Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Remaining Useful life Estimation: A Review on Stochastic Process-based Approaches

Author(s): Dangbo Du, Jianxun Zhang, Xiaosheng Si* and Changhua Hu

Volume 15, Issue 1, 2021

Published on: 23 April, 2020

Page: [69 - 76] Pages: 8

DOI: 10.2174/1872212114999200423115526

Price: $65

Abstract

Background: Remaining Useful Life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During the last decades, numbers of developments and applications of the RUL estimation have proliferated.

Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic.

Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain.

Results: After a brief review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method.

Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, possible future trends are concluded tentatively.

Keywords: Remaining useful life, degradation modeling, stochastic process models, reliability, prognostics and health management, condition-based maintenance.

Graphical Abstract

[1]
Z.X. Zhang, X.S. Si, C.H. Hu, and Y.G. Lei, "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods", Eur. J. Oper. Res., vol. 271, pp. 775-796, 2018.
[http://dx.doi.org/10.1016/j.ejor.2018.02.033]
[2]
X.S. Si, W. Wang, and D.H. Zhou, "Remaining useful life estimation – A review on the statistical data driven approaches", Eur. J. Oper. Res., vol. 213, pp. 1-14, 2011.
[http://dx.doi.org/10.1016/j.ejor.2010.11.018]
[3]
B. Suman, and S.H. Krishnan, Method and apparatus for predicting remaining useful life (RUL) of battery.U. S. Patent 10345391, 2009.
[4]
G.A. Harrison, M.A. Bodkin, D. Sreerupa, and H. Richard, ‘Systems and methods for estimating a remaining useful life of an item”,. U. S. Patent 9002775, 2015
[5]
K.M. Singh, Monitoring system..U. S. Patent 8959007F, 2015
[6]
L. Liao, and F. Kottig, "Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction", IEEE Trans. Reliab., vol. 63, pp. 191-207, 2014.
[http://dx.doi.org/10.1109/TR.2014.2299152]
[7]
Z.S. Ye, and M. Xie, "Stochastic modelling and analysis of degradation for highly reliable products", Appl. Stochastic Models Data Anal., vol. 31, pp. 16-32, 2015.
[http://dx.doi.org/10.1002/asmb.2063]
[8]
C. Hu, B.D. Youn, T. Kim, and P. Wang, "A co-training-based approach for prediction of remaining useful life utilizing both failure and suspension data", Mech. Syst. Signal Process., vol. 62-63, pp. 75-90, 2015.
[http://dx.doi.org/10.1016/j.ymssp.2015.03.004]
[9]
J. Wei, G. Dong, and Z. Chen, "Remaining Useful Life Prediction and State of Health Diagnosis for Lithium-Ion Batteries Using Particle Filter and Support Vector Regression", IEEE Trans. Ind. Electron., vol. 65, pp. 5634-5643, 2018.
[http://dx.doi.org/10.1109/TIE.2017.2782224]
[10]
P.W. Kalgren, A.E. Ginart, N. Shashank, A.J. Boodhansingh, C.S. Byington, O. Rolf, S. Brian, and D.W. Brown, Systems and methods for predicting failure of electronic systems and assessing level of degradation and remaining useful life, .U.S. Patent 8600685, 2013.
[11]
J.B. Ali, M.B. Chebel, L. Saidi, S. Malinowski, and F. Fnaiech, "Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network", Mech. Syst. Signal Process., vol. 56-57, pp. 150-172, 2015.
[http://dx.doi.org/10.1016/j.ymssp.2014.10.014]
[12]
G. Kogan, R. Klein, and J. Bortman, "A physics-based algorithm for the estimation of bearing spall width using vibrations", Mech. Syst. Signal Process., vol. 104, pp. 398-414, 2018.
[http://dx.doi.org/10.1016/j.ymssp.2017.11.011]
[13]
Z. Vagnorius, M. Rausand, and K. Sørby, "Determining optimal replacement time for metal cutting tools", Eur. J. Oper. Res., vol. 206, pp. 407-416, 2010.
[http://dx.doi.org/10.1016/j.ejor.2010.03.023]
[14]
M.A. Khan, S.Z. Khan, W. Sohail, H. Khan, M. Sohaib, and S. Nisar, "Mechanical fatigue in aluminium at elevated temperature and remaining life prediction based on natural frequency evolution", Fatigue Fract. Eng. Mater. Struct., vol. 38, pp. 897-903, 2015.
[http://dx.doi.org/10.1111/ffe.12287]
[15]
H.E. Garcia, and J.P. Christophersen, Systems and methods for estimation and prediction of battery health and performance.U.S. Patent 2019187212, 2019
[16]
G. Eric, F. William, and C.N. William, Battery system and management method..U. S. 10302707, 2019
[17]
H.T. Kung, J.M. Ren, C.H. Chueh, and S.C. Chang, System and method for predicting remaining useful life of component of equipment, 2019..U. S. Patent 10262270, 2019
[18]
M.J. Armstrong, C.K. Ruff, J.W. Smith, and C.H.O. Cline, “ System and method for optimizing component life in a power system”,, .E. P. Patent 2889711, 2015
[19]
T. Brian, On-component tracking of maintenance, usage and remaining useful life, .E. P. Patent 3457243, 2019
[20]
S. Alaswad, and Y. Xiang, "A review on condition-based maintenance optimiza- tion models for stochastically deteriorating system", Reliab. Eng. Syst. Saf., vol. 157, pp. 54-63, 2017.
[http://dx.doi.org/10.1016/j.ress.2016.08.009]
[21]
J.M.V. Noortwijk, "A survey of the application of gamma processes in maintenance", Reliab. Eng. Syst. Saf., vol. 94, pp. 2-21, 2009.
[http://dx.doi.org/10.1016/j.ress.2007.03.019]
[22]
X. Wang, "Nonparametric estimation of the shape function in a Gamma process for degradation data", Can. J. Stat., vol. 37, pp. 102-118, 2009.
[http://dx.doi.org/10.1002/cjs.10003]
[23]
C.C. Tsai, S.T. Tseng, and N. Balakrishnan, "Optimal burn-in policy for highly reliable products using gamma degradation process", IEEE Trans. Reliab., vol. 60, pp. 234-245, 2011.
[http://dx.doi.org/10.1109/TR.2010.2087430]
[24]
X. Wang, N. Balakrishnan, B. Guo, and P. Jiang, "Residual life estimation based on bivariate non-stationary gamma degradation process", J. Stat. Comput. Simul., vol. 85, pp. 405-421, 2015.
[http://dx.doi.org/10.1080/00949655.2013.824448]
[25]
M. Guida, F. Postiglione, and G. Pulcini, "A time-discrete extended gamma process for time-dependent degradation phenomena", Reliab. Eng. Syst. Saf., vol. 105, pp. 73-79, 2012.
[http://dx.doi.org/10.1016/j.ress.2011.12.016]
[26]
J.Q. Liu, L. Huang, H.F. Zuo, X. Zhang, and Z.L. Zhang, An aero-engine residual life prediction method based on a Levy process, .C N Patent, 109918707A, 2019.
[27]
Y.T. Yan, M. Zhao, and J.R. Zhang, The invention discloses a bearing reliability assessment method based on performance degradation data, .C. N. Patent 109615255A, 2019.
[28]
L.A. Rodríguezpicón, A.P. Rodríguezpicón, and L.C. Méndezgonzález, "RodríguezBorbón. M. I, and Alvarado-Iniesta A, “Degradation modeling based on gamma process models with random effects", Commun. Stat. Simul. Comput., vol. 47, pp. 1796-1810, 2017.
[29]
M.H. Ling, H.K.T. Ng, and K.L. Tsui, "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process", Reliab. Eng. Syst. Saf., vol. 184, pp. 77-85, 2017.
[http://dx.doi.org/10.1016/j.ress.2017.11.017]
[30]
T. Santini, S. Morand, M. Fouladirad, F. Miller, A. Grall, and B. Allard, "Non-homogenous gamma process: Application to SiC MOSFET threshold voltage instability", Microelectron. Reliab., vol. 75, pp. 14-19, 2017.
[http://dx.doi.org/10.1016/j.microrel.2017.06.007]
[31]
R.S. Chhikara, and J.L. Folks, "The inverse gaussian distribution: theory, methodology, and applications", Appl. Stat., vol. 39, p. 259, 1988.
[32]
X. Wang, and D. Xu, "An inverse Gaussian process model for degradation data", Technometrics, vol. 52, pp. 188-197, 2010.
[http://dx.doi.org/10.1198/TECH.2009.08197]
[33]
Z.S. Ye, and N. Chen, "The inverse Gaussian process as a degradation model", Technometrics, vol. 56, pp. 302-311, 2014.
[http://dx.doi.org/10.1080/00401706.2013.830074]
[34]
Z.S. Ye, L.P. Chen, L.C. Tang, and M. Xie, "Accelerated degradation test planning using the inverse Gaussian process", IEEE Trans. Reliab., vol. 63, pp. 750-763, 2014.
[http://dx.doi.org/10.1109/TR.2014.2315773]
[35]
M. Zhang, Z.S. Ye, and M. Xie, Optimal burn-in policy for highly reliable products using inverse Gaussian degradation process., Springer Press: New York, 2015, pp. 1003-1011.
[http://dx.doi.org/10.1007/978-3-319-09507-3_86]
[36]
N. Chen, Z.S. Ye, Y. Xiang, and L. Zhang, "Condition-based maintenance using the inverse Gaussian degradation model", Eur. J. Oper. Res., vol. 243, pp. 190-199, 2015.
[http://dx.doi.org/10.1016/j.ejor.2014.11.029]
[37]
X. S. Zhang, Y. Y. Li, Z. S. Luo, D. D. Gao, M. X. Zhao, and T. L. Wang, Pipeline remaining life predication method based on inverse Gaussian process and EM-PF, 2, .CN Patent 106372299A, 2017
[38]
W. Peng, Y.F. Li, Y.J. Yang, J. Mi, and H.Z. Huang, "Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates", IEEE Trans. Reliab., vol. 66, pp. 84-96, 2017.
[http://dx.doi.org/10.1109/TR.2016.2635149]
[39]
F. Duan, G. Wang, and H. Wang, "Inverse Gaussian process models for bivariate degradation analysis: A Bayesian perspective", Commun. Stat. Simul. Comput., vol. 47, pp. 166-186, 2017.
[http://dx.doi.org/10.1080/03610918.2017.1280162]
[40]
S.T. Tseng, and Y.C. Yao, Misspecification analysis of Gamma with inverse Gaussian degradation processes., Springer Press: New York, 2017.
[http://dx.doi.org/10.1007/978-981-10-5194-4_10]
[41]
M.A. Freitas, M.L.G.D. Toledo, E.A. Colosimo, and M.C. Pires, "Using degradation data to assess reliability: a case study on train wheel degradation", Qual. Reliab. Eng. Int., vol. 25, pp. 607-629, 2009.
[http://dx.doi.org/10.1002/qre.995]
[42]
R.S. Chhikara, and J.L. Folks, "The inverse Gaussian distribution as a lifetime model", Technometrics, vol. 19, pp. 461-468, 1977.
[http://dx.doi.org/10.1080/00401706.1977.10489586]
[43]
N.Z. Gebraeel, M.A. Lawley, L. Rong, and J.K. Ryan, "Residual-life distributions from component degradation signals: A Bayesian approach", IIE Trans., vol. 37, pp. 543-557, 2005.
[http://dx.doi.org/10.1080/07408170590929018]
[44]
K.A. Doksum, and A. Hóyland, "Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution", Technometrics, vol. 34, pp. 74-82, 1992.
[http://dx.doi.org/10.2307/1269554]
[45]
G.A. Whitmore, and F. Schenkelberg, "Modelling accelerated degradation data using Wiener diffusion with a time scale transformation", Lifetime Data Anal., vol. 3, no. 1, pp. 27-45, 1997.
[http://dx.doi.org/10.1023/A:1009664101413 PMID: 9384624]
[46]
X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, and M.G. Pecht, "Remaining useful life estimation based on a nonlinear diffusion degradation process", IEEE Trans. Reliab., vol. 61, pp. 50-67, 2012.
[http://dx.doi.org/10.1109/TR.2011.2182221]
[47]
Z.X. Zhang, X.S. Si, and C.H. Hu, "An Age- and State-Dependent Nonlinear Prognostic Model for Degrading Systems", IEEE Trans. Reliab., vol. 64, pp. 1214-1228, 2015.
[http://dx.doi.org/10.1109/TR.2015.2419220]
[48]
T.T. Huang, B. Peng, S.K. Yang, S.G. Wang, Y.P. Zhao, Z.X. Yu, and C.B. Du, “ Degradation modeling and lifetime prediction method considering effective shocks”, .U. S. Patent 2019138926A1, 2019
[49]
T.T. Huang, Y.P. Zhao, S.K. Yang, Z.X. Yu, X. Wu, and S.G. Wang, Method for degradation modeling and lifetime prediction considering recoverable shock damages, .US Patent 2019272354A1, 2019
[50]
C.Y. Peng, and S.T. Tseng, "Mis-specification analysis of linear degradation models", IEEE Trans. Reliab., vol. 58, pp. 444-455, 2009.
[http://dx.doi.org/10.1109/TR.2009.2026784]
[51]
C.Y. Peng, and S.T. Tseng, "Statistical lifetime inference with skew-Wiener linear degradation models", IEEE Trans. Reliab., vol. 62, pp. 338-350, 2013.
[http://dx.doi.org/10.1109/TR.2013.2257055]
[52]
X.S. Si, W. Wang, C.H. Hu, and D.H. Zhou, "Estimating remaining useful life with three-source variability in degradation modeling", IEEE Trans. Reliab., vol. 63, pp. 167-190, 2014.
[http://dx.doi.org/10.1109/TR.2014.2299151]
[53]
J.F. Zheng, X.S. Si, C.H. Hu, Z.X. Zhang, and W. Jiang, "A nonlinear prognostic model for degrading systems with three-source variability", IEEE Trans. Reliab., vol. 65, pp. 736-750, 2016.
[http://dx.doi.org/10.1109/TR.2015.2513044]
[54]
Z.X. Zhang, X.S. Si, C.H. Hu, Q. Zhang, T. Li, and C. Xu, "Planning repeated degradation testing for products with three-source variability", IEEE Trans. Reliab., vol. 65, pp. 640-647, 2016.
[http://dx.doi.org/10.1109/TR.2015.2512223]
[55]
H. B. Sun, J. L. Pan, H. L. Du, and Y. F. Lu, Tool selection method based on residual life prediction, .CN Patent 109909805A, 2019.
[56]
D. Kong, N. Balakrishnan, and L. Cui, "Two-phase degradation process model with abrupt jump at change point governed by Wiener process", IEEE Trans. Reliab., vol. 66, pp. 1345-1360, 2017.
[http://dx.doi.org/10.1109/TR.2017.2711621]
[57]
X. Wang, P. Jiang, B. Guo, and Z. Cheng, "Real-time reliability evaluation for an individual product based on change-point Gamma and Wiener process", Qual. Reliab. Eng. Int., vol. 30, pp. 513-525, 2014.
[http://dx.doi.org/10.1002/qre.1504]
[58]
Y. Wang, and H. Pham, "A multi-objective optimization of imperfect preventive maintenance policy for dependent competing risk systems with hidden failure", IEEE Trans. Reliab., vol. 60, pp. 770-781, 2011.
[http://dx.doi.org/10.1109/TR.2011.2167779]
[59]
Z.S. Ye, L.C. Tang, and H.Y. Xu, "A distribution-based systems reliability model under extreme shocks and natural degradation", IEEE Trans. Reliab., vol. 60, pp. 246-256, 2011.
[http://dx.doi.org/10.1109/TR.2010.2103710]
[60]
Y. Wang, and H. Pham, "Modeling the dependent competing risks with multiple degradation processes and random shock using time-varying copulas", IEEE Trans. Reliab., vol. 61, pp. 13-22, 2012.
[http://dx.doi.org/10.1109/TR.2011.2170253]
[61]
Z.X. Zhang, X.S. Si, C.H. Hu, and M.G. Pecht, "A prognostic model for stochastic degrading systems with state recovery: application to li-ion batteries", IEEE Trans. Reliab., vol. 66, pp. 1293-1308, 2017.
[http://dx.doi.org/10.1109/TR.2017.2742298]
[62]
J.P. Kharoufeh, "Explicit results for wear processes in a Markovian environment", Oper. Res. Lett., vol. 31, pp. 237-244, 2003.
[http://dx.doi.org/10.1016/S0167-6377(02)00229-8]
[63]
J.P. Kharoufeh, and J.A. Sipe, "Evaluating failure time probabilities for a Markovian wear process", Comput. Oper. Res., vol. 32, pp. 1131-1145, 2005.
[http://dx.doi.org/10.1016/j.cor.2003.09.016]
[64]
M. Smotherman, and K. Zemoudeh, "A non-homogeneous Markov model for phased-mission reliability analysis", IEEE Trans. Reliab., vol. 38, pp. 585-590, 1989.
[http://dx.doi.org/10.1109/24.46486]
[65]
J.P. Kharoufeh, S.M. Cox, and M.E. Oxley, "Reliability of manufacturing equipment in complex environments", Ann. Oper. Res., vol. 209, pp. 231-254, 2013.
[http://dx.doi.org/10.1007/s10479-011-0839-x]
[66]
W.H. Li, J. Li, and S.H. Zhang, "Application of continuous hidden semi-Markov model in bearing performance degradation assessment", J. Vibr. Eng., vol. 27, pp. 613-620, 2014.
[67]
J.P. Kharoufeh, C.J. Solo, and M.Y. Ulukus, "Semi-Markov models for degradation based reliability", IIE Trans., vol. 42, pp. 599-612, 2010.
[http://dx.doi.org/10.1080/07408170903394371]
[68]
P. Vrignat, M. Avila, F. Duculty, S. Aupetit, M. Slimane, and F. Kratz, "Maintenance policy: degradation laws versus hidden Markov model availability indicator", J. Risk Reliab., vol. 226, pp. 137-155, 2012.
[http://dx.doi.org/10.1177/1748006X11406335]
[69]
H. Jiang, J. Chen, and G. Dong, "Hidden Markov model and nuisance attribute projection based bearing performance degradation assessment", Mech. Syst. Signal Process., vol. 72, pp. 184-205, 2016.
[http://dx.doi.org/10.1016/j.ymssp.2015.10.003]
[70]
Y. Qin, L. L. Kou, Y. Fu, M. Ye, X. Q. Cheng, L. M. Jia, Z. L. Zhang, H. K. Li, and X. W. Liu, A life prediction method based on a time-varying Markov process.C. N. Patent 109740255AMay 10
[71]
C. H. Zhao, B. Y. Weng, H. D. Fan, J. M. Chen, Y. X. Sun, Q. Y. Li, and W. L. Sha, An intelligent power plant fan fault degradation state prediction method based on canonical variable analysis and hidden Markov process, 2019.C. N. Patent 109272154A, 2019
[72]
Z. H. Chen, Y. B. Yuan, L. L. Qu, and W. R. An, Method for predicating lithium ion battery capacity fading based on non-homogeneous Markov chain model, .C. N. Patent 107895175A, 2018.
[73]
X. H. Zhang, and R. S. Dong, Wireless sensor network reliability degree assessment method based on Markov chain, .C. N. Patent 104796925B, 2018.
[74]
H. Yi, and L. Cui, "Distribution and availability for aggregated second-order semi-Markov ternary system with working time omission", Reliab. Eng. Syst. Saf., vol. 166, pp. 50-60, 2016.
[http://dx.doi.org/10.1016/j.ress.2016.11.025]
[75]
M. Compare, F. Martini, S. Mattafirri, F. Carlevaro, and E. Zio, "Semi-Markov model for the oxidation degradation mechanism in gas turbine nozzles", IEEE Trans. Reliab., vol. 65, pp. 574-581, 2016.
[http://dx.doi.org/10.1109/TR.2015.2506610]
[76]
D.A. Tobon-Mejia, K. Medjaher, N. Zerhouni, and G. Tripot, "A Data-Driven Failure Prognostics Method Based on Mixture of Gaussians Hidden Markov Models", IEEE Trans. Reliab., vol. 61, pp. 491-503, 2012.
[http://dx.doi.org/10.1109/TR.2012.2194177]
[77]
X.S. Si, C.H. Hu, X. Kong, and D.H. Zhou, "A residual storage life prediction approach for systems with operation state switches", IEEE Trans. Ind. Electron., vol. 61, pp. 6304-6315, 2014.
[http://dx.doi.org/10.1109/TIE.2014.2308135]
[78]
Z.X. Zhang, X.S. Si, C.H. Hu, and M.G. Pecht, "A Prognostic Model for Stochastic Degrading Systems With State Recovery: Application to Li-Ion Batteries", In: IEEE Transactions on Reliability, vol. 66. 2017, pp. 1-16.
[79]
H. Zhang, D. Zhou, M. Chen, and J. Shang, "FBM-Based Remaining Useful Life Prediction for Degradation Processes With Long-Range Dependence and Multiple Modes", IEEE Trans. Reliab., vol. 99, pp. 1-13, 2018.
[80]
S. Zhao, V. Makis, S. Chen, and Y. Li, "Evaluation of reliability function and mean residual life for degrading systems subject to condition monitoring and random failure", IEEE Trans. Reliab., vol. 67, pp. 13-25, 2018.
[http://dx.doi.org/10.1109/TR.2017.2779322]
[81]
S. Zhao, V. Makis, S. Chen, and Y. Li, "Health Assessment Method for Electronic Components Subject to Condition Monitoring and Hard Failure", IEEE Trans. Instrum. Meas., vol. 68, pp. 138-150, 2018.
[http://dx.doi.org/10.1109/TIM.2018.2839938]
[82]
X.S. Si, W. Wang, M.Y. Chen, C.H. Hu, and D.H. Zhou, "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution", Eur. J. Oper. Res., vol. 226, pp. 53-66, 2013.
[http://dx.doi.org/10.1016/j.ejor.2012.10.030]
[83]
G.A. Whitmore, "Estimating degradation by a Wiener diffusion process subject to measurement error", Lifetime Data Anal., vol. 1, no. 3, pp. 307-319, 1995.
[http://dx.doi.org/10.1007/BF00985762 PMID: 9385107]
[84]
X. Wang, N. Balakrishnan, and B. Guo, "Residual life estimation based on a generalized Wiener degradation process", Reliab. Eng. Syst. Saf., vol. 124, pp. 13-23, 2014.
[http://dx.doi.org/10.1016/j.ress.2013.11.011]
[85]
X. Wang, P. Jiang, B. Guo, and Z. Cheng, "Real-time Reliability Evaluation with a General Wiener Process-based Degradation Model", Qual. Reliab. Eng. Int., vol. 30, pp. 205-220, 2013.
[http://dx.doi.org/10.1002/qre.1489]
[86]
P.E. Kloeden, and E. Platen, Numerical Solution of Stochastic Differential Equations., Springer Press: Berlin, Heidelberg, 1992, pp. 407-424.
[http://dx.doi.org/10.1007/978-3-662-12616-5]
[87]
J.P. Kharoufeh, and S.M. Cox, "Stochastic models for degradation-based reliability", IIE Trans., vol. 37, pp. 533-542, 2005.
[http://dx.doi.org/10.1080/07408170590929009]
[88]
A.K.S. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance", Mech. Syst. Signal Process., vol. 20, pp. 1483-1510, 2006.
[http://dx.doi.org/10.1016/j.ymssp.2005.09.012]
[89]
L. Kang, X. Zhao, and J. Ma, "A new neural network model for the state-of-charge estimation in the battery degradation process", Appl. Energy, vol. 121, pp. 20-27, 2014.
[http://dx.doi.org/10.1016/j.apenergy.2014.01.066]
[90]
X.S. Si, W. Wang, C.H. Hu, M.Y. Chen, and D.H. Zhou, "A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation", Mech. Syst. Signal Process., vol. 35, pp. 219-237, 2013.
[http://dx.doi.org/10.1016/j.ymssp.2012.08.016]
[91]
N. Narendran, and Y. Gu, "Life of LED-based white light sources", J. Disp. Technol., vol. 1, pp. 167-171, 2005.
[http://dx.doi.org/10.1109/JDT.2005.852510]
[92]
J. Qiu, B.B. Seth, S.Y. Liang, and C. Zhang, "Damage mechanics approach for bearing lifetime prognostics", Mech. Syst. Signal Process., vol. 16, pp. 817-829, 2002.
[http://dx.doi.org/10.1006/mssp.2002.1483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy