Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Identifying the Molecular Targets of an Anti-pathogenic Hydroalcoholic Extract of Punica granatum Peel Against Multidrug-resistant Serratia marcescens

Author(s): Chinmayi Joshi, Pooja Patel, Pawan Godatwar, Sanjeev Sharma and Vijay Kothari*

Volume 18, Issue 3, 2021

Published on: 21 April, 2020

Page: [391 - 404] Pages: 14

DOI: 10.2174/1568009620666200421083120

Price: $65

Abstract

Background: Antibiotic-resistant members of the family Enterobacteriaceae are among the serious threats to human health globally. This study reports the anti-pathogenic activity of Punica granatum peel extract (PGPE) against a multi-drug resistant, beta-lactamase producing member of this family i.e. Serratia marcescens.

Objective: This study aimed at assessing the anti-pathogenic activity of PGPE against the gramnegative bacterial pathogen S. marcescens and identifying the molecular targets of this extract in the test bacterium.

Methods: Effect of PGPE on S. marcescens growth and quorum sensing (QS)-regulated pigment production was assessed through broth dilution assay. In vivo anti-infective and prophylactic activity of PGPE was assessed employing the nematode worm Caenorhabditis elegans as a model host. Differential gene expression in PGPE-exposed S. marcescens was studied through a whole transcriptome approach.

Results: PGPE was able to modulate QS-regulated pigment production in S. marcescens without exerting any heavy growth-inhibitory effect at concentrations as low as ≥2.5 μg/mL. It could attenuate the virulence of the test bacterium towards the worm host by 22-42% (p≤0.01) at even lower concentrations (≥0.5 μg/mL). PGPE also exerted a post-extract effect on S. marcescens. This extract was found to offer prophylactic benefit too, to the host worm, as PGPE-pre-fed worms scored better (34-51%; p≤0.001) survival in face of subsequent bacterial attack. Differential gene expression analysis revealed that PGPE affected the expression of a total of 66 genes in S. marcescens by ≥1.5 fold.

Conclusion: The anti-virulence effect of PGPE against S. marcescens is multifaceted, affecting stress-response machinery, efflux activity, iron homeostasis, and cellular energetics of this bacterium notably. Among the major molecular targets identified in this study are LPS export transporter permease (LptF), t-RNA pseudouridine synthase (TruB), etc.

Keywords: Antimicrobial Resistance (AMR), Anti-virulence, Microwave Assisted Extraction (MAE), Post Extract Effect (PEE), Prophylaxis, Punica granatum peel, Quorum Sensing (QS), Whole transcriptome analysis (WTA).

Graphical Abstract

[1]
O’ Neill. Review on antimicrobial resistance. Tackling drugresistant infections globally: final report and recommendations. Review on Antimicrobial Resistance 2016.
[2]
Zgurskaya HI, Löpez CA, Gnanakaran S. Permeability barrier of Gram-negative cell envelopes and approaches to bypass it. ACS Infect Dis 2015; 1(11): 512-22.
[http://dx.doi.org/10.1021/acsinfecdis.5b00097] [PMID: 26925460]
[3]
Eisenstein BI. Enterobacteriaceae. Principles and Practice of Infectious Disease. New York 1990; pp. 1658-73.
[4]
Van Houdt R, Givskov M, Michiels CW. Quorum sensing in Serratia. FEMS Microbiol Rev 2007; 31(4): 407-24.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00071.x] [PMID: 17459113]
[5]
Gui JL, Lin KY. The evolution of breast implant infections: Serratiamarcescens is an emerging pathogen in implant-based breast reconstruction. Plast Surg (Oakv) 2019; 27(2): 182-8.
[http://dx.doi.org/10.1177/2292550319826098] [PMID: 31106178]
[6]
González-Juarbe N, Gilley RP, Hinojosa CA, et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia. PLoS Pathog 2015; 11(12)e1005337
[http://dx.doi.org/10.1371/journal.ppat.1005337] [PMID: 26659062]
[7]
Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol 2012; 143(2): 397-405.
[http://dx.doi.org/10.1016/j.jep.2012.07.004] [PMID: 22820239]
[8]
Hosein Farzaei M, Abbasabadi Z, Reza Shams-Ardekani M, Abdollahi M, Rahimi R. A comprehensive review of plants and their active constituents with wound healing activity in traditional Iranian medicine. Wounds 2014; 26(7): 197-206.
[PMID: 25856320]
[9]
Colombo E, Sangiovanni E, Dell’agli M. A review on the anti-inflammatory activity of pomegranate in the gastrointestinal tract. Evid Based Complement Alternat Med 2013.2013247145
[http://dx.doi.org/10.1155/2013/247145] [PMID: 23573120]
[10]
Khare CP. Indian herbal remedies: rational western therapy, ayurvedic, and other traditional usage, Botany. Springer science & business media 2004.
[http://dx.doi.org/10.1007/978-3-642-18659-2]
[11]
Gulani C, Bhattacharya S, Das A. Assessment of process parameters influencing the enhanced production of prodigiosin from Serratiamarcescens and evaluation of its antimicrobial, antioxidant and dyeing potentials. Malays J Microbiol 2012; 8(2): 116-22.
[12]
Kothari V, Punjabi A, Gupta S. Optimization of microwave-assisted extraction of Annonasquamosa seeds. Icfai University Journal of Life Sciences 2009; 3(1): 55-60.
[13]
Patel P, Joshi C, Palep H, Kothari V. Anti-infective potential of a quorum modulatory polyherbal extract (Panchvalkal) against certain pathogenic bacteria. J Ayurveda Integr Med 2018; 1-8.
[http://dx.doi.org/10.1016/j.jaim.2017.10.012]
[14]
Vandeputte OM, Kiendrebeogo M, Rajaonson S, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2010; 76(1): 243-53.
[http://dx.doi.org/10.1128/AEM.01059-09] [PMID: 19854927]
[15]
Nazzaro F, Fratianni F, Coppola R. Quorum sensing and phytochemicals. Int J Mol Sci 2013; 14(6): 12607-19.
[http://dx.doi.org/10.3390/ijms140612607] [PMID: 23774835]
[16]
Joshi C, Kothari V, Patel P. Importance of selecting appropriate wavelength, while quantifying growth and production of quorum sensing regulated pigments in bacteria. Recent Pat Biotechnol 2016; 10(2): 145-52.
[http://dx.doi.org/10.2174/1872208310666160414102848] [PMID: 27076088]
[17]
Pradeep BV, Pradeep FS, Angayarkanni J, Palaniswamy M. Optimization and production of prodigiosin from Serratiamarcescens MBB05 using various natural substrates. Asian J Pharm Clin Res 2013; 6: 34-41.
[18]
Chang CY, Krishnan T, Wang H, et al. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci Rep 2014; 4: 7245.
[http://dx.doi.org/10.1038/srep07245] [PMID: 25430794]
[19]
McClean KH, Winson MK, Fish L, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997; 143(Pt 12): 3703-11.
[http://dx.doi.org/10.1099/00221287-143-12-3703] [PMID: 9421896]
[20]
Yue CX. Quorum sensing and quorum quenching in selected bacteria isolated from diseased tilapia fish. Master of Science thesis 2013.
[21]
Neun BW, Ilinskaya AN, Dobrovolskaia MA. Analysis of hemolytic properties of nanoparticles NCL method ITA-1 Version 12. Frederick, MD: Nanotechnology Characterization Laboratory 2015.
[22]
Iwase T, Tajima A, Sugimoto S, et al. A simple assay for measuring catalase activity: a visual approach. Sci Rep 2013; 3: 3081.
[http://dx.doi.org/10.1038/srep03081] [PMID: 24170119]
[23]
Weydert CJ, Cullen JJ. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 2010; 5(1): 51-66.
[http://dx.doi.org/10.1038/nprot.2009.197] [PMID: 20057381]
[24]
Eng SA, Nathan S. Curcumin rescues Caenorhabditis elegans from a Burkholderia pseudomallei infection. Front Microbiol 2015; 6: 290.
[http://dx.doi.org/10.3389/fmicb.2015.00290] [PMID: 25914690]
[25]
Patel P, Joshi C, Kothari V. Antipathogenic potential of a polyherbal wound-care formulation (Herboheal) against certain wound-infective gram-negative bacteria. Adv Pharmacol Sci 2019.20191739868
[http://dx.doi.org/10.1155/2019/1739868] [PMID: 30833966]
[26]
Patel P, Joshi C, Kothari V. Anti-infective potential of hydroalcoholic extract of Phyllanthus emblica seeds against selected human-pathogenic bacteria. Infect Disord Drug Targets 2019.
[http://dx.doi.org/10.2174/1871526519666190821154926] [PMID: 31433763]
[27]
Ramadan MA, Tawfik AF, Shibl AM, Gemmell CG. Post-antibiotic effect of azithromycin and erythromycin on streptococcal susceptibility to phagocytosis. J Med Microbiol 1995; 42(5): 362-6.
[http://dx.doi.org/10.1099/00222615-42-5-362] [PMID: 7752216]
[28]
Pfaller MA, Sheehan DJ, Rex JH. Determination of fungicidal activities against yeasts and molds: lessons learned from bactericidal testing and the need for standardization. Clin Microbiol Rev 2004; 17(2): 268-80.
[http://dx.doi.org/10.1128/CMR.17.2.268-280.2004] [PMID: 15084501]
[29]
Ramanuj K, Bachani P, Kothari V. In vitro antimicrobial activity of certain plant products/seed extracts against multidrug resistant Propionibacterium acnes, Malassezia furfur, and aflatoxin producing Aspergillusflavus. Res Pharmacy 2012.
[30]
Kachroo P, Eraso JM, Olsen RJ, et al. New pathogenesis mechanisms and translational leads identified by multidimensional analysis of necrotizing myositis in primates. MBio 2020; 11(1)e03363-19
[http://dx.doi.org/10.1128/mBio.03363-19] [PMID: 32071274]
[31]
Kim HS, Lee SH, Byun Y, Park HD. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 2015; 5: 8656.
[http://dx.doi.org/10.1038/srep08656] [PMID: 25728862]
[32]
Koh CS, Sarin LP. Transfer RNA modification and infection - Implications for pathogenicity and host responses. Biochim Biophys Acta Gene Regul Mech 2018; 1861(4): 419-32.
[http://dx.doi.org/10.1016/j.bbagrm.2018.01.015] [PMID: 29378328]
[33]
Li Z, Srivastava P. Heat‐shock proteins. Curr Protoc Immunol 2003; 58(1): A-1T.
[http://dx.doi.org/10.1002/0471142735.ima01ts58] [PMID: 18432918]
[34]
Nakahigashi K, Yanagi H, Yura T. Regulatory conservation and divergence of σ32 homologs from gram-negative bacteria: Serratia marcescens, Proteus mirabilis, Pseudomonas aeruginosa, and Agrobacterium tumefaciens. J Bacteriol 1998; 180(9): 2402-8.
[http://dx.doi.org/10.1128/JB.180.9.2402-2408.1998] [PMID: 9573192]
[35]
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence 2014; 5(8): 835-51.
[http://dx.doi.org/10.4161/21505594.2014.965580] [PMID: 25603429]
[36]
Gevrekci AÖ. The roles of polyamines in microorganisms. World J Microbiol Biotechnol 2017; 33(11): 204.
[http://dx.doi.org/10.1007/s11274-017-2370-y] [PMID: 29080149]
[37]
Queiroz PS, Ruas FAD, Barboza NR, de Castro Borges W, Guerra-Sá R. Alterations in the proteomic composition of Serratia marcescens in response to manganese (II). BMC Biotechnol 2018; 18(1): 83.
[http://dx.doi.org/10.1186/s12896-018-0493-3] [PMID: 30594179]
[38]
Si MR, Zhang L, Yang ZF, et al. NrdH Redoxin enhances resistance to multiple oxidative stresses by acting as a peroxidase cofactor in Corynebacterium glutamicum. Appl Environ Microbiol 2014; 80(5): 1750-62.
[http://dx.doi.org/10.1128/AEM.03654-13] [PMID: 24375145]
[39]
Sun J, Deng Z, Yan A. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 2014; 453(2): 254-67.
[http://dx.doi.org/10.1016/j.bbrc.2014.05.090] [PMID: 24878531]
[40]
Ishii K, Adachi T, Imamura K, et al. Serratia marcescens induces apoptotic cell death in host immune cells via a lipopolysaccharide- and flagella-dependent mechanism. J Biol Chem 2012; 287(43): 36582-92.
[http://dx.doi.org/10.1074/jbc.M112.399667] [PMID: 22859304]
[41]
Kurz CL, Chauvet S, Andrès E, et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 2003; 22(7): 1451-60.
[http://dx.doi.org/10.1093/emboj/cdg159] [PMID: 12660152]
[42]
Cuthbertson L, Kos V, Whitfield C. ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev 2010; 74(3): 341-62.
[http://dx.doi.org/10.1128/MMBR.00009-10] [PMID: 20805402]
[43]
Joshi C. Investigation on anti-pathogenic potential of Panchvalkal and Punicagrantum peel extract against certain human-pathogenic bacteria Doctoral thesis Ahmedabad, India: Nirma University 2019.https://shodhganga.inflibnet.ac.in/handle/10603/245830
[44]
Joshi C, Patel P, Kothari V. Anti-infective potential of hydroalcoholic extract of Punica granatum peel against gram-negative bacterial pathogens. F1000 Res 2019; 8: 70.
[http://dx.doi.org/10.12688/f1000research.17430.1] [PMID: 30828441]
[45]
Matsuo T, Chen J, Minato Y, et al. SmdAB, a heterodimeric ABC Type multidrug efflux pump, in Serratia marcescens. J Bacteriol 2008; 190(2): 648-54.
[http://dx.doi.org/10.1128/JB.01513-07] [PMID: 18024518]
[46]
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42(1)fux052
[http://dx.doi.org/10.1093/femsre/fux052] [PMID: 29069367]
[47]
Brinkman CL, Schmidt-Malan SM, Karau MJ, et al. Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS One 2016; 11(12)e0168595
[http://dx.doi.org/10.1371/journal.pone.0168595] [PMID: 27992529]
[48]
Paruchuri DK, Harshey RM. Flagellar variation in Serratia marcescens is associated with color variation. J Bacteriol 1987; 169(1): 61-5.
[http://dx.doi.org/10.1128/JB.169.1.61-65.1987] [PMID: 3539927]
[49]
Ozin AJ, Claret L, Auvray F, Hughes C. The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol Lett 2003; 219(2): 219-24.
[http://dx.doi.org/10.1016/S0378-1097(02)01208-9] [PMID: 12620624]
[50]
Galeva A, Moroz N, Yoon YH, Hughes KT, Samatey FA, Kostyukova AS. Bacterial flagellin-specific chaperone FliS interacts with anti-sigma factor FlgM. J Bacteriol 2014; 196(6): 1215-21.
[http://dx.doi.org/10.1128/JB.01278-13] [PMID: 24415724]
[51]
Joshi C, Patel P, Palep H, Kothari V. Validation of the anti-infective potential of a polyherbal ‘Panchvalkal’ preparation, and elucidation of the molecular basis underlining its efficacy against Pseudomonas aeruginosa. BMC Complement Altern Med 2019; 19(1): 19.
[http://dx.doi.org/10.1186/s12906-019-2428-5] [PMID: 30654785]
[52]
Patel P, Joshi C, Kothari V. Anti-pathogenic efficacy and molecular targets of a polyherbal wound-care formulation (Herboheal) against Staphylococcus aureus. Infect Disord Drug Targets 2019; 19(2): 193-206.
[PMID: 30345928]
[53]
McNeil MB, Clulow JS, Wilf NM, Salmond GP, Fineran PC. SdhE is a conserved protein required for flavinylation of succinate dehydrogenase in bacteria. J Biol Chem 2012; 287(22): 18418-28.
[http://dx.doi.org/10.1074/jbc.M111.293803] [PMID: 22474332]
[54]
Srinivasan R, Mohankumar R, Kannappan A, Karthick Raja V, Archunan G. KaruthaPandian S, Ruckmani K, Veera Ravi A. Exploring the anti-quorum sensing and antibiofilm efficacy of phytol against Serratiamarcescens associated acute pyelonephritis infection in Wistar rats. Front Cell Infect Microbiol 2017; 7: 498.
[http://dx.doi.org/10.3389/fcimb.2017.00498] [PMID: 29259923]
[55]
Mascher T, Helmann JD, Unden G. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 2006; 70(4): 910-38.
[http://dx.doi.org/10.1128/MMBR.00020-06] [PMID: 17158704]
[56]
Spry C, Kirk K, Saliba KJ. Coenzyme A biosynthesis: an antimicrobial drug target. FEMS Microbiol Rev 2008; 32(1): 56-106.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00093.x] [PMID: 18173393]
[57]
Hor L, Dobson RC, Downton MT, Wagner J, Hutton CA, Perugini MA. Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 2013; 288(13): 9238-48.
[http://dx.doi.org/10.1074/jbc.M113.450148] [PMID: 23426375]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy