.A. Quantitation of target proteins and post-translational modifications in affinity-based proteomics approaches. Expert Rev. Proteomics, 2007, 4(3), 421-428.
[http://dx.doi.org/10.1586/14789450.4.3.421] [PMID: 17552926]
[15]
Washburn, M.P.; Wolters, D.; Yates, J.R., III Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol., 2001, 19(3), 242-247.
[http://dx.doi.org/10.1038/85686] [PMID: 11231557]
[16]
Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol., 2017, 13(9), 942.
[http://dx.doi.org/10.15252/msb.20156297] [PMID: 28951502]
[17]
Kodrič, K.; Čamernik, K.; Černe, D.; Komadina, R.; Marc, J. P4 medicine and osteoporosis: A systematic review. Wien. Klin. Wochenschr., 2016, 128(Suppl. 7), 480-491.
[http://dx.doi.org/10.1007/s00508-016-1125-3] [PMID: 27873024]
[18]
Zeng, Y.; Zhang, L.; Zhu, W.; Xu, C.; He, H.; Zhou, Y.; Liu, Y.Z.; Tian, Q.; Zhang, J.G.; Deng, F.Y.; Hu, H.G.; Zhang, L.S.; Deng, H.W. Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis. J. Proteomics, 2016, 142, 45-52.
[http://dx.doi.org/10.1016/j.jprot.2016.04.044] [PMID: 27153759]
[19]
Zhou, Y.; Deng, H.W.; Shen, H. Circulating monocytes: An appropriate model for bone-related study. Osteoporos. Int., 2015, 26(11), 2561-2572.
[http://dx.doi.org/10.1007/s00198-015-3250-7] [PMID: 26194495]
[20]
Yang, T.L.; Shen, H.; Liu, A.; Dong, S.S.; Zhang, L.; Deng, F.Y.; Zhao, Q.; Deng, H.W. A road map for understanding molecular and genetic determinants of osteoporosis. Nat. Rev. Endocrinol., 2019. Epub ahead of print
[http://dx.doi.org/10.1038/s41574-019-0282-7] [PMID: 31792439]
[21]
Deng, F.Y.; Liu, Y.Z.; Li, L.M.; Jiang, C.; Wu, S.; Chen, Y.; Jiang, H.; Yang, F.; Xiong, J.X.; Xiao, P.; Xiao, S.M.; Tan, L.J.; Sun, X.; Zhu, X.Z.; Liu, M.Y.; Lei, S.F.; Chen, X.D.; Xie, J.Y.; Xiao, G.G.; Liang, S.P.; Deng, H.W. Proteomic analysis of circulating monocytes in Chinese premenopausal females with extremely discordant bone mineral density. Proteomics, 2008, 8(20), 4259-4272.
[http://dx.doi.org/10.1002/pmic.200700480] [PMID: 18924182]
[22]
Deng, F.Y.; Zhu, W.; Zeng, Y.; Zhang, J.G.; Yu, N.; Liu, Y.Z.; Liu, Y.J.; Tian, Q.; Deng, H.W. Is GSN significant for hip BMD in female Caucasians? Bone, 2014, 63, 69-75.
[http://dx.doi.org/10.1016/j.bone.2014.02.015] [PMID: 24607942]
[23]
Zhu, W.; Shen, H.; Zhang, J.G.; Zhang, L.; Zeng, Y.; Huang, H.L.; Zhao, Y.C.; He, H.; Zhou, Y.; Wu, K.H.; Tian, Q.; Zhao, L.J.; Deng, F.Y.; Deng, H.W. Cytosolic proteome profiling of monocytes for male osteoporosis. Osteoporos. Int., 2017, 28(3), 1035-1046.
[http://dx.doi.org/10.1007/s00198-016-3825-y] [PMID: 27844135]
[24]
Martínez-Aguilar, M.M.; Aparicio-Bautista, D.I.; Ramírez- Salazar, E.G.; Reyes-Grajeda, J.P.; De la Cruz-Montoya, A.H.; Antuna-Puente, B.; Hidalgo-Bravo, A.; Rivera-Paredez, B.; Ramírez-Palacios, P.; Quiterio, M.; Valdés-Flores, M.; Salmerón, J.; Velázquez-Cruz, R. Serum Proteomic Analysis Reveals Vitamin D-Binding Protein (VDBP) as a Potential Biomarker for Low Bone Mineral Density in Mexican Postmenopausal Women. Nutrients, 2019, 11(12), E2853.
[http://dx.doi.org/10.3390/nu11122853] [PMID: 31766436]
[25]
Wang, W.Y.; Ge, B.; Shi, J.; Zhou, X.; Wu, L.F.; Tang, C.H.; Zhu, D.C.; Zhu, H.; Mo, X.B.; Zhang, Y.H.; Deng, F.Y.; Lei, S.F. Plasma gelsolin is associated with hip BMD in Chinese postmenopausal women. PLoS One, 2018, 13(5), e0197732.
[http://dx.doi.org/10.1371/journal.pone.0197732] [PMID: 29787615]
[26]
Akisaka, T.; Yoshida, H.; Inoue, S.; Shimizu, K. Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J. Bone Miner. Res., 2001, 16(7), 1248-1255.
[http://dx.doi.org/10.1359/jbmr.2001.16.7.1248] [PMID: 11450700]
[27]
Deng, F.Y.; Lei, S.F.; Zhang, Y.; Zhang, Y.L.; Zheng, Y.P.; Zhang, L.S.; Pan, R.; Wang, L.; Tian, Q.; Shen, H.; Zhao, M.; Lundberg, Y.W.; Liu, Y.Z.; Papasian, C.J.; Deng, H.W. Peripheral blood monocyte-expressed ANXA2 gene is involved in pathogenesis of osteoporosis in humans. Mol. Cell. Proteomics., 2011, 10, M111.011700.
[28]
Daswani, B.; Gupta, M.K.; Gavali, S.; Desai, M.; Sathe, G.J.; Patil, A.; Parte, P.; Sirdeshmukh, R.; Khatkhatay, M.I. Monocyte proteomics reveals involvement of phosphorylated HSP27 in the pathogenesis of osteoporosis. Dis. Markers, 2015, 2015, 196589.
[http://dx.doi.org/10.1155/2015/196589] [PMID: 26063949]
[29]
Zhang, L.; Liu, Y.Z.; Zeng, Y.; Zhu, W.; Zhao, Y.C.; Zhang, J.G.; Zhu, J.Q.; He, H.; Shen, H.; Tian, Q.; Deng, F.Y.; Papasian, C.J.; Deng, H.W. Network-based proteomic analysis for postmenopausal osteoporosis in Caucasian females. Proteomics, 2016, 16(1), 12-28.
[http://dx.doi.org/10.1002/pmic.201500005] [PMID: 26435169]
[30]
Roodman, G.D. Regulation of osteoclast differentiation. Ann. N. Y. Acad. Sci., 2006, 1068, 100-109.
[http://dx.doi.org/10.1196/annals.1346.013] [PMID: 16831910]
[31]
Walmsley, A.R.; Batten, M.R.; Lad, U.; Bulleid, N.J. Intracellular retention of procollagen within the endoplasmic reticulum is mediated by prolyl 4-hydroxylase. J. Biol. Chem., 1999, 274(21), 14884-14892.
[http://dx.doi.org/10.1074/jbc.274.21.14884] [PMID: 10329688]
[32]
Zeng, Y.; Zhang, L.; Zhu, W.; He, H.; Sheng, H.; Tian, Q.; Deng, F.Y.; Zhang, L.S.; Hu, H.G.; Deng, H.W. Network based subcellular proteomics in monocyte membrane revealed novel candidate genes involved in osteoporosis. Osteoporos. Int., 2017, 28(10), 3033-3042.
[http://dx.doi.org/10.1007/s00198-017-4146-5] [PMID: 28741036]
[33]
Murphy, C.; Withrow, J.; Hunter, M.; Liu, Y.; Tang, Y.L.; Fulzele, S.; Hamrick, M.W. Emerging role of extracellular vesicles in musculoskeletal diseases. Mol. Aspects Med., 2018, 60, 123-128.
[http://dx.doi.org/10.1016/j.mam.2017.09.006] [PMID: 28965750]
[34]
Huo, C.; Li, Y.; Qiao, Z.; Shang, Z.; Cao, C.; Hong, Y.; Xiao, H. Comparative proteomics analysis of microvesicles in human serum for the evaluation of osteoporosis. Electrophoresis, 2019, 40(14), 1839-1847.
[http://dx.doi.org/10.1002/elps.201900130] [PMID: 31081149]
[35]
Chaput, C.D.; Dangott, L.J.; Rahm, M.D.; Hitt, K.D.; Stewart, D.S.; Wayne Sampson, H. A proteomic study of protein variation between osteopenic and age-matched control bone tissue. Exp. Biol. Med. (Maywood), 2012, 237(5), 491-498.
[http://dx.doi.org/10.1258/ebm.2012.011374] [PMID: 22619369]
[36]
Qundos, U.; Drobin, K.; Mattsson, C.; Hong, M.G.; Sjöberg, R.; Forsström, B.; Solomon, D.; Uhlén, M.; Nilsson, P.; Michaëlsson, K.; Schwenk, J.M. Affinity proteomics discovers decreased levels of AMFR in plasma from Osteoporosis patients. Proteomics Clin. Appl., 2016, 10(6), 681-690.
[http://dx.doi.org/10.1002/prca.201400167] [PMID: 25689831]
[37]
Nielson, C.M.; Wiedrick, J.; Shen, J.; Jacobs, J.; Baker, E.S.; Baraff, A.; Piehowski, P.; Lee, C.G.; Baratt, A.; Petyuk, V.; McWeeney, S.; Lim, J.Y.; Bauer, D.C.; Lane, N.E.; Cawthon, P.M.; Smith, R.D.; Lapidus, J.; Orwoll, E.S. Osteoporotic Fractures in Men (MrOS) study research group. Identification of hip BMD loss and fracture risk markers through population-based serum proteomics. J. Bone Miner. Res., 2017, 32(7), 1559-1567.
[http://dx.doi.org/10.1002/jbmr.3125] [PMID: 28316103]
[38]
Zhou, Q.; Xie, F.; Zhou, B.; Wang, J.; Wu, B.; Li, L.; Kang, Y.; Dai, R.; Jiang, Y. Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients. Osteoporos. Int., 2019, 30(5), 1089-1098.
[http://dx.doi.org/10.1007/s00198-019-04884-0] [PMID: 30739146]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy