Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Inflammatory Bowel Diseases: The Role of Gut Microbiota

Author(s): Cristiana De Musis, Lucia Granata, Marcello Dallio, Agnese Miranda, Antonietta G. Gravina and Marco Romano*

Volume 26, Issue 25, 2020

Page: [2951 - 2961] Pages: 11

DOI: 10.2174/1381612826666200420144128

Price: $65

Abstract

Inflammatory bowel diseases (IBD) are chronic multifactorial diseases characterized by partially unclear pathogenic mechanisms including changes in intestinal microbiota. Despite the microbiota, alteration is well established in IBD patients, as reported by 16RNA sequencing analysis, an important goal is to define if it is just a consequence of the disease progression or a trigger factor of the disease itself. To date, gut microbiota composition and gut microbiota-related metabolites seem to affect the host healthy state both by modulating metabolic pathways or acting on the expression of different genes through epigenetic effects. Because of this, it has been suggested that intestinal microbiota might represent a promising therapeutic target for IBD patients.

The aim of this review is to summarize both the most recent acquisitions in the field of gut microbiota and its involvement in intestinal inflammation together with the available strategies for the modulation of microbiota, such as prebiotics and/or probiotics administration or fecal microbiota transplantation.

Keywords: Inflammatory bowel diseases, gut microbiota composition, microbiota alteration, epigenetic changes, dysbiosis, ulcerative colitis, Crohn’s disease, probiotics, prebiotics, symbiotics, fecal transplantation.

[1]
Blum HE. The human microbiome. Adv Med Sci 2017; 62(2): 414-20.
[http://dx.doi.org/10.1016/j.advms.2017.04.005] [PMID: 28711782]
[2]
Wang B, Yao M, Lv L, et al. The Human Microbiota in Health and Disease. Engineering 2017; 3: 71-82.
[http://dx.doi.org/10.1016/J.ENG.2017.01.008]
[3]
Sirisinha S. The potential impact of gut microbiota on your health:Current status and future challenges. Asian Pac J Allergy Immunol 2016; 34(4): 249-64.
[PMID: 28042926]
[4]
Gaboriau-Routhiau V, Cerf-Bensussan N. [Gut microbiota and development of the immune system]. Med Sci (Paris) 2016; 32(11): 961-7.
[http://dx.doi.org/10.1051/medsci/20163211011] [PMID: 28008836]
[5]
Burcelin R. [Gut microbiota and immune crosstalk in metabolic disease]. Biol Aujourdhui 2017; 211(1): 1-18.
[http://dx.doi.org/10.1051/jbio/2017008] [PMID: 28682223]
[6]
Coufal S, Galanova N, Bajer L, et al. Inflammatory Bowel Disease Types Differ in Markers of Inflammation, Gut Barrier and in Specific Anti-Bacterial Response. Cells 2019; 8(7): 719.
[http://dx.doi.org/10.3390/cells8070719] [PMID: 31337064]
[7]
Kellermayer R. Fecal microbiota transplantation: great potential with many challenges. Transl Gastroenterol Hepatol 2019; 4: 40.
[http://dx.doi.org/10.21037/tgh.2019.05.10] [PMID: 31231707]
[8]
Ventura M, O’Flaherty S, Claesson MJ, et al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 2009; 7(1): 61-71.
[http://dx.doi.org/10.1038/nrmicro2047] [PMID: 19029955]
[9]
Arumugam M, Raes J, Pelletier E, et al. MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature 2011; 473(7346): 174-80.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[10]
Cani PD. Human gut microbiome: hopes, threats and promises. Gut 2018; 67(9): 1716-25.
[http://dx.doi.org/10.1136/gutjnl-2018-316723] [PMID: 29934437]
[11]
Huseyin CE, Rubio RC, O’Sullivan O, Cotter PD, Scanlan PD. The Fungal Frontier: A Comparative Analysis of Methods Used in the Study of the Human Gut Mycobiome. Front Microbiol 2017; 8: 1432.
[http://dx.doi.org/10.3389/fmicb.2017.01432] [PMID: 28824566]
[12]
Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as Part of the Microbiota and Interactions with Intestinal Bacteria. Curr Top Microbiol Immunol 2019; 422: 265-301.
[http://dx.doi.org/10.1007/82_2018_117] [PMID: 30062595]
[13]
Sivignon A, de Vallée A, Barnich N, et al. Saccharomyces cerevisiae CNCM I-3856 prevents colitis induced by AIEC bacteria in the transgenic mouse model mimicking Crohn’s disease. Inflamm Bowel Dis 2015; 21(2): 276-86.
[http://dx.doi.org/10.1097/MIB.0000000000000280] [PMID: 25569734]
[14]
Sokol H, Leducq V, Aschard H, et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 66(6): 1039-48.
[http://dx.doi.org/10.1136/gutjnl-2015-310746] [PMID: 26843508]
[15]
Norman JM, Handley SA, Baldridge MT, et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160(3): 447-60.
[http://dx.doi.org/10.1016/j.cell.2015.01.002] [PMID: 25619688]
[16]
Milani C, Duranti S, Bottacini F, et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol Mol Biol Rev 2017; 81(4): e00036-17.
[http://dx.doi.org/10.1128/MMBR.00036-17] [PMID: 29118049]
[17]
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ 2018; 361: k2179.
[http://dx.doi.org/10.1136/bmj.k2179] [PMID: 29899036]
[18]
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol 2018; 11(1): 1-10.
[http://dx.doi.org/10.1007/s12328-017-0813-5] [PMID: 29285689]
[19]
Li Z, Quan G, Jiang X, et al. Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens. Front Cell Infect Microbiol 2018; 8: 314.
[http://dx.doi.org/10.3389/fcimb.2018.00314] [PMID: 30276161]
[20]
Elin RJ, Wolff SM. Biology of endotoxin. Annu Rev Med 1976; 27: 127-41.
[http://dx.doi.org/10.1146/annurev.me.27.020176.001015] [PMID: 779593]
[21]
Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 2003; 16(4): 637-46.
[http://dx.doi.org/10.1128/CMR.16.4.637-646.2003] [PMID: 14557290]
[22]
Bilotta AJ, Cong Y. Gut microbiota metabolite regulation of host defenses at mucosal surfaces: implication in precision medicine. Precis Clin Med 2019; 2(2): 110-9.
[http://dx.doi.org/10.1093/pcmedi/pbz008] [PMID: 31281735]
[23]
Levy M, Thaiss CA, Elinav E. Metabolites: messengers between the microbiota and the immune system. Genes Dev 2016; 30(14): 1589-97.
[http://dx.doi.org/10.1101/gad.284091.116] [PMID: 27474437]
[24]
Org E, Blum Y, Kasela S, et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol 2017; 18(1): 70.
[http://dx.doi.org/10.1186/s13059-017-1194-2] [PMID: 28407784]
[25]
Rinninella E, Raoul P, Cintoni M, et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019; 7(1): 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[26]
Allen JM, Mailing LJ, Niemiro GM, et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med Sci Sports Exerc 2018; 50(4): 747-57.
[http://dx.doi.org/10.1249/MSS.0000000000001495] [PMID: 29166320]
[27]
Tropini C, Earle KA, Huang KC, Sonnenburg JL. The Gut Microbiome: Connecting Spatial Organization to Function. Cell Host Microbe 2017; 21(4): 433-42.
[http://dx.doi.org/10.1016/j.chom.2017.03.010] [PMID: 28407481]
[28]
Osman MA, Neoh HM, Ab Mutalib NS, Chin SF, Jamal R. 16S rRNA Gene Sequencing for Deciphering the Colorectal Cancer Gut Microbiome: Current Protocols and Workflows. Front Microbiol 2018; 9: 767.
[http://dx.doi.org/10.3389/fmicb.2018.00767] [PMID: 29755427]
[29]
Shkoporov AN, Ryan FJ, Draper LA, et al. Reproducible protocols for metagenomic analysis of human faecal phageomes. Microbiome 2018; 6(1): 68.
[http://dx.doi.org/10.1186/s40168-018-0446-z] [PMID: 29631623]
[30]
Forbes JD, Bernstein CN, Tremlett H, Van Domselaar G, Knox NC. A Fungal World: Could the Gut Mycobiome Be Involved in Neurological Disease? Front Microbiol 2019; 9: 3249.
[http://dx.doi.org/10.3389/fmicb.2018.03249] [PMID: 30687254]
[31]
Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1720-8.
[http://dx.doi.org/10.1053/j.gastro.2011.01.054] [PMID: 21530738]
[32]
Rath HC, Herfarth HH, Ikeda JS, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98(4): 945-53.
[http://dx.doi.org/10.1172/JCI118878] [PMID: 8770866]
[33]
Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 2010; 8(8): 564-77.
[http://dx.doi.org/10.1038/nrmicro2403] [PMID: 20622892]
[34]
Rhee KJ, Wu S, Wu X, et al. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun 2009; 77(4): 1708-18.
[http://dx.doi.org/10.1128/IAI.00814-08] [PMID: 19188353]
[35]
Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2007; 2(3): 204.
[http://dx.doi.org/10.1016/j.chom.2007.08.002] [PMID: 18030708]
[36]
Gradel KO, Nielsen HL, Schønheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology 2009; 137(2): 495-501.
[http://dx.doi.org/10.1053/j.gastro.2009.04.001] [PMID: 19361507]
[37]
Navaneethan U, Venkatesh PG, Shen B. Clostridium difficile infection and inflammatory bowel disease: understanding the evolving relationship. World J Gastroenterol 2010; 16(39): 4892-904.
[http://dx.doi.org/10.3748/wjg.v16.i39.4892] [PMID: 20954275]
[38]
Martin HM, Campbell BJ, Hart CA, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology 2004; 127(1): 80-93.
[http://dx.doi.org/10.1053/j.gastro.2004.03.054] [PMID: 15236175]
[39]
Rolhion N, Darfeuille-Michaud A. Adherent-invasive Escherichia coli in inflammatory bowel disease. Inflamm Bowel Dis 2007; 13(10): 1277-83.
[http://dx.doi.org/10.1002/ibd.20176] [PMID: 17476674]
[40]
Mazzarella G, Perna A, Marano A, et al. Pathogenic role of associated adherent-invasive Escherichia coli in Crohn’s disease. J Cell Physiol 2017; 232(10): 2860-8.
[http://dx.doi.org/10.1002/jcp.25717] [PMID: 27925192]
[41]
Nagao-Kitamoto H, Shreiner AB, Gillilland MG III, et al. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol Gastroenterol Hepatol 2016; 2(4): 468-81.
[http://dx.doi.org/10.1016/j.jcmgh.2016.02.003] [PMID: 27795980]
[42]
Harris KG, Chang EB. The intestinal microbiota in the pathogenesis of inflammatory bowel diseases: new insights into complex disease. Clin Sci (Lond) 2018; 132(18): 2013-28.
[http://dx.doi.org/10.1042/CS20171110] [PMID: 30232239]
[43]
Becker C, Neurath MF, Wirtz S. The intestinal microbiota in inflammatory bowel disease. ILAR J 2015; 56(2): 192-204.
[http://dx.doi.org/10.1093/ilar/ilv030] [PMID: 26323629]
[44]
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 2011; 4(1): 31-42.
[http://dx.doi.org/10.1038/mi.2010.66] [PMID: 20962772]
[45]
Sonnenberg GF, Monticelli LA, Alenghat T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012; 336(6086): 1321-5.
[http://dx.doi.org/10.1126/science.1222551] [PMID: 22674331]
[46]
Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 2004; 4(6): 478-85.
[http://dx.doi.org/10.1038/nri1373] [PMID: 15173836]
[47]
Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 2017; 18(1): 2.
[http://dx.doi.org/10.1186/s12865-016-0187-3] [PMID: 28061847]
[48]
Shale M, Schiering C, Powrie F. CD4(+) T-cell subsets in intestinal inflammation. Immunol Rev 2013; 252(1): 164-82.
[http://dx.doi.org/10.1111/imr.12039] [PMID: 23405904]
[49]
Izcue A, Coombes JL, Powrie F. Regulatory lymphocytes and intestinal inflammation. Annu Rev Immunol 2009; 27: 313-38.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132657] [PMID: 19302043]
[50]
Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011; 474(7351): 298-306.
[http://dx.doi.org/10.1038/nature10208] [PMID: 21677746]
[51]
Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 2010; 10(3): 159-69.
[http://dx.doi.org/10.1038/nri2710] [PMID: 20182457]
[52]
Rudensky AY. Regulatory T cells and Foxp3. Immunol Rev 2011; 241(1): 260-8.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01018.x] [PMID: 21488902]
[53]
Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 2000; 68(12): 7010-7.
[http://dx.doi.org/10.1128/IAI.68.12.7010-7017.2000] [PMID: 11083826]
[54]
Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411(6837): 599-603.
[http://dx.doi.org/10.1038/35079107] [PMID: 11385576]
[55]
Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411(6837): 603-6.
[http://dx.doi.org/10.1038/35079114] [PMID: 11385577]
[56]
Mondot S, Barreau F, Al Nabhani Z, et al. Altered gut microbiota composition in immune-impaired Nod2(-/-) mice. Gut 2012; 61(4): 634-5.
[http://dx.doi.org/10.1136/gutjnl-2011-300478] [PMID: 21868489]
[57]
Petnicki-Ocwieja T, Hrncir T, Liu YJ, et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 2009; 106(37): 15813-8.
[http://dx.doi.org/10.1073/pnas.0907722106] [PMID: 19805227]
[58]
Rehman A, Sina C, Gavrilova O, et al. Nod2 is essential for temporal development of intestinal microbial communities. Gut 2011; 60(10): 1354-62.
[http://dx.doi.org/10.1136/gut.2010.216259] [PMID: 21421666]
[59]
Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307(5710): 731-4.
[http://dx.doi.org/10.1126/science.1104911] [PMID: 15692051]
[60]
Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol 2010; 105(12): 2687-92.
[http://dx.doi.org/10.1038/ajg.2010.398] [PMID: 20940708]
[61]
Hviid A, Svanström H, Frisch M. Antibiotic use and inflammatory bowel diseases in childhood. Gut 2011; 60(1): 49-54.
[http://dx.doi.org/10.1136/gut.2010.219683] [PMID: 20966024]
[62]
Sartor RB, Wu GD. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology 2017; 152(2): 327-339.e4.
[http://dx.doi.org/10.1053/j.gastro.2016.10.012] [PMID: 27769810]
[63]
Gilbert JA, Quinn RA, Debelius J, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016; 535(7610): 94-103.
[http://dx.doi.org/10.1038/nature18850] [PMID: 27383984]
[64]
Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105(43): 16731-6.
[http://dx.doi.org/10.1073/pnas.0804812105] [PMID: 18936492]
[65]
Zhou Y, Zhi F. Lower level of bacteroides in the gut Microbiota is associated with inflammatory bowel disease: A Meta-Analysis. BioMed Res Int 2016; 2016: 5828959
[http://dx.doi.org/10.1155/2016/5828959] [PMID: 27999802]
[66]
Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 2007; 104(34): 13780-5.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[67]
Martinez-Medina M, Aldeguer X, Lopez-Siles M, et al. Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm Bowel Dis 2009; 15(6): 872-82.
[http://dx.doi.org/10.1002/ibd.20860] [PMID: 19235912]
[68]
Png CW, Lindén SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 2010; 105(11): 2420-8.
[http://dx.doi.org/10.1038/ajg.2010.281] [PMID: 20648002]
[69]
Elguezabal N, Chamorro S, Molina E, et al. Lactase persistence, NOD2 status and Mycobacterium avium subsp. paratuberculosis infection associations to Inflammatory Bowel Disease. Gut Pathog 2012; 4(1): 6.
[http://dx.doi.org/10.1186/1757-4749-4-6] [PMID: 22742424]
[70]
Davis WC. On deaf ears, Mycobacterium avium paratuberculosis in pathogenesis Crohn’s and other diseases. World J Gastroenterol 2015; 21(48): 13411-7.
[http://dx.doi.org/10.3748/wjg.v21.i48.13411] [PMID: 26730151]
[71]
Keita ÅV, Alkaissi LY, Holm EB, et al. Enhanced E. coli LF82 translocation through follicle-associated epithelium in Crohn's disease is dependent on long polar fimbriae and CEACAM6- expression, and increases paracellular permeability. J Crohn's Colitis, jjz144 Epub ahead of print
[http://dx.doi.org/10.1093/ecco-jcc/jjz144]
[72]
Sanderson JD, Moss MT, Tizard ML, Hermon-Taylor J. Mycobacterium paratuberculosis DNA in Crohn’s disease tissue. Gut 1992; 33(7): 890-6.
[http://dx.doi.org/10.1136/gut.33.7.890] [PMID: 1644328]
[73]
Issa M, Vijayapal A, Graham MB, et al. Impact of Clostridium difficile on inflammatory bowel disease. Clin Gastroenterol Hepatol 2007; 5(3): 345-51.
[http://dx.doi.org/10.1016/j.cgh.2006.12.028] [PMID: 17368234]
[74]
Sokol H, Jegou S, McQuitty C, et al. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes 2018; 9(1): 55-60.
[http://dx.doi.org/10.1080/19490976.2017.1361092] [PMID: 28786749]
[75]
McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther 2018; 47(1): 26-42.
[http://dx.doi.org/10.1111/apt.14384] [PMID: 29034981]
[76]
Wehkamp J, Schmid M, Stange EF. Defensins and other antimicrobial peptides in inflammatory bowel disease. Curr Opin Gastroenterol 2007; 23(4): 370-8.
[http://dx.doi.org/10.1097/MOG.0b013e328136c580] [PMID: 17545771]
[77]
Duboc H, Rajca S, Rainteau D, et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 2013; 62(4): 531-9.
[http://dx.doi.org/10.1136/gutjnl-2012-302578] [PMID: 22993202]
[78]
Renz H, von Mutius E, Brandtzaeg P, Cookson WO, Autenrieth IB, Haller D. Gene-environment interactions in chronic inflammatory disease. Nat Immunol 2011; 12(4): 273-7.
[http://dx.doi.org/10.1038/ni0411-273] [PMID: 21423219]
[79]
Kelly D, Kotliar M, Woo V, et al. Microbiota-sensitive epigenetic signature predicts inflammation in Crohn’s disease. JCI Insight 2018; 3(18)e122104
[http://dx.doi.org/10.1172/jci.insight.122104] [PMID: 30232290]
[80]
Yuille S, Reichardt N, Panda S, Dunbar H, Mulder IE. Human gut bacteria as potent class I histone deacetylase inhibitors in vitro through production of butyric acid and valeric acid. PLoS One 2018; 13(7)e0201073
[http://dx.doi.org/10.1371/journal.pone.0201073] [PMID: 30052654]
[81]
Schilderink R, Verseijden C, de Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol 2013; 4 : : 226. [published correction appears in Front Immunol. 2013;4:414]
[http://dx.doi.org/10.3389/fimmu.2013.00226] [PMID: 23914191]
[82]
Grunstein M. Histone acetylation in chromatin structure and transcription. Nature 1997; 389(6649): 349-52.
[http://dx.doi.org/10.1038/38664] [PMID: 9311776]
[83]
Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 2006; 40(3): 235-43.
[http://dx.doi.org/10.1097/00004836-200603000-00015] [PMID: 16633129]
[84]
Alenghat T. Epigenomics and the microbiota. Toxicol Pathol 2015; 43(1): 101-6.
[http://dx.doi.org/10.1177/0192623314553805] [PMID: 25330924]
[85]
Leus NG, Zwinderman MR, Dekker FJ. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr Opin Chem Biol 2016; 33: 160-8.
[http://dx.doi.org/10.1016/j.cbpa.2016.06.019] [PMID: 27371876]
[86]
Lee ES, Song EJ, Nam YD. Dysbiosis of Gut Microbiome and Its Impact on Epigenetic Regulation. J Clin Epigenet 2017; 3: 2.
[87]
Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: A Critical Regulator of Ileal Microbiota and Crohn’s Disease. Front Immunol 2016; 7: 367.
[http://dx.doi.org/10.3389/fimmu.2016.00367] [PMID: 27703457]
[88]
Qiao YQ, Cai CW, Ran ZH. Therapeutic modulation of gut microbiota in inflammatory bowel disease: More questions to be answered. J Dig Dis 2016; 17(12): 800-10.
[http://dx.doi.org/10.1111/1751-2980.12422] [PMID: 27743467]
[89]
Marteau P, Lémann M, Seksik P, et al. Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn’s disease: a randomised, double blind, placebo controlled GETAID trial. Gut 2006; 55(6): 842-7.
[http://dx.doi.org/10.1136/gut.2005.076604] [PMID: 16377775]
[90]
Philippe D, Heupel E, Blum-Sperisen S, Riedel CU. Treatment with Bifidobacterium bifidum 17 partially protects mice from Th1-driven inflammation in a chemically induced model of colitis. Int J Food Microbiol 2011; 149(1): 45-9.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.020] [PMID: 21257218]
[91]
Schultz M. Clinical use of E. coli Nissle 1917 in inflammatory bowel disease. Inflamm Bowel Dis 2008; 14(7): 1012-8.
[http://dx.doi.org/10.1002/ibd.20377] [PMID: 18240278]
[92]
Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 2003; 15(6): 697-8.
[http://dx.doi.org/10.1097/00042737-200306000-00017] [PMID: 12840682]
[93]
Cain AM, Karpa KD. Clinical utility of probiotics in inflammatory bowel disease. Altern Ther Health Med 2011; 17(1): 72-9.
[PMID: 21614946]
[94]
Mimura T, Rizzello F, Helwig U, et al. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 2004; 53(1): 108-14.
[http://dx.doi.org/10.1136/gut.53.1.108] [PMID: 14684584]
[95]
Bibiloni R, Fedorak RN, Tannock GW, et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 2005; 100(7): 1539-46.
[http://dx.doi.org/10.1111/j.1572-0241.2005.41794.x] [PMID: 15984978]
[96]
Holubar SD, Cima RR, Sandborn WJ, Pardi DS. Treatment and prevention of pouchitis after ileal pouch-anal anastomosis for chronic ulcerative colitis. Cochrane Database Syst Rev 2010; (6): CD001176
[http://dx.doi.org/10.1002/14651858.CD001176.pub2] [PMID: 20556748]
[97]
Kruis W, Fric P, Pokrotnieks J, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004; 53(11): 1617-23.
[http://dx.doi.org/10.1136/gut.2003.037747] [PMID: 15479682]
[98]
Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci 2000; 45(7): 1462-4.
[http://dx.doi.org/10.1023/A:1005588911207] [PMID: 10961730]
[99]
Vahabnezhad E, Mochon AB, Wozniak LJ, Ziring DA. Lactobacillus bacteremia associated with probiotic use in a pediatric patient with ulcerative colitis. J Clin Gastroenterol 2013; 47(5): 437-9.
[http://dx.doi.org/10.1097/MCG.0b013e318279abf0] [PMID: 23426446]
[100]
Bengmark S. Pre-, pro- and synbiotics. Curr Opin Clin Nutr Metab Care 2001; 4(6): 571-9.
[http://dx.doi.org/10.1097/00075197-200111000-00019] [PMID: 11706296]
[101]
Kumar H, Salminen S, Verhagen H, et al. Novel probiotics and prebiotics: road to the market. Curr Opin Biotechnol 2015; 32: 99-103.
[http://dx.doi.org/10.1016/j.copbio.2014.11.021] [PMID: 25499742]
[102]
Kanauchi O, Agata K. Protein, and dietary fiber-rich new foodstuff from brewer’s spent grain increased excretion of feces and jejunum mucosal protein content in rats. Biosci Biotechnol Biochem 1997; 61(1): 29-33.
[http://dx.doi.org/10.1271/bbb.61.29] [PMID: 9028033]
[103]
Kanauchi O, Mitsuyama K, Homma T, et al. Treatment of ulcerative colitis patients by long-term administration of germinated barley foodstuff: multi-center open trial. Int J Mol Med 2003; 12(5): 701-4.
[http://dx.doi.org/10.3892/ijmm.12.5.701] [PMID: 14532996]
[104]
Kanauchi O, Iwanaga T, Andoh A, et al. Dietary fiber fraction of germinated barley foodstuff attenuated mucosal damage and diarrhea, and accelerated the repair of the colonic mucosa in an experimental colitis. J Gastroenterol Hepatol 2001; 16(2): 160-8.
[http://dx.doi.org/10.1046/j.1440-1746.2001.02427.x] [PMID: 11207896]
[105]
Araki Y, Andoh A, Koyama S, Fujiyama Y, Kanauchi O, Bamba T. Effects of germinated barley foodstuff on microflora and short chain fatty acid production in dextran sulfate sodium-induced colitis in rats. Biosci Biotechnol Biochem 2000; 64(9): 1794-800.
[http://dx.doi.org/10.1271/bbb.64.1794] [PMID: 11055379]
[106]
Shiba T, Aiba Y, Ishikawa H, et al. The suppressive effect of bifidobacteria on Bacteroides vulgatus, a putative pathogenic microbe in inflammatory bowel disease. Microbiol Immunol 2003; 47(6): 371-8.
[http://dx.doi.org/10.1111/j.1348-0421.2003.tb03368.x] [PMID: 12906096]
[107]
Kanauchi O, Nakamura T, Agata K, Mitsuyama K, Iwanaga T. Effects of germinated barley foodstuff on dextran sulfate sodium-induced colitis in rats. J Gastroenterol 1998; 33(2): 179-88.
[http://dx.doi.org/10.1007/s005350050067] [PMID: 9605946]
[108]
Kato K, Mizuno S, Umesaki Y, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 2004; 20(10): 1133-41.
[http://dx.doi.org/10.1111/j.1365-2036.2004.02268.x] [PMID: 15569116]
[109]
Bojanova DP, Bordenstein SR. Fecal Transplants: What Is Being Transferred? PLoS Biol 2016; 14(7): e1002503
[http://dx.doi.org/10.1371/journal.pbio.1002503] [PMID: 27404502]
[110]
Borody TJ, Campbell J. Fecal microbiota transplantation: techniques, applications, and issues. Gastroenterol Clin North Am 2012; 41(4): 781-803.
[http://dx.doi.org/10.1016/j.gtc.2012.08.008] [PMID: 23101687]
[111]
Borody TJ, Warren EF, Leis S, Surace R, Ashman O. Treatment of ulcerative colitis using fecal bacteriotherapy. J Clin Gastroenterol 2003; 37(1): 42-7.
[http://dx.doi.org/10.1097/00004836-200307000-00012] [PMID: 12811208]
[112]
Tian Y, Zhou Y, Huang S, et al. Fecal microbiota transplantation for ulcerative colitis: a prospective clinical study. BMC Gastroenterol 2019; 19(1): 116.
[http://dx.doi.org/10.1186/s12876-019-1010-4] [PMID: 31272391]
[113]
Costello SP, Hughes PA, Waters O, et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis: A Randomized Clinical Trial. JAMA 2019; 321(2): 156-64.
[http://dx.doi.org/10.1001/jama.2018.20046] [PMID: 30644982]
[114]
Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohn’s Colitis 2014; 8(12): 1569-81.
[http://dx.doi.org/10.1016/j.crohns.2014.08.006] [PMID: 25223604]
[115]
Gutin L, Piceno Y, Fadrosh D, et al. Fecal microbiota transplant for Crohn disease: A study evaluating safety, efficacy, and microbiome profile. United European Gastroenterol J 2019; 7(6): 807-14.
[http://dx.doi.org/10.1177/2050640619845986] [PMID: 31316785]
[116]
Bak SH, Choi HH, Lee J, et al. Fecal microbiota transplantation for refractory Crohn’s disease. Intest Res 2017; 15(2): 244-8.
[http://dx.doi.org/10.5217/ir.2017.15.2.244] [PMID: 28522956]
[117]
Wang H, Cui B, Li Q, et al. The Safety of Fecal Microbiota Transplantation for Crohn’s Disease: Findings from A Long-Term Study. Adv Ther 2018; 35(11): 1935-44.
[http://dx.doi.org/10.1007/s12325-018-0800-3] [PMID: 30328062]
[118]
Cui B, Feng Q, Wang H, et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: safety, feasibility, and efficacy trial results. J Gastroenterol Hepatol 2015; 30(1): 51-8.
[http://dx.doi.org/10.1111/jgh.12727] [PMID: 25168749]
[119]
Vaughn BP, Vatanen T, Allegretti JR, et al. Increased Intestinal Microbial Diversity Following Fecal Microbiota Transplant for Active Crohn’s Disease. Inflamm Bowel Dis 2016; 22(9): 2182-90.
[http://dx.doi.org/10.1097/MIB.0000000000000893] [PMID: 27542133]
[120]
Lamb CA, Kennedy NA, Raine T, et al. IBD guidelines eDelphi consensus group. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019; 68(Suppl. 3): s1-s106.
[http://dx.doi.org/10.1136/gutjnl-2019-318484] [PMID: 31562236]
[121]
Khan KJ, Ullman TA, Ford AC, et al. Antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol 2011; 106(4): 661-73.
[http://dx.doi.org/10.1038/ajg.2011.72] [PMID: 21407187]
[122]
Ledder O, Turner D. Antibiotics in IBD: Still a Role in the Biological Era? Inflamm Bowel Dis 2018; 24(8): 1676-88.
[http://dx.doi.org/10.1093/ibd/izy067] [PMID: 29722812]
[123]
Turner D, Bishai J, Reshef L, et al. Antibiotic cocktail for pediatric acute severe colitis and the microbiome: The PRASCO Randomized Controlled Trial. Inflamm Bowel Dis 2019. izz298 Epub ahead of print
[http://dx.doi.org/10.1093/ibd/izz298] [PMID: 31833543]
[124]
Lopetuso LR, Napoli M, Rizzatti G, Gasbarrini A. The intriguing role of Rifaximin in gut barrier chronic inflammation and in the treatment of Crohn’s disease. Expert Opin Investig Drugs 2018; 27(6): 543-51.
[http://dx.doi.org/10.1080/13543784.2018.1483333] [PMID: 29865875]
[125]
Sartor RB. Review article: the potential mechanisms of action of rifaximin in the management of inflammatory bowel diseases. Aliment Pharmacol Ther 2016; 43(Suppl. 1): 27-36.
[http://dx.doi.org/10.1111/apt.13436] [PMID: 26618923]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy