Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Mini-Review Article

A Review on Lossless Compression Techniques for Wireless Capsule Endoscopic Data

Author(s): Caren Babu and D. Abraham Chandy*

Volume 17, Issue 1, 2021

Published on: 23 April, 2020

Page: [27 - 38] Pages: 12

DOI: 10.2174/1573405616666200423084725

Price: $65

Abstract

Background: The videos produced during wireless capsule endoscopy have larger data size causing difficulty in transmission with limited bandwidth. The constraint on wireless capsule endoscopy hinders the performance of the compression module.

Objectives: The objectives of this paper are as follows: (i) to conduct an extensive review of the lossless compression techniques and (ii) to find out the limitations of the existing system and the possibilities for improvement.

Methods: The literature review was conducted with a focus on the compression schemes satisfying minimum computational complexity, less power dissipation and low memory requirements for hardware implementation. A thorough study of various lossless compression techniques was conducted under two perspectives, i.e., techniques applied to Bayer CFA and RGB images. The detail of the various stages of wireless capsule endoscopy compression was investigated to have a better understanding. The suitable performance metrics for evaluating the compression techniques were listed from various literature studies.

Results: In addition to the Gastrolab database, WEO clinical endoscopy atlas and Gastrointestinal atlas were found to be better alternatives for experimentation. Pre-processing operations, especially new subsampling patterns need to be given more focus to exploit the redundancies in the images. Investigations showed that encoder module can be modified to bring more improvement towards compression. The real-time endoscopy still exists as a promising area for exploration.

Conclusion: This review presents a research update on the details of wireless capsule endoscopy compression together with the findings as an eye-opener and guidance for further research.

Keywords: Bayer CFA images, endoscopes, lossless compression algorithms, medical imaging, RGB images, WEO.

Graphical Abstract

[1]
Meng M-H, Mei T, Pu J, et al. Wireless robotic capsule endoscopy: State-of-the-art and challenges. Intelligent Control and Automation, 2004 WCICA 2004 Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788). 2004; Hangzhou, China.
[2]
Slawinski PR, Obstein KL, Valdastri P. Capsule endoscopy of the future: What’s on the horizon? World J Gastroenterol 2015; 21(37): 10528-41.
[http://dx.doi.org/10.3748/wjg.v21.i37.10528 ] [PMID: 26457013]
[3]
Mylonaki M, Fritscher-Ravens A, Swain P. Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding. Gut 2003; 52(8): 1122-6.
[http://dx.doi.org/10.1136/gut.52.8.1122 ] [PMID: 12865269]
[4]
Kvetina J, Tacheci I, Nobilis M, Kopacova M, Kunes M, Bures J. The importance of wireless capsule endoscopy for research into the intestin al absorption window of 5-aminosalicylic acid in experimental pigs. Curr Pharm Des 2017; 23(12): 1873-6.
[http://dx.doi.org/10.2174/1381612822666161201145247 ] [PMID: 27908270]
[5]
Li J, Deng Y. Fast compression algorithms for capsule endoscope images. Image and Signal Processing, 2009 CISP'09 2nd International Congress.
[http://dx.doi.org/10.1109/CISP.2009.5300914]
[6]
Rabenstein T, Maiss J, Naegele-Jackson S, et al. Tele-endoscopy: influence of data compression, bandwidth and simulated impairments on the usability of real-time digital video endoscopy transmissions for medical diagnoses. Endoscopy 2002; 34(9): 703-10.
[http://dx.doi.org/10.1055/s-2002-33568 ] [PMID: 12195327]
[7]
Koprowski R. Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy. Biomed Eng Online 2015; 14(1): 111.
[8]
Pan G, Wang L. Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol Res Pract 2012; 2012: 841691.
[9]
Basar MR, Malek F, Juni KM, Idris MS, Saleh MIM. Ingestible wireless capsule technology: A review of development and future indication. Int J Antennas Propag 2012; 2012: 807165.
[http://dx.doi.org/10.1155/2012/807165]
[10]
Khan T, Shrestha R, Imtiaz MS, Wahid KA. Colour-reproduction algorithm for transmitting variable video frames and its application to capsule endoscopy. Healthc Technol Lett 2015; 2(2): 52-7.
[http://dx.doi.org/10.1049/htl.2014.0086 ] [PMID: 26609405]
[11]
Ciuti G, Menciassi A, Dario P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng 2011; 4: 59-72.
[http://dx.doi.org/10.1109/RBME.2011.2171182 ] [PMID: 22273791]
[12]
Mamonov AV, Figueiredo IN, Figueiredo PN, Tsai Y-HR. Automated polyp detection in colon capsule endoscopy. IEEE Trans Med Imaging 2014; 33(7): 1488-502.
[http://dx.doi.org/10.1109/TMI.2014.2314959 ] [PMID: 24710829]
[13]
Wu J, Li Y. Low-complexity video compression for capsule endoscope based on compressed sensing theory. Annu Int Conf IEEE Eng Med Biol Soc 2009; 2009: 3727-30.
[14]
Wang A, Banerjee S, Barth BA, et al. Wireless capsule endoscopy. Gastrointest Endosc 2013; 78(6): 805-15.
[http://dx.doi.org/10.1016/j.gie.2013.06.026 ] [PMID: 24119509]
[15]
Sullivan GJ, Ohm J-R, Han W-J, Wiegand T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Tech 2012; 22(12): 1649-68.
[http://dx.doi.org/10.1109/TCSVT.2012.2221191]
[16]
Kastrinaki V, Zervakis M, Kalaitzakis K. A survey of video processing techniques for traffic applications. Image Vis Comput 2003; 21(4): 359-81.
[http://dx.doi.org/10.1016/S0262-8856(03)00004-0]
[17]
Alam MW, Hasan MM, Mohammed SK, Deeba F, Wahid KA. Are current advances of compression algorithms for capsule endoscopy enough? A technical review. IEEE Rev Biomed Eng 2017; 10: 26-43.
[http://dx.doi.org/10.1109/RBME.2017.2757013 ] [PMID: 28961125]
[18]
Sikora T. Trends and perspectives in image and video coding. Proc IEEE 2005; 93(1): 6-17.
[http://dx.doi.org/10.1109/JPROC.2004.839601]
[19]
Turcza P, Duplaga M. Low-power image compression for wireless capsule endoscopy. Imaging Systems and Techniques, 2007 IST'07 IEEE International Workshop.
[http://dx.doi.org/10.1109/IST.2007.379586]
[20]
Bulat J, Duda K, Duplaga M, et al. Data processing tasks in wireless GI endoscopy: Image-based capsule localization & navigation and video compression. Annu Int Conf IEEE Eng Med Biol Soc 2007; 2007: 2815-8.
[21]
Mostafa A, Wahid K, Ko S-B. An efficient YCgCo-based image compression algorithm for capsule endoscopy. 14th International Conference on Computer and Information Technology (ICCIT 2011). Dhaka, Bangladesh.
[http://dx.doi.org/10.1109/ICCITechn.2011.6164787]
[22]
Elharar E, Stern A, Hadar O, Javidi B. A hybrid compression method for integral images using discrete wavelet transform and discrete cosine transform. J Disp Technol 2007; 3(3): 321-5.
[http://dx.doi.org/10.1109/JDT.2007.900915]
[23]
Turcza P, Duplaga M. Near-lossless energy-efficient image compression algorithm for wireless capsule endoscopy. Biomed Signal Process Control 2017; 38: 1-8.
[http://dx.doi.org/10.1016/j.bspc.2017.04.006]
[24]
Wahid K, Ko S-B, Teng D. Efficient hardware implementation of an image compressor for wireless capsule endoscopy applications. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China
[25]
Hu C, Meng MQ-H, Liu L, Pan Y, Liu Z. Image representation and compression for capsule endoscope robot. 2009 ICIA'09 International Conference on Information and Automation.
[26]
DeVore RA, Jawerth B, Lucier BJ. Image compression through wavelet transform coding. IEEE Trans Inf Theory 1992; 38(2): 719-46.
[http://dx.doi.org/10.1109/18.119733]
[27]
Shrestha S, Wahid K. Hybrid DWT-DCT algorithm for biomedical image and video compression applications. 10th International Conference on Information Sciences Signal Processing and their Applications (ISSPA). Kuala Lumpur, Malaysia. 2010.
[http://dx.doi.org/10.1109/ISSPA.2010.5605474]
[28]
Erickson BJ, Manduca A, Palisson P, et al. Wavelet compression of medical images. Radiology 1998; 206(3): 599-607.
[http://dx.doi.org/10.1148/radiology.206.3.9494473 ] [PMID: 9494473]
[29]
Wang C, Zhang W-J, Fang XZ. Adaptive reduction of blocking artifacts in DCT domain for highly compressed images. IEEE Trans Consum Electron 2004; 50(2): 647-54.
[30]
Fedak V, Nakonechny A. Artifacts suppression in images and video. Non-Local Means as algorithm for reducing image and video distortions PhD Workshop.
[31]
Wu D, Tan DM, Baird M, DeCampo J, White C, Wu HR. Perceptually lossless medical image coding. IEEE Trans Med Imaging 2006; 25(3): 335-44.
[http://dx.doi.org/10.1109/TMI.2006.870483 ] [PMID: 16524089]
[32]
Chen X, Zhang X, Zhang L, et al. A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Trans Biomed Circuits Syst 2009; 3(1): 11-22.
[http://dx.doi.org/10.1109/TBCAS.2008.2006493 ] [PMID: 23853159]
[33]
Xie X, Li G, Chen X, Li X, Wang Z. A low-power digital IC design inside the wireless endoscopic capsule. IEEE J Solid-State Circuits 2006; 41(11): 2390-400.
[http://dx.doi.org/10.1109/JSSC.2006.882884]
[34]
Khan TH, Wahid KA. Subsample-based image compression for capsule endoscopy. J Real-Time Image Process 2013; 8(1): 5-19.
[http://dx.doi.org/10.1007/s11554-011-0208-7]
[35]
Khan TH, Wahid KA. White and narrow band image compressor based on a new color space for capsule endoscopy. Signal Process Image Commun 2014; 29(3): 345-60.
[http://dx.doi.org/10.1016/j.image.2013.12.001]
[36]
Al-Shebani Q, Premaratne P, Vial PJ, McAndrew DJ, Halloran B. Co-simulation method for hardware/software evaluation using Xilinx system generator: a case study on image compression algorithms for capsule endoscopy. 12th International Conference on Signal Processing and Communication Systems (ICSPCS). 1-4.
[http://dx.doi.org/10.1109/ICSPCS.2018.8631737]
[37]
Hekstra AP, Beerends JG, Ledermann D, et al. PVQM–A perceptual video quality measure. Signal Process Image Commun 2002; 17(10): 781-98.
[http://dx.doi.org/10.1016/S0923-5965(02)00056-5]
[38]
Mohammed SK, Rahman KM, Wahid KA. Lossless compression in Bayer color filter array for capsule endoscopy. IEEE Access 2017; 5: 13823-34.
[http://dx.doi.org/10.1109/ACCESS.2017.2726997]
[39]
Xie X, Li G, Li X, Eds. A new approach for near-lossless and lossless image compression with Bayer color filter arrays. Third International Conference on Image and Graphics (ICIG’04).
[40]
Dung L-R, Wu Y-Y, Lai H-C, Weng P-K, Eds. A modified H. 264 intra-frame video encoder for capsule endoscope. IEEE Biomedical Circuits and Systems Conference.
[http://dx.doi.org/10.1109/BIOCAS.2008.4696874]
[41]
Pennebaker WB, Mitchell JL. JPEG: Still image data compression standard. Springer Science & Business Media 1992.
[42]
Gu Y, Xie X, Li G, Sun T, Wang Z. Two-stage wireless capsule image compression with low complexity and high quality. Electron Lett 2012; 48(25): 1588-9.
[http://dx.doi.org/10.1049/el.2012.3470]
[43]
Xie X, Li G, Chen X, Eds. A novel low power IC design for bi-directional digital wireless endoscopy capsule system. IEEE International Workshop on Biomedical Circuits and Systems.
[44]
Fante KA, Bhaumik B, Chatterjee S. Design and implementation of computationally efficient image compressor for wireless capsule endoscopy. Circuits Syst Signal Process 2016; 35(5): 1677-703.
[http://dx.doi.org/10.1007/s00034-015-0136-z]
[45]
Basar MR, Malek MFBA, Saleh MIM, et al. A novel, high-speed image transmitter for wireless capsule endoscopy. Prog Electromagnetics Res 2013; 137: 129-47.
[http://dx.doi.org/10.2528/PIER13011102]
[46]
Lim EG, Wang Z, Yu FZ, et al. Transmitter antennas for wireless capsule endoscopy. 2012 International SoC Design Conference (ISOCC).
[47]
Miah M, Icheln C, Haneda K. Takizawa K. iJapa Antenna systems for wireless capsule endoscope: Design, analysis and experimental validation. 2018.
[48]
Rex DK, Helbig CC. High yields of small and flat adenomas with high-definition colonoscopes using either white light or narrow band imaging. Gastroenterology 2007; 133(1): 42-7.
[http://dx.doi.org/10.1053/j.gastro.2007.04.029 ] [PMID: 17631129]
[49]
Hewett DG, Kaltenbach T, Sano Y, et al. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology 2012; 143(3): 599-607.
[http://dx.doi.org/10.1053/j.gastro.2012.05.006]
[50]
Khan TH, Shrestha R, Wahid KA, Babyn P. Design of a smart-device and FPGA based wireless capsule endoscopic system. Sens Actuators A Phys 2015; 221: 77-87.
[http://dx.doi.org/10.1016/j.sna.2014.10.033]
[51]
Toi T, Ohita M. A subband coding technique for image compression in single CCD cameras with Bayer color filter arrays. IEEE Trans Consum Electron 1999; 45(1): 176-80.
[http://dx.doi.org/10.1109/30.754434]
[52]
Lin M-C, Dung L-R, Weng P-K. An ultra-low-power image compressor for capsule endoscope. Biomed Eng Online 2006; 5(1): 14.
[http://dx.doi.org/10.1186/1475-925X-5-14 ] [PMID: 16504138]
[53]
Kwan C, Chou B, Kwan L-Y, et al. Demosaicing enhancement using pixel-level fusión. Signal Image Video Process 2018; 12(4): 749-56.
[http://dx.doi.org/10.1007/s11760-017-1216-2]
[54]
Kwan C, Chou B, Bell JFJE III. Comparison of deep learning and conventional demosaicing algorithms for Mastcam images. Electronics (Basel) 2019; 8(3): 308.
[http://dx.doi.org/10.3390/electronics8030308]
[55]
Kwan C, Chou B, Kwan L-YM, Budavari B. Debayering RGBW color filter arrays: a pansharpening approach. 2017 IEEE 8th Annual Ubiquitous Computing Electronics and Mobile Communication Conference (UEMCON).
[56]
Lee S-Y, Ortega A. A novel approach of image compression in digital cameras with a Bayer color filter array. Proceedings International Conference on Image Processing. Thessaloniki, Greece. 2001.
[57]
Koh CC, Mukherjee J, Mitra SK. New efficient methods of image compression in digital cameras with color filter array. IEEE Trans Consum Electron 2003; 49(4): 1448-56.
[http://dx.doi.org/10.1109/TCE.2003.1261253]
[58]
Turcza P, Duplaga M. Low power FPGA-based image processing core for wireless capsule endoscopy. Sens Actuators A Phys 2011; 172(2): 552-60.
[http://dx.doi.org/10.1016/j.sna.2011.09.026]
[59]
Dung L-R, Wu Y-Y, Lai H-C, Weng P-K. A modified H 264 intra-frame video encoder for capsule endoscope. IEEE Biomedical Circuits and Systems Conference. Baltimore, MD, USA. 2008.
[60]
Koulaouzidis A, Iakovidis DK. Yung DE. KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc Int Open 2017; 5(6): E477-83.
[61]
GASTROLAB [Internet]. Gastrolab.net. 2020 [cited 20 October 2019]. Available from: www.gastrolab.net
[62]
Murra-Saca D. The Gastrointestinal Atlas - gastrointestinalatlas.com [Internet]. Gastrointestinalatlas.com. 2020 [cited 20 October 2019]. Available from: www.gastrointestinalatlas.com
[63]
London I. Hamlyn centre laparoscopic/endoscopic video datasets. 2017.
[64]
Endoscopy Atlas WEO. Atlas: Search the Atlas [Internet]. Endoatlas.org. 2020 [cited 20 October 2019]. Available from: www.endoatlas.org/
[65]
Pogorelov K, Randel KR, Griwodz C, Eds. Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection. Proceedings of the 8th ACM on Multimedia Systems Conference.
[http://dx.doi.org/10.1145/3083187.3083212]
[66]
Chen S-L, Liu T-Y, Shen C-W, Tuan M-C. VLSI implementation of a cost-efficient near-lossless CFA image compressor for wireless capsule endoscopy. IEEE Access 2016; 4: 10235-45.
[http://dx.doi.org/10.1109/ACCESS.2016.2638475]
[67]
Khan TH, Mohammed SK, Imtiaz MS, Wahid KA. Color reproduction and processing algorithm based on real-time mapping for endoscopic images. Springerplus 2016; 5(1): 17.
[http://dx.doi.org/10.1186/s40064-015-1612-4 ] [PMID: 26759756]
[68]
Turgis D, Puers R. Image compression in video radio transmission for capsule endoscopy. Sens Actuators A Phys 2005; 123: 129-36.
[http://dx.doi.org/10.1016/j.sna.2005.05.016]
[69]
Xie X, Li G, Chen X, et al. A novel low power IC design for bi-directional digital wireless endoscopy capsule system. IEEE International Workshop on Biomedical Circuits and Systems. Singapore, Singapore. 2004.
[70]
Utagawa K. Image processing method for direction dependent low pass filtering. Google Patents 2006 Patent no: US20040207881A1
[71]
Xie X, Li G, Wang Z. A near-lossless image compression algorithm suitable for hardware design in wireless endoscopy system. EURASIP J Appl Signal Process 2007; 2007(1): 48.
[72]
Khan TH, Mohammed SK, Imtiaz MS, Wahid KA. Efficient color reproduction algorithm for endoscopic images based on dynamic color map. J Med Biol Eng 2016; 36(2): 226-35.
[http://dx.doi.org/10.1007/s40846-016-0120-5]
[73]
Khan TH, Wahid KA. Low power and low complexity compressor for video capsule endoscopy. IEEE Trans Circ Syst Video Tech 2011; 21(10): 1534-46.
[http://dx.doi.org/10.1109/TCSVT.2011.2163985]
[74]
Thoné J, Verlinden J, Puers R. An efficient hardware-optimized compression algorithm for wireless capsule endoscopy image transmission. Procedia Eng 2010; 5: 208-11.
[http://dx.doi.org/10.1016/j.proeng.2010.09.084]
[75]
Sullivan GJ, Topiwala PN, Luthra A, Eds. The H 264/AVC advanced video coding standard: Overview and introduction to the fidelity range extensions Applications of Digital Image Processing XXVII. International Society for Optics and Photonics 2004.
[76]
Khan T, Wahid K. Low-complexity colour-space for capsule endoscopy image compression. Electron Lett 2011; 47(22): 217-8.
[http://dx.doi.org/10.1049/el.2011.2211]
[77]
Moglia A, Menciassi A, Schurr MO, Dario P. Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems. Biomed Microdevices 2007; 9(2): 235-43.
[http://dx.doi.org/10.1007/s10544-006-9025-3 ] [PMID: 17160703]
[78]
Messing DS, Daly S, Eds. Improved display resolution of subsampled colour images using subpixel addressing. Proceedings International Conference on Image Processing. Rochester, NY, USA.
[http://dx.doi.org/10.1109/ICIP.2002.1038102]
[79]
Lin M-C, Dung L-R. A subsample-based low-power image compressor for capsule gastrointestinal endoscopy. EURASIP J Adv Signal Process 2011; 2011(1): 257095.
[http://dx.doi.org/10.1155/2011/257095]
[80]
Khan TH, Wahid KA. Design of a lossless image compression system for video capsule endoscopy and its performance in in-vivo trials. Sensors (Basel) 2014; 14(11): 20779-99.
[http://dx.doi.org/10.3390/s141120779 ] [PMID: 25375753]
[81]
Kobayashi H, Bahl LR. Image data compression by predictive coding I: Prediction algorithms. IBM J Res Develop 1974; 18(2): 164-71.
[http://dx.doi.org/10.1147/rd.182.0164]
[82]
Li X, Orchard MT. Edge-directed prediction for lossless compression of natural images. IEEE Trans Image Process 2001; 10(6): 813-7.
[http://dx.doi.org/10.1109/83.923277]
[83]
Jovanovic R, Lorentz RA. Adaptive lossless prediction based image compression. Appl Math Inf Sci 2014; 8(1): 153.
[http://dx.doi.org/10.12785/amis/080119]
[84]
Clunie DA, Ed. Lossless compression of grayscale medical images: effectiveness of traditional and state-of-the-art approaches Medical Imaging 2000: PACS Design and Evaluation: Engineering and Clinical Issues. International Society for Optics and Photonics 2000.
[85]
Abate JE. Linear and adaptive delta modulation. Proc IEEE 1967; 55(3): 298-308.
[http://dx.doi.org/10.1109/PROC.1967.5486]
[86]
Papadonikolakis M, Pantazis V, Kakarountas AP, Eds. Efficient high-performance ASIC implementation of JPEG-LS encoder. Proceedings of the conference on Design, automation and test in Europe.
[http://dx.doi.org/10.1109/DATE.2007.364584]
[87]
Weinberger MJ, Seroussi G, Sapiro G. LOCO-I: A low complexity, context-based, lossless image compression algorithm. Data Compression Conference, 1996 DCC'96 Proceedings.
[http://dx.doi.org/10.1109/DCC.1996.488319]
[88]
Zukoski MJ, Boult T, Iyriboz T. A novel approach to medical image compression. Int J Bioinform Res Appl 2006; 2(1): 89-103.
[http://dx.doi.org/10.1504/IJBRA.2006.009195 ] [PMID: 18048155]
[89]
Liu G, Yan G, Zhao S, Kuang S. A complexity-efficient and one- pass image compression algorithm for wireless capsule endoscopy. Technol Health Care 2015; 23(Suppl. 2): S239-47.
[http://dx.doi.org/10.3233/THC-150959 ] [PMID: 26410489]
[90]
Liu G, Yan G, Zhu B, Lu L. Design of a video capsule endoscopy system with low-power ASIC for monitoring gastrointestinal tract. Med Biol Eng Comput 2016; 54(11): 1779-91.
[http://dx.doi.org/10.1007/s11517-016-1472-2 ] [PMID: 27016367]
[91]
Li X, Xie X, Chen X, et al. Design and implementation of a low complexity near-lossless image compression method for wireless endoscopy capsule system. IEEE International Symposium on Circuits and Systems. New Orleans, LA, USA. 2007.
[http://dx.doi.org/10.1109/ISCAS.2007.378415]
[92]
Merlino P, Abramo A. A fully pipelined architecture for the LOCO-I compression algorithm. IEEE Transactions on very large scale integration (VLSI). Systems 2009; 17(7): 967-71.
[93]
Rajkumar T, Latte MV. ROI based encoding of medical images: An effective scheme using lifting wavelets and SPIHT for telemedicine. Int J Comput Theory Eng 2011; 3(3): 338.
[http://dx.doi.org/10.7763/IJCTE.2011.V3.329]
[94]
Xia S, Ge D, Mo W, Zhang Z. A content-based retrieval system for endoscopic images. 2005 IEEE-EMBS 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society.
[95]
Münzer B, Schoeffmann K, Böszörmenyi L. Content-based processing and analysis of endoscopic images and videos: A survey. Multimedia Tools Appl 2018; 77(1): 1323-62.
[http://dx.doi.org/10.1007/s11042-016-4219-z]
[96]
Babu C, Chandy DA, Eds. DPCM based compressor for capsule endoscopic videos. International Conference on Signal Processing and Communication (ICSPC).
[PMID: 10.1109/CSPC.2017.8305813]
[97]
Ke L, Marcellin MW. Near-lossless image compression: minimum-entropy, constrained-error DPCM. IEEE Trans Image Process 1998; 7(2): 225-8.
[http://dx.doi.org/10.1109/83.660999 ] [PMID: 18267396]
[98]
Pearlman W, Jakatdar P. The effectiveness and efficiency of hybrid transform/DPCM interframe image coding. IEEE Trans Commun 1984; 32(7): 832-8.
[http://dx.doi.org/10.1109/TCOM.1984.1096137]
[99]
Bradley JN, Stockham TG, Mathews VJ. An optimal design procedure for intraband vector quantized subband coding. IEEE Trans Commun 1995; 43(234): 523-33.
[http://dx.doi.org/10.1109/26.380071]
[100]
Khan TH, Wahid KA. Lossless and low-power image compressor for wireless capsule endoscopy. VLSI Des 2011; 2011: 3.
[http://dx.doi.org/10.1155/2011/343787]
[101]
Tajallipour R, Wahid K. Efficient data encoder for low-power capsule endoscopy application. 10th International Conference on Information Sciences Signal Processing and their Applications (ISSPA).
[http://dx.doi.org/10.1109/ISSPA.2010.5605599]
[102]
Rigler S, Bishop W, Kennings A. FPGA-based lossless data compression using Huffman and LZ77 algorithms. 2007 CCECE 2007 Canadian Conference on Electrical and Computer Engineering.
[103]
Kotze H, Kuhn G. An evaluation of the Lempel-Ziv-Welch data compression algorithm. Southern African Conference on Communications and Signal Processing.
[http://dx.doi.org/10.1109/COMSIG.1989.129018]
[104]
Cosman PC, Gray RM, Olshen RA. Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc IEEE 1994; 82(6): 919-32.
[http://dx.doi.org/10.1109/5.286196]
[105]
Eskicioglu AM, Fisher PS. Image quality measures and their performance. IEEE Trans Commun 1995; 43(12): 2959-65.
[http://dx.doi.org/10.1109/26.477498]
[106]
Wang S, Rehman A, Wang Z, Ma S, Gao W. SSIM-motivated rate-distortion optimization for video coding. IEEE Trans Circ Syst Video Tech 2011; 22(4): 516-29.
[http://dx.doi.org/10.1109/TCSVT.2011.2168269]
[107]
Zhang L, Zhang L, Mou X, Zhang D. FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 2011; 20(8): 2378-86.
[http://dx.doi.org/10.1109/TIP.2011.2109730 ] [PMID: 21292594]
[108]
Sheikh HR, Bovik AC. Image information and visual quality. IEEE Trans Image Process 2006; 15(2): 430-44.
[http://dx.doi.org/10.1109/TIP.2005.859378 ] [PMID: 16479813]
[109]
Wu J, Lin W, Shi G, Liu A. Reduced-reference image quality assessment with visual information fidelity. IEEE Trans Multimed 2013; 15(7): 1700-5.
[http://dx.doi.org/10.1109/TMM.2013.2266093]
[110]
Han Y, Cai Y, Cao Y, Xu X. A new image fusion performance metric based on visual information fidelity. Inf Fusion 2013; 14(2): 127-35.
[http://dx.doi.org/10.1016/j.inffus.2011.08.002]
[111]
Sheikh HR, Bovik AC. Image information and visual quality. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[http://dx.doi.org/10.1109/ICASSP.2004.1326643]
[112]
Zhang L, Zhang L, Mou X, Zhang D. A comprehensive evaluation of full reference image quality assessment algorithms. 19th IEEE International Conference on Image Processing.
[113]
Chandler DM, Hemami SS. VSNR: a wavelet-based visual signal- to-noise ratio for natural images. IEEE Trans Image Process 2007; 16(9): 2284-98.
[http://dx.doi.org/10.1109/TIP.2007.901820 ] [PMID: 17784602]
[114]
Kwan C, Larkin J, Budavari B, et al. A comparison of compression codecs for maritime and sonar images in bandwidth constrained applications. Computers 2019; 8(2): 32.
[http://dx.doi.org/10.3390/computers8020032]
[115]
Kwan C, Shang E, Tran TD, Eds. Perceptually lossless video compression with error concealment. Proceedings of the 2nd International Conference on Vision, Image and Signal Processing.
[http://dx.doi.org/10.1145/3271553.3271622]
[116]
Karargyris A, Bourbakis N. Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos. IEEE Trans Biomed Eng 2011; 58(10): 2777-86.
[http://dx.doi.org/10.1109/TBME.2011.2155064 ] [PMID: 21592915]
[117]
Mann C, Yu L, Lo C-M, Kim M. High-resolution quantitative phase-contrast microscopy by digital holography. Opt Express 2005; 13(22): 8693-8.
[http://dx.doi.org/10.1364/OPEX.13.008693 ] [PMID: 19498901]
[118]
Baker WD. Charge-coupled devices: Springer Berlin. 1980.
[119]
Jani KK, Srivastava R. A survey on medical image analysis in capsule endoscopy. Curr Med Imaging Rev 2019; 15(7): 622-36.
[http://dx.doi.org/10.2174/1573405614666181102152434 ] [PMID: 32008510]
[120]
Oh H, Bilgin A, Marcellin MW. Visually lossless encoding for JPEG2000. IEEE Trans Image Process 2013; 22(1): 189-201.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy