Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Nanomaterials and Aging

Author(s): Chen-Chen Mao and Xiaoxiao Cai*

Volume 16, Issue 1, 2021

Published on: 22 April, 2020

Page: [57 - 65] Pages: 9

DOI: 10.2174/1574888X15666200422103916

Price: $65

Abstract

As the proportion of the elderly population increases, more and more people suffer from aging-related diseases. Even if aging is inevitable, prolonging the time of healthy aging, delaying the progression of aging-related diseases, and the incidence of morbidity can greatly alleviate the pressure on individuals and society. Current research and exploration in the field of materials related to aging are expanding tremendously. Here, we present a summary of recent research in the field of nanomaterials relevant to aging. Some nanomaterials, such as silica nanomaterials (NMs) and carbon nanotubes, cause damage to the cells similar to aging processes. Other nanomaterials such as fullerenes and metalbased nanomaterials can protect the body from endogenous and exogenous harmful substances such as ROS by virtue of their excellent reducing properties. Another new type of nucleic acid nanomaterial, tetrahedral framework nucleic acids, works effectively against cell damage. This material selectively clears existing senescent cells in the tissue and thus prevents the development of the chronic inflammatory environment caused by senescent cells secreting senescence-associated secretory phenotype to the surroundings. We believe that nanomaterials have tremendous potential to advance the understanding and treatment of aging-related disorders, and today's research only represents the beginning stages.

Keywords: Nanomaterial, aging, senescence, carbon-based nanomaterials, metal-based nanomaterials, tetrahedral framework nucleic acids [tFNAs].

[1]
He W, Goodkind D, Kowal PR. An aging world: 2015. . 2016.
[2]
Yi P, Liang C. Report on the development of aging society Beijing,China: Social science academic pres 2019.
[3]
Afonso CR, Hirano RS, Gaspar AL, et al. Biodegradable antioxidant chitosan films useful as an anti-aging skin mask. Int J Biol Macromol 2019; 132: 1262-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.052] [PMID: 30980874]
[4]
Dugan LL, Gabrielsen JK, Yu SP, Lin T-S, Choi DW. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 1996; 3(2): 129-35.
[http://dx.doi.org/10.1006/nbdi.1996.0013] [PMID: 9173920]
[5]
Dugan LL, Turetsky DM, Du C, et al. Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 1997; 94(17): 9434-9.
[http://dx.doi.org/10.1073/pnas.94.17.9434] [PMID: 9256500]
[6]
Schubert D, Dargusch R, Raitano J, Chan S-W. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 2006; 342(1): 86-91.
[http://dx.doi.org/10.1016/j.bbrc.2006.01.129] [PMID: 16480682]
[7]
Mao C, Pan W, Shao X, et al. The clearance effect of tetrahedral dna nanostructures on senescent human dermal fibroblasts. ACS Appl Mater Interfaces 2019; 11(2): 1942-50.
[http://dx.doi.org/10.1021/acsami.8b20530] [PMID: 30562007]
[8]
Mattison JA, Colman RJ, Beasley TM, et al. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 2017; 8: 14063.
[http://dx.doi.org/10.1038/ncomms14063] [PMID: 28094793]
[9]
McCay CM, Maynard L, Sperling G, Barnes LL. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories: four figures. J Nutr 1939; 18(1): 1-13.
[http://dx.doi.org/10.1093/jn/18.1.1]
[10]
Pifferi F, Terrien J, Marchal J, et al. Caloric restriction increases lifespan but affects brain integrity in grey mouse lemur primates. Commun Biol 2018; 1(1): 30.
[http://dx.doi.org/10.1038/s42003-018-0024-8] [PMID: 30271916]
[11]
Klass MR. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results. Mech Ageing Dev 1983; 22(3-4): 279-86.
[http://dx.doi.org/10.1016/0047-6374(83)90082-9] [PMID: 6632998]
[12]
Moskalev AA, Shaposhnikov MV, Plyusnina EN, et al. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12(2): 661-84.
[http://dx.doi.org/10.1016/j.arr.2012.02.001] [PMID: 22353384]
[13]
Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361(15): 1475-85.
[http://dx.doi.org/10.1056/NEJMra0804615] [PMID: 19812404]
[14]
Blackburn EH, Greider CW, Szostak JW. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 2006; 12(10): 1133-8.
[http://dx.doi.org/10.1038/nm1006-1133] [PMID: 17024208]
[15]
Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 2012; 13(10): 659-71.
[http://dx.doi.org/10.1038/nrm3439] [PMID: 22992591]
[16]
Worman HJ. Nuclear lamins and laminopathies. J Pathol 2012; 226(2): 316-25.
[http://dx.doi.org/10.1002/path.2999] [PMID: 21953297]
[17]
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25(3): 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[18]
Olovnikov AM. Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 1996; 31(4): 443-8.
[http://dx.doi.org/10.1016/0531-5565(96)00005-8] [PMID: 9415101]
[19]
Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279(5349): 349-52.
[http://dx.doi.org/10.1126/science.279.5349.349] [PMID: 9454332]
[20]
Talens RP, Christensen K, Putter H, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 2012; 11(4): 694-703.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00835.x] [PMID: 22621408]
[21]
Fraga MF, Esteller M. Epigenetics and aging: the targets and the marks. Trends Genet 2007; 23(8): 413-8.
[http://dx.doi.org/10.1016/j.tig.2007.05.008] [PMID: 17559965]
[22]
Han S, Brunet A. Histone methylation makes its mark on longevity. Trends Cell Biol 2012; 22(1): 42-9.
[http://dx.doi.org/10.1016/j.tcb.2011.11.001] [PMID: 22177962]
[23]
Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483(7388): 218-21.
[http://dx.doi.org/10.1038/nature10815] [PMID: 22367546]
[24]
Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 2006; 124(2): 315-29.
[http://dx.doi.org/10.1016/j.cell.2005.11.044] [PMID: 16439206]
[25]
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78: 959-91.
[http://dx.doi.org/10.1146/annurev.biochem.052308.114844] [PMID: 19298183]
[26]
Koga H, Kaushik S, Cuervo AM. Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 2011; 10(2): 205-15.
[http://dx.doi.org/10.1016/j.arr.2010.02.001] [PMID: 20152936]
[27]
Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes 2012; 61(6): 1315-22.
[http://dx.doi.org/10.2337/db11-1300] [PMID: 22618766]
[28]
Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science 2010; 328(5976): 321-6.
[http://dx.doi.org/10.1126/science.1172539] [PMID: 20395504]
[29]
Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011; 333(6046): 1109-12.
[http://dx.doi.org/10.1126/science.1201940] [PMID: 21868666]
[30]
Kujoth GC, Hiona A, Pugh TD, et al. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 2005; 309(5733): 481-4.
[http://dx.doi.org/10.1126/science.1112125] [PMID: 16020738]
[31]
Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004; 429(6990): 417-23.
[http://dx.doi.org/10.1038/nature02517] [PMID: 15164064]
[32]
Vermulst M, Wanagat J, Kujoth GC, et al. DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 2008; 40(4): 392-4.
[http://dx.doi.org/10.1038/ng.95] [PMID: 18311139]
[33]
Campisi J, d’Adda di Fagagna F. Cellular senescence: When bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8(9): 729-40.
[http://dx.doi.org/10.1038/nrm2233] [PMID: 17667954]
[34]
Collado M, Blasco MA, Serrano M. Cellular senescence in cancer and aging. Cell 2007; 130(2): 223-33.
[http://dx.doi.org/10.1016/j.cell.2007.07.003] [PMID: 17662938]
[35]
Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 2010; 24(22): 2463-79.
[http://dx.doi.org/10.1101/gad.1971610] [PMID: 21078816]
[36]
Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011; 192(4): 547-56.
[http://dx.doi.org/10.1083/jcb.201009094] [PMID: 21321098]
[37]
Janzen V, Forkert R, Fleming HE, et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443(7110): 421-6.
[http://dx.doi.org/10.1038/nature05159] [PMID: 16957735]
[38]
Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 2007; 447(7145): 725-9.
[http://dx.doi.org/10.1038/nature05862] [PMID: 17554309]
[39]
Rando TA, Chang HY. Aging, rejuvenation, and epigenetic reprogramming: Resetting the aging clock. Cell 2012; 148(1-2): 46-57.
[http://dx.doi.org/10.1016/j.cell.2012.01.003] [PMID: 22265401]
[40]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149(2): 274-93.
[http://dx.doi.org/10.1016/j.cell.2012.03.017] [PMID: 22500797]
[41]
Russell SJ, Kahn CR. Endocrine regulation of ageing. Nat Rev Mol Cell Biol 2007; 8(9): 681-91.
[http://dx.doi.org/10.1038/nrm2234] [PMID: 17684529]
[42]
Zhang G, Li J, Purkayastha S, et al. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 2013; 497(7448): 211-6.
[http://dx.doi.org/10.1038/nature12143] [PMID: 23636330]
[43]
Lefebvre JS, Maue AC, Eaton SM, Lanthier PA, Tighe M, Haynes L. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 2012; 11(5): 732-40.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00836.x] [PMID: 22607653]
[44]
Nelson G, Wordsworth J, Wang C, et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 2012; 11(2): 345-9.
[http://dx.doi.org/10.1111/j.1474-9726.2012.00795.x] [PMID: 22321662]
[45]
Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 2011; 144(1): 79-91.
[http://dx.doi.org/10.1016/j.cell.2010.12.016] [PMID: 21215371]
[46]
Lavasani M, Robinson AR, Lu A, et al. Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun 2012; 3(1): 608.
[http://dx.doi.org/10.1038/ncomms1611] [PMID: 22215083]
[47]
Tomás-Loba A, Flores I, Fernández-Marcos PJ, et al. Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 2008; 135(4): 609-22.
[http://dx.doi.org/10.1016/j.cell.2008.09.034] [PMID: 19013273]
[48]
Dickinson BC, Chang CJ. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 2011; 7(8): 504-11.
[http://dx.doi.org/10.1038/nchembio.607] [PMID: 21769097]
[49]
Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer 2014; 14(11): 709-21.
[http://dx.doi.org/10.1038/nrc3803] [PMID: 25342630]
[50]
Block K, Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer 2012; 12(9): 627-37.
[http://dx.doi.org/10.1038/nrc3339] [PMID: 22918415]
[51]
Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4(3): 181-9.
[http://dx.doi.org/10.1038/nri1312] [PMID: 15039755]
[52]
Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 2008; 4(5): 278-86.
[http://dx.doi.org/10.1038/nchembio.85] [PMID: 18421291]
[53]
Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther 1991; 51(2): 155-94.
[http://dx.doi.org/10.1016/0163-7258(91)90076-X] [PMID: 1784629]
[54]
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: Distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16(6): 476-95.
[http://dx.doi.org/10.1089/ars.2011.4289] [PMID: 21954972]
[55]
Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 2009; 48(2): 91-104.
[http://dx.doi.org/10.1002/mc.20465] [PMID: 18618599]
[56]
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408(6809): 239-47.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[57]
Bouayed J, Bohn T. Exogenous antioxidants--Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev 2010; 3(4): 228-37.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[58]
Yang B, Chen Y, Shi J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem Rev 2019; 119(8): 4881-985.
[http://dx.doi.org/10.1021/acs.chemrev.8b00626] [PMID: 30973011]
[59]
Chen D, Dougherty CA, Zhu K, Hong H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J Control Release 2015; 210: 230-45.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.021] [PMID: 25910580]
[60]
Mundra RV, Wu X, Sauer J, Dordick JS, Kane RS. Nanotubes in biological applications. Curr Opin Biotechnol 2014; 28: 25-32.
[http://dx.doi.org/10.1016/j.copbio.2013.10.012] [PMID: 24832071]
[61]
Tonelli FM, Goulart VA, Gomes KN, et al. Graphene-based nanomaterials: Biological and medical applications and toxicity. Nanomedicine (Lond) 2015; 10(15): 2423-50.
[http://dx.doi.org/10.2217/nnm.15.65] [PMID: 26244905]
[62]
Ala’a K. Isolation, separation and characterisation of the fullerenes C 60 and C 70: The third form of carbon. J Chem Soc Chem Commun 1990; (20): 1423-5.
[63]
Fowler P, Ceulemans A. Electron deficiency of the fullerenes. J Phys Chem 1995; 99(2): 508-10.
[http://dx.doi.org/10.1021/j100002a010]
[64]
Prato M. [60] Fullerene chemistry for materials science applications. J Mater Chem 1997; 7(7): 1097-109.
[http://dx.doi.org/10.1039/a700080d]
[65]
Bianco A, Maggini M, Scorrano G, Toniolo C, Marconi G, Villani C, et al. Synthesis, chiroptical properties, and configurational assignment of fulleroproline derivatives and peptides. J Am Chem Soc 1996; 118(17): 4072-80.
[http://dx.doi.org/10.1021/ja9539249]
[66]
Brettreich M, Hirsch A. A highly water-soluble dendro [60] fullerene. Tetrahedron Lett 1998; 39(18): 2731-4.
[http://dx.doi.org/10.1016/S0040-4039(98)00491-2]
[67]
Chen Y, Cai R-F, Chen S, Huang Z-E. Synthesis and characterization of fullerol derived from C60n− precursors. J Phys Chem Solids 2001; 62(5): 999-1001.
[http://dx.doi.org/10.1016/S0022-3697(00)00242-0]
[68]
Hirsch A, Lamparth I, Grösser T, Karfunkel HR. Regiochemistry of multiple additions to the fullerene core: Synthesis of a Th-symmetric hexakis adduct of C60 with Bis (ethoxycarbonyl) methylene. J Am Chem Soc 1994; 116(20): 9385-6.
[http://dx.doi.org/10.1021/ja00099a088]
[69]
Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF. Radical reactions of c60. Science 1991; 254(5035): 1183-5.
[http://dx.doi.org/10.1126/science.254.5035.1183] [PMID: 17776407]
[70]
Foley S, Crowley C, Smaihi M, et al. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 2002; 294(1): 116-9.
[http://dx.doi.org/10.1016/S0006-291X(02)00445-X] [PMID: 12054749]
[71]
Russ KA, Elvati P, Parsonage TL, et al. C60 fullerene localization and membrane interactions in RAW 264.7 immortalized mouse macrophages. Nanoscale 2016; 8(7): 4134-44.
[http://dx.doi.org/10.1039/C5NR07003A] [PMID: 26866469]
[72]
Santos SM, Dinis AM, Peixoto F, Ferreira L, Jurado AS, Videira RA. Interaction of fullerene nanoparticles with biomembranes: From the partition in lipid membranes to effects on mitochondrial bioenergetics. Toxicol Sci 2014; 138(1): 117-29.
[http://dx.doi.org/10.1093/toxsci/kft327] [PMID: 24361870]
[73]
Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. Eur J Pharm Sci 2015; 70: 22-8.
[http://dx.doi.org/10.1016/j.ejps.2015.01.006] [PMID: 25619806]
[74]
Zhou Y, Zhen M, Ma H, Li J, Shu C, Wang C. Inhalable gadofullerenol/[70] fullerenol as high-efficiency ROS scavengers for pulmonary fibrosis therapy. Nanomedicine (Lond) 2018; 14(4): 1361-9.
[http://dx.doi.org/10.1016/j.nano.2018.03.008] [PMID: 29649591]
[75]
Baati T, Bourasset F, Gharbi N, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials 2012; 33(19): 4936-46.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.036] [PMID: 22498298]
[76]
Kazmierska-Grebowska P, Kobrzycka A, Bocian R, Kowalczyk T, Krokosz A, Grebowski J. Fullerenol C60(OH)36 at relatively high concentrations impairs hippocampal theta oscillations (in vivo and in vitro) and triggers epilepsy (in vitro) - A dose response study. Exp Mol Pathol 2018; 105(1): 98-109.
[http://dx.doi.org/10.1016/j.yexmp.2018.06.002] [PMID: 29909157]
[77]
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta, Gen Subj 2017; 1861(4): 802-13.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.018] [PMID: 28115205]
[78]
Wu H, Li F, Wang S, et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials 2018; 151: 66-77.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.018] [PMID: 29078200]
[79]
Akhtar MJ, Ahamed M, Alhadlaq HA, Khan MAM, Alrokayan SA. Glutathione replenishing potential of CeOé nanoparticles in human breast and fibrosarcoma cells. J Colloid Interface Sci 2015; 453: 21-7.
[http://dx.doi.org/10.1016/j.jcis.2015.04.049] [PMID: 25965428]
[80]
Kim J, Shirasawa T, Miyamoto Y. The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 2010; 31(22): 5849-54.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.077] [PMID: 20434216]
[81]
Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A, Khan MA, Alrokayan SA. Antioxidative and cytoprotective response elicited by molybdenum nanoparticles in human cells. J Colloid Interface Sci 2015; 457: 370-7.
[http://dx.doi.org/10.1016/j.jcis.2015.07.034] [PMID: 26196721]
[82]
Xiong B, Xu R, Zhou R, He Y, Yeung ES. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au-Pt nanocomposites. Talanta 2014; 120: 262-7.
[http://dx.doi.org/10.1016/j.talanta.2013.12.020] [PMID: 24468368]
[83]
Schwarz G, Mendel RR, Ribbe MW. Molybdenum cofactors, enzymes and pathways. Nature 2009; 460(7257): 839-47.
[http://dx.doi.org/10.1038/nature08302] [PMID: 19675644]
[84]
Chonpathompikunlert P, Yoshitomi T, Vong LB, Imaizumi N, Ozaki Y, Nagasaki Y. Recovery of cognitive dysfunction via orally administered redox-polymer nanotherapeutics in SAMP8 mice. PLoS One 2015; 10(5)e0126013
[http://dx.doi.org/10.1371/journal.pone.0126013] [PMID: 25955022]
[85]
Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006; 440(7082): 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[86]
Coppé J-P, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6(12): 2853-68.
[http://dx.doi.org/10.1371/journal.pbio.0060301] [PMID: 19053174]
[87]
Muñoz-Espín D, Serrano M. Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol 2014; 15(7): 482-96.
[http://dx.doi.org/10.1038/nrm3823] [PMID: 24954210]
[88]
Vallyathan V, Shi X. The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 1997; 105(Suppl. 1): 165-77.
[PMID: 9114285]
[89]
Scharf A, Piechulek A, von Mikecz A. Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 2013; 7(12): 10695-703.
[http://dx.doi.org/10.1021/nn403443r] [PMID: 24256469]
[90]
Pluskota A, Horzowski E, Bossinger O, von Mikecz A. In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: Silica-nanoparticles induce reproductive senescence. PLoS One 2009; 4(8)e6622
[http://dx.doi.org/10.1371/journal.pone.0006622] [PMID: 19672302]
[91]
Harris PJ, Harris PJF. Carbon nanotube science: Synthesis, properties and applications. Cambridge university press 2009.
[http://dx.doi.org/10.1017/CBO9780511609701]
[92]
Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354(6348): 56.
[http://dx.doi.org/10.1038/354056a0]
[93]
Antaris AL, Robinson JT, Yaghi OK, et al. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 2013; 7(4): 3644-52.
[http://dx.doi.org/10.1021/nn4006472] [PMID: 23521224]
[94]
Bernholc J, Brenner D, Buongiorno Nardelli M, Meunier V, Roland C. Mechanical and electrical properties of nanotubes. Annu Rev Mater Res 2002; 32(1): 347-75.
[http://dx.doi.org/10.1146/annurev.matsci.32.112601.134925]
[95]
Hong G, Diao S, Chang J, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 2014; 8(9): 723-30.
[http://dx.doi.org/10.1038/nphoton.2014.166] [PMID: 27642366]
[96]
Liang Y, Li Y, Wang H, Dai H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 2013; 135(6): 2013-36.
[PMID: 23339685]
[97]
Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H. Carbon materials for drug delivery & cancer therapy. Mater Today 2011; 14(7-8): 316-23.
[http://dx.doi.org/10.1016/S1369-7021(11)70161-4]
[98]
Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res 2009; 2(2): 85-120.
[http://dx.doi.org/10.1007/s12274-009-9009-8] [PMID: 20174481]
[99]
Wang H, Dai H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev 2013; 42(7): 3088-113.
[http://dx.doi.org/10.1039/c2cs35307e] [PMID: 23361617]
[100]
Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. Pulmonary toxicity of carbon nanotubes and asbestos - similarities and differences. Adv Drug Deliv Rev 2013; 65(15): 2078-86.
[http://dx.doi.org/10.1016/j.addr.2013.07.014] [PMID: 23899865]
[101]
Kasai T, Umeda Y, Ohnishi M, et al. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol 2016; 13(1): 53.
[http://dx.doi.org/10.1186/s12989-016-0164-2] [PMID: 27737701]
[102]
Mehra NK, Jain K, Jain NK. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 2015; 20(6): 750-9.
[http://dx.doi.org/10.1016/j.drudis.2015.01.006] [PMID: 25601411]
[103]
Merum S, Veluru JB, Seeram R. Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Mater Sci Eng B 2017; 223: 43-63.
[http://dx.doi.org/10.1016/j.mseb.2017.06.002]
[104]
Sajid MI, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 2016; 501(1-2): 278-99.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.064] [PMID: 26827920]
[105]
Stueckle TA, Davidson DC, Derk R, et al. Effect of surface functionalizations of multi-walled carbon nanotubes on neoplastic transformation potential in primary human lung epithelial cells. Nanotoxicology 2017; 11(5): 613-24.
[http://dx.doi.org/10.1080/17435390.2017.1332253] [PMID: 28513319]
[106]
Grosse Y, Loomis D, Guyton KZ, et al. International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 2014; 15(13): 1427-8.
[http://dx.doi.org/10.1016/S1470-2045(14)71109-X] [PMID: 25499275]
[107]
Alessio N, Stellavato A, Squillaro T, et al. Hybrid complexes of high and low molecular weight hyaluronan delay in vitro replicative senescence of mesenchymal stromal cells: a pilot study for future therapeutic application. Aging (Albany NY) 2018; 10(7): 1575-85.
[http://dx.doi.org/10.18632/aging.101493] [PMID: 30001217]
[108]
Kong SZ, Li JC, Li SD, et al. Anti-aging effect of chitosan oligosaccharide on d-galactose-induced subacute aging in mice. Mar Drugs 2018; 16(6): 181.
[http://dx.doi.org/10.3390/md16060181] [PMID: 29794973]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy