Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Biomarkers of Acromegaly and Growth Hormone Action

Author(s): Filippo Maffezzoni, Teresa Porcelli, Andrea Delbarba, Letizia Pezzaioli, Carlo Cappelli and Alberto Ferlin*

Volume 27, Issue 12, 2020

Page: [1231 - 1245] Pages: 15

DOI: 10.2174/0929866527666200420103816

Price: $65

Abstract

Biological markers (biomarkers) play a key role in drug development, regulatory approval and clinical care of patients and are linked to clinical and surrogate outcomes.

Both acromegaly and Growth Hormone Deficiency (GHD) are pathological conditions related to important comorbidities that, in addition to having stringent diagnostic criteria, require valid markers for the definition of treatment, treatment monitoring and follow-up. GH and insulin-like growth factor-I (IGF-I) are the main biomarkers of GH action in children and adults while, in acromegaly, both GH and IGF-I are established biomarkers of disease activity.

However, although GH and IGF-I are widely validated biomarkers of GHD and acromegaly, their role is not completely exhaustive or suitable for clinical classification and follow-up. Therefore, new biological markers for acromegaly and GH replacement therapy are strongly needed.

The aim of this paper is to review and summarize the current state in the field pointing out new potential biomarkers for acromegaly and GH use/abuse.

Keywords: Growth hormone, miRNA, acromegaly, GH deficit, biomarkers, insulin-like growth factor-I.

Graphical Abstract

[1]
Moller, N.; Jorgensen, J.O. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr. Rev., 2009, 30(2), 152-177.
[http://dx.doi.org/10.1210/er.2008-0027] [PMID: 19240267]
[2]
Bouillon, R.; Prodonova, A. Growth and hormone deficiency and peak bone mass. J. Pediatr. Endocrinol. Metab., 2000, 13(Suppl. 6), 1327-1336.
[http://dx.doi.org/10.1515/jpem-2000-s604] [PMID: 11202205]
[3]
Sesmilo, G. Epidemiology of acromegaly in Spain. Endocrinol. Nutr., 2013, 60(8), 470-474.
[http://dx.doi.org/10.1016/j.endonu.2012.09.010] [PMID: 23246411]
[4]
Bex, M.; Abs, R. T’Sjoen G.; Mockel, J.; Velkeniers, B.; Muermans, K.; Maiter, D. AcroBel-the Belgian registry on acromegaly: A survey of the ‘real-life’ outcome in 418 acromegalic subjects. Eur. J. Endocrinol., 2007, 157, 399-409.
[http://dx.doi.org/10.1530/EJE-07-0358] [PMID: 17893253]
[5]
Reincke, M.; Petersenn, S.; Buchfelder, M.; Gerbert, B.; Skrobek-Engel, G.; Franz, H.; Lohmann, R.; Quabbe, H.J. The German Acromegaly Registry: Description of the database and initial results. Exp. Clin. Endocrinol. Diabetes, 2006, 114(9), 498-505.
[http://dx.doi.org/10.1055/s-2006-948313] [PMID: 17115347]
[6]
Arosio, M.; Reimondo, G.; Malchiodi, E.; Berchialla, P.; Borraccino, A.; De Marinis, L.; Pivonello, R.; Grottoli, S.; Losa, M.; Cannavò, S.; Minuto, F.; Montini, M.; Bondanelli, M.; De Menis, E.; Martini, C.; Angeletti, G.; Velardo, A.; Peri, A.; Faustini-Fustini, M.; Tita, P.; Pigliaru, F.; Borretta, G.; Scaroni, C.; Bazzoni, N.; Bianchi, A.; Appetecchia, M.; Cavagnini, F.; Lombardi, G.; Ghigo, E.; Beck-Peccoz, P.; Colao, A.; Terzolo, M. Italian Study Group of Acromegaly. Predictors of morbidity and mortality in acromegaly: An Italian survey. Eur. J. Endocrinol., 2012, 167(2), 189-198.
[http://dx.doi.org/10.1530/EJE-12-0084] [PMID: 22596288]
[7]
Fernandez, A.; Karavitaki, N.; Wass, J.A. Prevalence of pituitary adenomas: A community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin. Endocrinol. (Oxf.), 2010, 72(3), 377-382.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03667.x] [PMID: 19650784]
[8]
Hoskuldsdottir, G.T.; Fjalldal, S.B.; Sigurjonsdottir, H.A. The incidence and prevalence of acromegaly, a nationwide study from 1955 through 2013. Pituitary, 2015, 18(6), 803-807.
[http://dx.doi.org/10.1007/s11102-015-0655-4] [PMID: 25893613]
[9]
Mestron, A.; Webb, S.M.; Astorga, R.; Benito, P.; Catala, M.; Gaztambide, S.; Gomez, J.M.; Halperin, I.; Lucas-Morante, T.; Moreno, B.; Obiols, G.; de Pablos, P.; Paramo, C.; Pico, A.; Torres, E.; Varela, C.; Vazquez, J.A.; Zamora, J.; Albareda, M.; Gilabert, M. Epidemiology, clinical characteristics, outcome, morbidity and mortality in acromegaly based on the Spanish Acromegaly Registry (Registro Espanol de Acromegalia, REA). Eur. J. Endocrinol., 2004, 151(4), 439-446.
[http://dx.doi.org/10.1530/eje.0.1510439] [PMID: 15476442]
[10]
Lavrentaki, A.; Paluzzi, A.; Wass, J.A.; Karavitaki, N. Epidemiology of acromegaly: Review of population studies. Pituitary, 2017, 20(1), 4-9.
[http://dx.doi.org/10.1007/s11102-016-0754-x] [PMID: 27743174]
[11]
Tjörnstrand, A.; Gunnarsson, K.; Evert, M.; Holmberg, E.; Ragnarsson, O.; Rosén, T.; Filipsson Nyström, H. The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur. J. Endocrinol., 2014, 171(4), 519-526.
[http://dx.doi.org/10.1530/EJE-14-0144] [PMID: 25084775]
[12]
Burton, T.; Le Nestour, E.; Neary, M.; Ludlam, W.H. Incidence and prevalence of acromegaly in a large US health plan database. Pituitary, 2016, 19(3), 262-267.
[http://dx.doi.org/10.1007/s11102-015-0701-2] [PMID: 26792654]
[13]
Melmed, S.; Casanueva, F.F.; Klibanski, A.; Bronstein, M.D.; Chanson, P.; Lamberts, S.W.; Strasburger, C.J.; Wass, J.A.; Giustina, A. A consensus on the diagnosis and treatment of acromegaly complications. Pituitary, 2013, 16(3), 294-302.
[http://dx.doi.org/10.1007/s11102-012-0420-x] [PMID: 22903574]
[14]
Melmed, S. Medical progress: Acromegaly. N. Engl. J. Med., 2006, 355(24), 2558-2573.
[http://dx.doi.org/10.1056/NEJMra062453] [PMID: 17167139]
[15]
Molitch, M.E. Clinical manifestations of acromegaly. Endocrinol. Metab. Clin. North Am., 1992, 21(3), 597-614.
[http://dx.doi.org/10.1016/S0889-8529(18)30204-4] [PMID: 1521514]
[16]
Christofides, E.A. Clinical importance of achieving biochemical control with medical therapy in adult patients with acromegaly. Patient Prefer. Adherence, 2016, 10, 1217-1225.
[http://dx.doi.org/10.2147/PPA.S102302] [PMID: 27471378]
[17]
Katznelson, L.; Laws, E.R., Jr; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A. Endocrine Society. Acromegaly: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab., 2014, 99(11), 3933-3951.
[http://dx.doi.org/10.1210/jc.2014-2700] [PMID: 25356808]
[18]
Alexopoulou, O.; Bex, M.; Abs, R.; T’Sjoen, G.; Velkeniers, B.; Maiter, D. Divergence between growth hormone and insulin-like growth factor-i concentrations in the follow-up of acromegaly. J. Clin. Endocrinol. Metab., 2008, 93(4), 1324-1330.
[http://dx.doi.org/10.1210/jc.2007-2104] [PMID: 18230660]
[19]
Freda, P.U.; Post, K.D.; Powell, J.S.; Wardlaw, S.L. Evaluation of disease status with sensitive measures of growth hormone secretion in 60 postoperative patients with acromegaly. J. Clin. Endocrinol. Metab., 1998, 83(11), 3808-3816.
[http://dx.doi.org/10.1210/jc.83.11.3808] [PMID: 9814451]
[20]
Costa, A.C.; Rossi, A.; Martinelli, C.E.Jr; Machado, H.R.; Moreira, A.C. Assessment of disease activity in treated acromegalic patients using a sensitive GH assay: Should we achieve strict normal GH levels for a biochemical cure? J. Clin. Endocrinol. Metab., 2002, 87(7), 3142-3147.
[http://dx.doi.org/10.1210/jcem.87.7.8631] [PMID: 12107214]
[21]
Arafat, A.M.; Möhlig, M.; Weickert, M.O.; Perschel, F.H.; Purschwitz, J.; Spranger, J.; Strasburger, C.J.; Schöfl, C.; Pfeiffer, A.F. Growth hormone response during oral glucose tolerance test: the impact of assay method on the estimation of reference values in patients with acromegaly and in healthy controls, and the role of gender, age, and body mass index. J. Clin. Endocrinol. Metab., 2008, 93(4), 1254-1262.
[http://dx.doi.org/10.1210/jc.2007-2084] [PMID: 18171702]
[22]
Giustina, A.; Barkan, A.; Casanueva, F.F.; Cavagnini, F.; Frohman, L.; Ho, K.; Veldhuis, J.; Wass, J.; Von Werder, K.; Melmed, S. Criteria for cure of acromegaly: A consensus statement. J. Clin. Endocrinol. Metab., 2000, 85(2), 526-529.
[http://dx.doi.org/10.1210/jc.85.2.526] [PMID: 10690849]
[23]
Melmed, S.; Casanueva, F.; Cavagnini, F.; Chanson, P.; Frohman, LA.; Gaillard, R.; Ghigo, E.; Ho, K.; Jaquet, P.; Kleinberg, D.; Lamberts, S.; Laws, E.; Lombardi, G.; Sheppard, MC.; Thorner, M.; Vance, ML.; Wass, JA.; Giustina, A. Consensus statement: Medical management of acromegaly. Eur. J. Endocrinol., 2005, 153, 737-740.
[http://dx.doi.org/10.1530/eje.1.02036]
[24]
Melmed, S.; Colao, A.; Barkan, A.; Molitch, M.; Grossman, A.B.; Kleinberg, D.; Clemmons, D.; Chanson, P.; Laws, E.; Schlechte, J.; Vance, M.L.; Ho, K.; Giustina, A. Acromegaly Consensus Group. Guidelines for acromegaly management: An update. J. Clin. Endocrinol. Metab., 2009, 94(5), 1509-1517.
[http://dx.doi.org/10.1210/jc.2008-2421] [PMID: 19208732]
[25]
Melmed, S.; Bronstein, M.D.; Chanson, P.; Klibanski, A.; Casanueva, F.F.; Wass, J.A.H.; Strasburger, C.J.; Luger, A.; Clemmons, D.R.; Giustina, A. A Consensus Statement on acromegaly therapeutic outcomes. Nat. Rev. Endocrinol., 2018, 14(9), 552-561.
[http://dx.doi.org/10.1038/s41574-018-0058-5] [PMID: 30050156]
[26]
Bidlingmaier, M.; Freda, P.U. Measurement of human growth hormone by immunoassays: Current status, unsolved problems and clinical consequences. Growth Horm. IGF Res., 2010, 20(1), 19-25.
[http://dx.doi.org/10.1016/j.ghir.2009.09.005] [PMID: 19818659]
[27]
Frystyk, J.; Freda, P.; Clemmons, D.R. The current status of IGF-I assays--a 2009 update. Growth Horm. IGF Res., 2010, 20(1), 8-18.
[http://dx.doi.org/10.1016/j.ghir.2009.09.004] [PMID: 19818658]
[28]
Lombardi, G.; Di Somma, C.; Grasso, L.F.S.; Savanelli, M.C.; Colao, A.; Pivonello, R. The cardiovascular system in growth hormone excess and growth hormone deficiency. J. Endocrinol. Invest., 2012, 35(11), 1021-1029.
[PMID: 23143695]
[29]
Cook, DM.; Yuen, KC.; Biller, BM.; Kemp, SF.; Vance, ML. American Association of Clinical Endocrinologists, American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in growth hormone-deficient adults and transition patients - 2009 update Endocr Pract, 2009, 15(Suppl 2), 1-29.
[30]
Stanley, T. Diagnosis of growth hormone deficiency in childhood. Curr. Opin. Endocrinol. Diabetes Obes., 2012, 19(1), 47-52.
[http://dx.doi.org/10.1097/MED.0b013e32834ec952] [PMID: 22157400]
[31]
Oświęcimska, J.; Roczniak, W.; Mikołajczak, A.; Szymlak, A. Growth hormone deficiency in children and young adults. Postepy Hig. Med. Dosw., 2016, 70(0), 928-937.
[http://dx.doi.org/10.5604/17322693.1218181] [PMID: 27668645]
[32]
Thomas, J.D.J.; Monson, J.P. Adult GH deficiency throughout lifetime. Eur. J. Endocrinol., 2009, 161(Suppl. 1), S97-S106.
[http://dx.doi.org/10.1530/EJE-09-0258] [PMID: 19684058]
[33]
Takahashi, Y. The role of growth hormone and insulin-like growth factor-I in the liver. Int. J. Mol. Sci., 2017, 18(7), E1447.
[http://dx.doi.org/10.3390/ijms18071447] [PMID: 28678199]
[34]
Katznelson, L.; Atkinson, J.L.; Cook, D.M.; Ezzat, S.Z.; Hamrahian, A.H.; Miller, K.K. American Association of Clinical Endocrinologists. American Association of Clinical Endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of acromegaly--2011 update. Endocr. Pract., 2011, 17(Suppl. 4), 1-44.
[http://dx.doi.org/10.4158/EP.17.S4.1] [PMID: 21846616]
[35]
Manjila, S.; Wu, O.C.; Khan, F.R.; Khan, M.M.; Arafah, B.M.; Selman, W.R. Pharmacological management of acromegaly: A current perspective. Neurosurg. Focus, 2010, 29(4), E14.
[http://dx.doi.org/10.3171/2010.7.FOCUS10168] [PMID: 20887124]
[36]
Giustina, A.; Chanson, P.; Kleinberg, D.; Bronstein, M.D.; Clemmons, D.R.; Klibanski, A.; van der Lely, A.J.; Strasburger, C.J.; Lamberts, S.W.; Ho, K.K.; Casanueva, F.F.; Melmed, S. Acromegaly Consensus Group. Expert consensus document: A consensus on the medical treatment of acromegaly. Nat. Rev. Endocrinol., 2014, 10(4), 243-248.
[http://dx.doi.org/10.1038/nrendo.2014.21] [PMID: 24566817]
[37]
Colao, A.; Auriemma, R.S.; Lombardi, G.; Pivonello, R. Resistance to somatostatin analogs in acromegaly. Endocr. Rev., 2011, 32(2), 247-271.
[http://dx.doi.org/10.1210/er.2010-0002] [PMID: 21123741]
[38]
Taboada, G.F.; Luque, R.M.; Neto, L.V.; Machado, Ede.O.; Sbaffi, B.C.; Domingues, R.C.; Marcondes, J.B.; Chimelli, L.M.; Fontes, R.; Niemeyer, P.; de Carvalho, D.P.; Kineman, R.D.; Gadelha, M.R. Quantitative analysis of somatostatin receptor subtypes (1-5) gene expression levels in somatotropinomas and correlation to in vivo hormonal and tumor volume responses to treatment with octreotide LAR. Eur. J. Endocrinol., 2008, 158(3), 295-303.
[http://dx.doi.org/10.1530/EJE-07-0562] [PMID: 18299461]
[39]
Jaquet, P.; Saveanu, A.; Gunz, G.; Fina, F.; Zamora, A.J.; Grino, M.; Culler, M.D.; Moreau, J.P.; Enjalbert, A.; Ouafik, L.H. Human somatostatin receptor subtypes in acromegaly: Distinct patterns of messenger ribonucleic acid expression and hormone suppression identify different tumoral phenotypes. J. Clin. Endocrinol. Metab., 2000, 85(2), 781-792.
[http://dx.doi.org/10.1210/jc.85.2.781] [PMID: 10690891]
[40]
Casarini, A.P.; Jallad, R.S.; Pinto, E.M.; Soares, I.C.; Nonogaki, S.; Giannella-Neto, D.; Musolino, N.R.; Alves, V.A.; Bronstein, M.D. Acromegaly: Correlation between expression of somatostatin receptor subtypes and response to octreotide-lar treatment. Pituitary, 2009, 12(4), 297-303.
[http://dx.doi.org/10.1007/s11102-009-0175-1] [PMID: 19330452]
[41]
Reubi, J.C.; Landolt, A.M. The growth hormone responses to octreotide in acromegaly correlate with adenoma somatostatin receptor status. J. Clin. Endocrinol. Metab., 1989, 68(4), 844-850.
[http://dx.doi.org/10.1210/jcem-68-4-844] [PMID: 2537844]
[42]
Plöckinger, U.; Albrecht, S.; Mawrin, C.; Saeger, W.; Buchfelder, M.; Petersenn, S.; Schulz, S. Selective loss of somatostatin receptor 2 in octreotide-resistant growth hormone-secreting adenomas. J. Clin. Endocrinol. Metab., 2008, 93(4), 1203-1210.
[http://dx.doi.org/10.1210/jc.2007-1986] [PMID: 18198230]
[43]
Schmid, H.A.; Schoeffter, P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology, 2004, 80(Suppl. 1), 47-50.
[http://dx.doi.org/10.1159/000080741] [PMID: 15477717]
[44]
Gatto, F.; Biermasz, N.R.; Feelders, R.A.; Kros, J.M.; Dogan, F.; van der Lely, A.J.; Neggers, S.J.; Lamberts, S.W.; Pereira, A.M.; Ferone, D.; Hofland, L.J. Low beta-arrestin expression correlates with the responsiveness to long-term somatostatin analog treatment in acromegaly. Eur. J. Endocrinol., 2016, 174(5), 651-662.
[http://dx.doi.org/10.1530/EJE-15-0391] [PMID: 26888629]
[45]
Coelho, M.C.A.; Vasquez, M.L.; Wildemberg, L.E.; Vázquez-Borrego, M.C.; Bitana, L.; Camacho, A.H.D.S.; Silva, D.; Ogino, L.L.; Ventura, N.; Chimelli, L.; Luque, R.M.; Kasuki, L.; Gadelha, M.R. Molecular evidence and clinical importance of β-arrestins expression in patients with acromegaly. J. Cell. Mol. Med., 2018, 22(4), 2110-2116.
[http://dx.doi.org/10.1111/jcmm.13427] [PMID: 29377493]
[46]
Barlier, A.; Gunz, G.; Zamora, A.J.; Morange-Ramos, I.; Figarella-Branger, D.; Dufour, H.; Enjalbert, A.; Jaquet, P. Pronostic and therapeutic consequences of Gs alpha mutations in somatotroph adenomas. J. Clin. Endocrinol. Metab., 1998, 83(5), 1604-1610.
[PMID: 9589663]
[47]
Spada, A.; Arosio, M.; Bochicchio, D.; Bazzoni, N.; Vallar, L.; Bassetti, M.; Faglia, G. Clinical, biochemical, and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J. Clin. Endocrinol. Metab., 1990, 71(6), 1421-1426.
[http://dx.doi.org/10.1210/jcem-71-6-1421] [PMID: 1977758]
[48]
Rostomyan, L.; Daly, A.F.; Petrossians, P.; Nachev, E.; Lila, A.R.; Lecoq, A.L.; Lecumberri, B.; Trivellin, G.; Salvatori, R.; Moraitis, A.G.; Holdaway, I.; Kranenburg-van Klaveren, D.J.; Chiara Zatelli, M.; Palacios, N.; Nozieres, C.; Zacharin, M.; Ebeling, T.; Ojaniemi, M.; Rozhinskaya, L.; Verrua, E.; Jaffrain-Rea, M.L.; Filipponi, S.; Gusakova, D.; Pronin, V.; Bertherat, J.; Belaya, Z.; Ilovayskaya, I.; Sahnoun-Fathallah, M.; Sievers, C.; Stalla, G.K.; Castermans, E.; Caberg, J.H.; Sorkina, E.; Auriemma, R.S.; Mittal, S.; Kareva, M.; Lysy, P.A.; Emy, P.; De Menis, E.; Choong, C.S.; Mantovani, G.; Bours, V.; De Herder, W.; Brue, T.; Barlier, A.; Neggers, S.J.; Zacharieva, S.; Chanson, P.; Shah, N.S.; Stratakis, C.A.; Naves, L.A.; Beckers, A. Clinical and genetic characterization of pituitary gigantism: An international collaborative study in 208 patients. Endocr. Relat. Cancer, 2015, 22(5), 745-757.
[http://dx.doi.org/10.1530/ERC-15-0320] [PMID: 26187128]
[49]
Trivellin, G.; Daly, A.F.; Faucz, F.R.; Yuan, B.; Rostomyan, L.; Larco, D.O.; Schernthaner-Reiter, M.H.; Szarek, E.; Leal, L.F.; Caberg, J.H.; Castermans, E.; Villa, C.; Dimopoulos, A.; Chittiboina, P.; Xekouki, P.; Shah, N.; Metzger, D.; Lysy, P.A.; Ferrante, E.; Strebkova, N.; Mazerkina, N.; Zatelli, M.C.; Lodish, M.; Horvath, A.; de Alexandre, R.B.; Manning, A.D.; Levy, I.; Keil, M.F.; Sierra, Mde.L.; Palmeira, L.; Coppieters, W.; Georges, M.; Naves, L.A.; Jamar, M.; Bours, V.; Wu, T.J.; Choong, C.S.; Bertherat, J.; Chanson, P.; Kamenický, P.; Farrell, W.E.; Barlier, A.; Quezado, M.; Bjelobaba, I.; Stojilkovic, S.S.; Wess, J.; Costanzi, S.; Liu, P.; Lupski, J.R.; Beckers, A.; Stratakis, C.A. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N. Engl. J. Med., 2014, 371(25), 2363-2374.
[http://dx.doi.org/10.1056/NEJMoa1408028] [PMID: 25470569]
[50]
Beckers, A.; Lodish, M.B.; Trivellin, G.; Rostomyan, L.; Lee, M.; Faucz, F.R.; Yuan, B.; Choong, C.S.; Caberg, J.H.; Verrua, E.; Naves, L.A.; Cheetham, T.D.; Young, J.; Lysy, P.A.; Petrossians, P.; Cotterill, A.; Shah, N.S.; Metzger, D.; Castermans, E.; Ambrosio, M.R.; Villa, C.; Strebkova, N.; Mazerkina, N.; Gaillard, S.; Barra, G.B.; Casulari, L.A.; Neggers, S.J.; Salvatori, R.; Jaffrain-Rea, M.L.; Zacharin, M.; Santamaria, B.L.; Zacharieva, S.; Lim, E.M.; Mantovani, G.; Zatelli, M.C.; Collins, M.T.; Bonneville, J.F.; Quezado, M.; Chittiboina, P.; Oldfield, E.H.; Bours, V.; Liu, P.; W de Herder, W.; Pellegata, N.; Lupski, J.R.; Daly, A.F.; Stratakis, C.A. X-linked acrogigantism syndrome: Clinical profile and therapeutic responses. Endocr. Relat. Cancer, 2015, 22(3), 353-367.
[http://dx.doi.org/10.1530/ERC-15-0038] [PMID: 25712922]
[51]
Daly, A.F.; Yuan, B.; Fina, F.; Caberg, J.H.; Trivellin, G.; Rostomyan, L.; de Herder, W.W.; Naves, L.A.; Metzger, D.; Cuny, T.; Rabl, W.; Shah, N.; Jaffrain-Rea, M.L.; Zatelli, M.C.; Faucz, F.R.; Castermans, E.; Nanni-Metellus, I.; Lodish, M.; Muhammad, A.; Palmeira, L.; Potorac, I.; Mantovani, G.; Neggers, S.J.; Klein, M.; Barlier, A.; Liu, P.; Ouafik, L.; Bours, V.; Lupski, J.R.; Stratakis, C.A.; Beckers, A. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr. Relat. Cancer, 2016, 23(4), 221-233.
[http://dx.doi.org/10.1530/ERC-16-0082] [PMID: 26935837]
[52]
Gadelha, M.R.; Kasuki, L.; Korbonits, M. Novel pathway for somatostatin analogs in patients with acromegaly. Trends Endocrinol. Metab., 2013, 24(5), 238-246.
[http://dx.doi.org/10.1016/j.tem.2012.11.007] [PMID: 23270713]
[53]
Chahal, H.S.; Trivellin, G.; Leontiou, C.A.; Alband, N.; Fowkes, R.C.; Tahir, A.; Igreja, S.C.; Chapple, J.P.; Jordan, S.; Lupp, A.; Schulz, S.; Ansorge, O.; Karavitaki, N.; Carlsen, E.; Wass, J.A.; Grossman, A.B.; Korbonits, M. Somatostatin analogs modulate AIP in somatotroph adenomas: The role of the ZAC1 pathway. J. Clin. Endocrinol. Metab., 2012, 97(8), E1411-E1420.
[http://dx.doi.org/10.1210/jc.2012-1111] [PMID: 22659247]
[54]
Theodoropoulou, M.; Tichomirowa, M.A.; Sievers, C.; Yassouridis, A.; Arzberger, T.; Hougrand, O.; Deprez, M.; Daly, A.F.; Petrossians, P.; Pagotto, U.; Beckers, A.; Stalla, G.K. Tumor ZAC1 expression is associated with the response to somatostatin analog therapy in patients with acromegaly. Int. J. Cancer, 2009, 125(9), 2122-2126.
[http://dx.doi.org/10.1002/ijc.24602] [PMID: 19637311]
[55]
Kasuki, L.; Vieira Neto, L.; Wildemberg, L.E.; Colli, L.M.; de Castro, M.; Takiya, C.M.; Gadelha, M.R. AIP expression in sporadic somatotropinomas is a predictor of the response to octreotide LAR therapy independent of SSTR2 expression. Endocr. Relat. Cancer, 2012, 19(3), L25-L29.
[http://dx.doi.org/10.1530/ERC-12-0020] [PMID: 22420004]
[56]
Jaffrain-Rea, M.L.; Rotondi, S.; Turchi, A.; Occhi, G.; Barlier, A.; Peverelli, E.; Rostomyan, L.; Defilles, C.; Angelini, M.; Oliva, M.A.; Ceccato, F.; Maiorani, O.; Daly, A.F.; Esposito, V.; Buttarelli, F.; Figarella-Branger, D.; Giangaspero, F.; Spada, A.; Scaroni, C.; Alesse, E.; Beckers, A. Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of Gsp mutations. Endocr. Relat. Cancer, 2013, 20(5), 753-766.
[http://dx.doi.org/10.1530/ERC-12-0322] [PMID: 23940012]
[57]
Tuominen, I.; Heliövaara, E.; Raitila, A.; Rautiainen, M.R.; Mehine, M.; Katainen, R.; Donner, I.; Aittomäki, V.; Lehtonen, H.J.; Ahlsten, M.; Kivipelto, L.; Schalin-Jäntti, C.; Arola, J.; Hautaniemi, S.; Karhu, A. AIP inactivation leads to pituitary tumorigenesis through defective Gαi-cAMP signaling. Oncogene, 2015, 34(9), 1174-1184.
[http://dx.doi.org/10.1038/onc.2014.50] [PMID: 24662816]
[58]
Fougner, S.L.; Lekva, T.; Borota, O.C.; Hald, J.K.; Bollerslev, J.; Berg, J.P. The expression of E-cadherin in somatotroph pituitary adenomas is related to tumor size, invasiveness, and somatostatin analog response. J. Clin. Endocrinol. Metab., 2010, 95(5), 2334-2342.
[http://dx.doi.org/10.1210/jc.2009-2197] [PMID: 20335450]
[59]
Kase, S.; Sugio, K.; Yamazaki, K.; Okamoto, T.; Yano, T.; Sugimachi, K. Expression of E-cadherin and beta-catenin in human non-small cell lung cancer and the clinical significance. Clin. Cancer Res., 2000, 6(12), 4789-4796.
[PMID: 11156236]
[60]
Canas-Marques, R.; Schnitt, S.J. E-cadherin immunohistochemistry in breast pathology: Uses and pitfalls. Histopathology, 2016, 68(1), 57-69.
[http://dx.doi.org/10.1111/his.12869] [PMID: 26768029]
[61]
Elston, M.S.; Gill, A.J.; Conaglen, J.V.; Clarkson, A.; Cook, R.J.; Little, N.S.; Robinson, B.G.; Clifton-Bligh, R.J.; McDonald, K.L. Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas. J. Clin. Endocrinol. Metab., 2009, 94(4), 1436-1442.
[http://dx.doi.org/10.1210/jc.2008-2075] [PMID: 19158195]
[62]
Xu, B.; Sano, T.; Yoshimoto, K.; Yamada, S. Downregulation of E-cadherin and its undercoat proteins in pituitary growth hormone cell adenomas with prominent fibrous bodies. Endocr. Pathol., 2002, 13(4), 341-351.
[http://dx.doi.org/10.1385/EP:13:4:341] [PMID: 12665652]
[63]
Kawamoto, H.; Mizoue, T.; Arita, K.; Tominaga, A.; Eguchi, K.; Kurisu, K. Expression of epithelial cadherin and cavernous sinus invasion in human pituitary adenomas. J. Neurooncol., 1997, 34(2), 105-109.
[http://dx.doi.org/10.1023/A:1005709014239] [PMID: 9210056]
[64]
Chauvet, N.; Romanò, N.; Meunier, A.C.; Galibert, E.; Fontanaud, P.; Mathieu, M.N.; Osterstock, G.; Osterstock, P.; Baccino, E.; Rigau, V.; Loiseau, H.; Bouillot-Eimer, S.; Barlier, A.; Mollard, P.; Coutry, N. Combining cadherin expression with molecular markers discriminates invasiveness in growth hormone and prolactin pituitary adenomas. J. Neuroendocrinol., 2016, 28(2), 12352.
[http://dx.doi.org/10.1111/jne.12352] [PMID: 26686489]
[65]
Fougner, S.L.; Casar-Borota, O.; Heck, A.; Berg, J.P.; Bollerslev, J. Adenoma granulation pattern correlates with clinical variables and effect of somatostatin analogue treatment in a large series of patients with acromegaly. Clin. Endocrinol. (Oxf.), 2012, 76(1), 96-102.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04163.x] [PMID: 21722151]
[66]
Kiseljak-Vassiliades, K.; Xu, M.; Mills, T.S.; Smith, E.E.; Silveira, L.J.; Lillehei, K.O.; Kerr, J.M.; Kleinschmidt-DeMasters, B.K.; Wierman, M.E. Differential somatostatin receptor (SSTR) 1-5 expression and downstream effectors in histologic subtypes of growth hormone pituitary tumors. Mol. Cell. Endocrinol., 2015, 417, 73-83.
[http://dx.doi.org/10.1016/j.mce.2015.09.016] [PMID: 26391562]
[67]
Obari, A.; Sano, T.; Ohyama, K.; Kudo, E.; Qian, Z.R.; Yoneda, A.; Rayhan, N.; Mustafizur Rahman, M.; Yamada, S. Clinicopathological features of growth hormone-producing pituitary adenomas: Difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr. Pathol., 2008, 19(2), 82-91.
[http://dx.doi.org/10.1007/s12022-008-9029-z] [PMID: 18629656]
[68]
Bakhtiar, Y.; Hirano, H.; Arita, K.; Yunoue, S.; Fujio, S.; Tominaga, A.; Sakoguchi, T.; Sugiyama, K.; Kurisu, K.; Yasufuku-Takano, J.; Takano, K. Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur. J. Endocrinol., 2010, 163(4), 531-539.
[http://dx.doi.org/10.1530/EJE-10-0586] [PMID: 20688896]
[69]
Nishioka, H.; Haraoka, J.; Akada, K. Fibrous bodies are associated with lower GH production and decreased expression of E-cadherin in GH-producing pituitary adenomas. Clin. Endocrinol. (Oxf.), 2003, 59(6), 768-772.
[http://dx.doi.org/10.1046/j.1365-2265.2003.01921.x] [PMID: 14974920]
[70]
Venegas-Moreno, E.; Flores-Martinez, A.; Dios, E.; Vazquez-Borrego, M.C.; Ibañez-Costa, A.; Madrazo-Atutxa, A.; Japón, M.A.; Castaño, J.P.; Luque, R.M.; Cano, D.A.; Soto-Moreno, A. E-cadherin expression is associated with somatostatin analogue response in acromegaly. J. Cell. Mol. Med., 2019, 23(5), 3088-3096.
[http://dx.doi.org/10.1111/jcmm.13851] [PMID: 30843342]
[71]
Schmid, C.; Neidert, M.C.; Tschopp, O.; Sze, L.; Bernays, R.L. Growth hormone and Klotho. J. Endocrinol., 2013, 219(2), R37-R57.
[http://dx.doi.org/10.1530/JOE-13-0285] [PMID: 24096965]
[72]
Neidert, M.C.; Sze, L.; Zwimpfer, C.; Sarnthein, J.; Seifert, B.; Frei, K.; Leske, H.; Rushing, E.J.; Schmid, C.; Bernays, R.L. Soluble α-klotho: A novel serum biomarker for the activity of GH-producing pituitary adenomas. Eur. J. Endocrinol., 2013, 168(4), 575-583.
[http://dx.doi.org/10.1530/EJE-12-1045] [PMID: 23360820]
[73]
Kohler, S.; Tschopp, O.; Sze, L.; Neidert, M.; Bernays, R.L.; Spanaus, K.S.; Wiesli, P.; Schmid, C. Monitoring for potential residual disease activity by serum insulin-like growth factor 1 and soluble Klotho in patients with acromegaly after pituitary surgery: Is there an impact of the genomic deletion of exon 3 in the growth hormone receptor (d3-GHR) gene on “safe” GH cut-off values? Gen. Comp. Endocrinol., 2013, 188, 282-287.
[http://dx.doi.org/10.1016/j.ygcen.2013.04.024] [PMID: 23648743]
[74]
Schweizer, J.; Haenelt, M.; Schilbach, K.; Giannetti, A.; Bizzi, M.; Rocha, B.; Schopohl, J.; Ribeiro-Oliveira, A.; Bidlingmaier, M. Alpha Klotho as a marker of disease activity in acromegaly. J. Endocrinol. Soc., 2019, 3(suppl. 1), OR32-OR2.
[75]
Kawamoto, H.; Uozumi, T.; Kawamoto, K.; Arita, K.; Yano, T.; Hirohata, T. Type IV collagenase activity and cavernous sinus invasion in human pituitary adenomas. Acta Neurochir. (Wien), 1996, 138(4), 390-395.
[http://dx.doi.org/10.1007/BF01420300] [PMID: 8738388]
[76]
Liu, W.; Matsumoto, Y.; Okada, M.; Miyake, K.; Kunishio, K.; Kawai, N.; Tamiya, T.; Nagao, S. Matrix metalloproteinase 2 and 9 expression correlated with cavernous sinus invasion of pituitary adenomas. J. Med. Invest., 2005, 52(3-4), 151-158.
[http://dx.doi.org/10.2152/jmi.52.151] [PMID: 16167532]
[77]
Knappe, UJ.; Hagel, C.; Lisboa, BW.; Wilczak, W.; Lüdecke, DK.; Saeger, W. Expression of serine proteases and metalloproteinases in human pituitary adenomas and anterior pituitary lobe tissue. Acta Neuropathol., 2003, 106(471), 478.
[http://dx.doi.org/10.1007/s00401-003-0747-5]
[78]
Karci, A.C.; Canturk, Z.; Tarkun, I.; Cetinarslan, B. Matrix metalloproteinase 2 (MMP-2) levels are increased in active acromegaly patients. Endocrine, 2017, 57(1), 148-155.
[http://dx.doi.org/10.1007/s12020-017-1283-8] [PMID: 28332074]
[79]
(a) Nilsen, T.W. Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet., 2007, 23, 243-249. (b) Stefani, G.; Slack, F.J.; Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol., 2008, 9, 219-230.
[http://dx.doi.org/10.1038/nrm2347]
[80]
Esquela-Kerscher, A.; Slack, F.J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer, 2006, 6(4), 259-269.
[http://dx.doi.org/10.1038/nrc1840] [PMID: 16557279]
[81]
Johnson, C.D.; Esquela-Kerscher, A.; Stefani, G.; Byrom, M.; Kelnar, K.; Ovcharenko, D.; Wilson, M.; Wang, X.; Shelton, J.; Shingara, J.; Chin, L.; Brown, D.; Slack, F.J. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res., 2007, 67(16), 7713-7722.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[82]
Gartel, A.L.; Kandel, E.S. miRNAs: Little known mediators of oncogenesis. Semin. Cancer Biol., 2008, 18(2), 103-110.
[http://dx.doi.org/10.1016/j.semcancer.2008.01.008] [PMID: 18295504]
[83]
Calin, G.A.; Croce, C.M. MicroRNA-cancer connection: The beginning of a new tale. Cancer Res., 2006, 66(15), 7390-7394.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0800] [PMID: 16885332]
[84]
Bottoni, A.; Piccin, D.; Tagliati, F.; Luchin, A.; Zatelli, M.C.; degli Uberti, E.C. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J. Cell. Physiol., 2005, 204(1), 280-285.
[http://dx.doi.org/10.1002/jcp.20282] [PMID: 15648093]
[85]
Mao, ZG.; He, DS.; Zhou, J.; Yao, B.; Xiao, WW.; Chen, CH.; Zhu, YH.; Wang, HJ. Differential expression of microRNAs in GH-secreting pituitary adenomas Diagn Pathol, 2010, 7(5), 79.
[86]
Bottoni, A.; Zatelli, M.C.; Ferracin, M.; Tagliati, F.; Piccin, D.; Vignali, C.; Calin, G.A.; Negrini, M.; Croce, C.M.; Degli Uberti, E.C. Identification of differentially expressed microRNAs by microarray: A possible role for microRNA genes in pituitary adenomas. J. Cell. Physiol., 2007, 210(2), 370-377.
[http://dx.doi.org/10.1002/jcp.20832] [PMID: 17111382]
[87]
Amaral, F.C.; Torres, N.; Saggioro, F.; Neder, L.; Machado, H.R.; Silva, W.A.Jr.; Moreira, A.C.; Castro, M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J. Clin. Endocrinol. Metab., 2009, 94(1), 320-323.
[http://dx.doi.org/10.1210/jc.2008-1451] [PMID: 18840638]
[88]
D’Angelo, D.; Palmieri, D.; Mussnich, P.; Roche, M.; Wierinckx, A.; Raverot, G.; Fedele, M.; Croce, C.M.; Trouillas, J.; Fusco, A. Altered microRNA expression profile in human pituitary GH adenomas: Down-regulation of miRNAs targeting HMGA1, HMGA2, and E2F1. J. Clin. Endocrinol. Metab., 2012, 97(7), E1128-E1138.
[http://dx.doi.org/10.1210/jc.2011-3482] [PMID: 22564666]
[89]
Palumbo, T.; Faucz, F.R.; Azevedo, M.; Xekouki, P.; Iliopoulos, D.; Stratakis, C.A. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene, 2013, 32(13), 1651-1659.
[http://dx.doi.org/10.1038/onc.2012.190] [PMID: 22614013]
[90]
Duran-Ortiz, S.; Brittain, A.L.; Kopchick, J.J. The impact of growth hormone on proteomic profiles: A review of mouse and adult human studies. Clin. Proteomics, 2017, 14, 24.
[http://dx.doi.org/10.1186/s12014-017-9160-2] [PMID: 28670222]
[91]
Abs, R. Update on the diagnosis of GH deficiency in adults. Eur. J. Endocrinol., 2003, 148(Suppl. 2), S3-S8.
[http://dx.doi.org/10.1530/eje.0.148s003] [PMID: 12670294]
[92]
Florini, J.R.; Prinz, P.N.; Vitiello, M.V.; Hintz, R.L. Somatomedin-C levels in healthy young and old men: Relationship to peak and 24-hour integrated levels of growth hormone. J. Gerontol., 1985, 40(1), 2-7.
[http://dx.doi.org/10.1093/geronj/40.1.2] [PMID: 4038409]
[93]
Barkan, A.L.; Beitins, I.Z.; Kelch, R.P. Plasma insulin-like growth factor-l/ somatomedin-C in acromegaly: Correlation with the degree of growth hormone hypersecretion. J. Clin. Endocrinol. Metab., 1988, 6769-6773.
[http://dx.doi.org/10.1210/jcem-67-1-69]
[94]
Ho, K.Y.; Evans, W.S.; Blizzard, R.M.; Veldhuis, J.D.; Merriam, G.R.; Samojlik, E.; Furlanetto, R.; Rogol, A.D.; Kaiser, D.L.; Thorner, M.O. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: Importance of endogenous estradiol concentrations. J. Clin. Endocrinol. Metab., 1987, 64(1), 51-58.
[http://dx.doi.org/10.1210/jcem-64-1-51] [PMID: 3782436]
[95]
Blum, W.F.; Albertsson-Wikland, K.; Rosberg, S.; Ranke, M.B. Serum levels of insulin-like growth factor I (IGF-I) and IGF binding protein 3 reflect spontaneous growth hormone secretion. J. Clin. Endocrinol. Metab., 1993, 76(6), 1610-1616.
[PMID: 7684744]
[96]
Clemmons, D.R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem., 2011, 57(4), 555-559.
[http://dx.doi.org/10.1373/clinchem.2010.150631] [PMID: 21285256]
[97]
Isley, W.L.; Underwood, L.E.; Clemmons, D.R. Dietary components that regulate serum somatomedin-C concentrations in humans. J. Clin. Invest., 1983, 71(2), 175-182.
[http://dx.doi.org/10.1172/JCI110757] [PMID: 6681614]
[98]
Ho, K.K. 2007 GH Deficiency Consensus Workshop Participants. Consensus guidelines for the diagnosis and treatment of adults with GH deficiency II: A statement of the GH Research Society in association with the European Society for Pediatric Endocrinology, Lawson Wilkins Society, European Society of Endocrinology, Japan Endocrine Society, and Endocrine Society of Australia. Eur. J. Endocrinol., 2007, 157(6), 695-700.
[http://dx.doi.org/10.1530/EJE-07-0631] [PMID: 18057375]
[99]
Cohen, P.; Germak, J.; Rogol, A.D.; Weng, W.; Kappelgaard, A.M.; Rosenfeld, R.G. American Norditropin Study Group. Variable degree of growth hormone (GH) and insulin-like growth factor (IGF) sensitivity in children with idiopathic short stature compared with GH-deficient patients: Evidence from an IGF-based dosing study of short children. J. Clin. Endocrinol. Metab., 2010, 95(5), 2089-2098.
[http://dx.doi.org/10.1210/jc.2009-2139] [PMID: 20207829]
[100]
Frystyk, J. Free insulin-like growth factors - measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res., 2004, 14(5), 337-375.
[101]
Clemmons, D.R. IGF-I assays: Current assay methodologies and their limitations. Pituitary, 2007, 10(2), 121-128.
[http://dx.doi.org/10.1007/s11102-007-0032-z] [PMID: 17429590]
[102]
Varewijck, A.J.; Lamberts, S.W.; Uitterlinden, P.; Hofland, L.J.; Janssen, J.A. IGF-I bioactivity better reflects growth hormone deficiency than total IGF-I. J. Clin. Endocrinol. Metab., 2011, 96(7), 2248-2254.
[http://dx.doi.org/10.1210/jc.2011-0051] [PMID: 21565786]
[103]
Chen, J.W.; Ledet, T.; Orskov, H.; Jessen, N.; Lund, S.; Whittaker, J.; De Meyts, P.; Larsen, M.B.; Christiansen, J.S.; Frystyk, J. A highly sensitive and specific assay for determination of IGF-I bioactivity in human serum. Am. J. Physiol. Endocrinol. Metab., 2003, 284(6), E1149-E1155.
[http://dx.doi.org/10.1152/ajpendo.00410.2002] [PMID: 12604504]
[104]
Dattani, M.; Preece, M. Growth hormone deficiency and related disorders: Insights into causation, diagnosis, and treatment. Lancet, 2004, 363(9425), 1977-1987.
[http://dx.doi.org/10.1016/S0140-6736(04)16413-1] [PMID: 15194259]
[105]
Bengtsson, B.A.; Edén, S.; Lönn, L.; Kvist, H.; Stokland, A.; Lindstedt, G.; Bosaeus, I.; Tölli, J.; Sjöström, L.; Isaksson, O.G. Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. J. Clin. Endocrinol. Metab., 1993, 76(2), 309-317.
[PMID: 8432773]
[106]
Kargi, A.Y.; Merriam, G.R. Diagnosis and treatment of growth hormone deficiency in adults. Nat. Rev. Endocrinol., 2013, 9(6), 335-345.
[http://dx.doi.org/10.1038/nrendo.2013.77] [PMID: 23629539]
[107]
Cruz-Topete, D.; Jorgensen, J.O.; Christensen, B.; Sackmann-Sala, L.; Krusenstjerna-Hafstrom, T.; Jara, A.; Okada, S.; Kopchick, J.J. Identification of new biomarkers of low-dose GH replacement therapy in GH-deficient patients. J. Clin. Endocrinol. Metab., 2011, 96(7), 2089-2097.
[http://dx.doi.org/10.1210/jc.2011-0197] [PMID: 21543428]
[108]
Meinhardt, U.; Nelson, A.E.; Hansen, J.L.; Birzniece, V.; Clifford, D.; Leung, K.C.; Graham, K.; Ho, K.K. The effects of growth hormone on body composition and physical performance in recreational athletes: A randomized trial. Ann. Intern. Med., 2010, 152(9), 568-577.
[http://dx.doi.org/10.7326/0003-4819-152-9-201005040-00007] [PMID: 20439575]
[109]
WADA technical document TD2015GH. 2015. Available from: https://www.wada-ama.org/sites/default/files/resources/files/wada-td2015-index-v2.0.pdf
[110]
World Anti-Doping Program. Human growth hormone (hGH) biomarkers test for doping control analysis , 2016, (version 2)
[111]
McHugh, C.M.; Park, R.T.; Sönksen, P.H.; Holt, R.I. Challenges in detecting the abuse of growth hormone in sport. Clin. Chem., 2005, 51(9), 1587-1593.
[http://dx.doi.org/10.1373/clinchem.2005.047845] [PMID: 16020502]
[112]
Nelson, A.E.; Ho, K.K. A robust test for growth hormone doping--present status and future prospects. Asian J. Androl., 2008, 10(3), 416-425.
[http://dx.doi.org/10.1111/j.1745-7262.2008.00395.x] [PMID: 18385903]
[113]
Nelson, A.E.; Meinhardt, U.; Hansen, J.L.; Walker, I.H.; Stone, G.; Howe, C.J.; Leung, K.C.; Seibel, M.J.; Baxter, R.C.; Handelsman, D.J.; Kazlauskas, R.; Ho, K.K. Pharmacodynamics of growth hormone abuse biomarkers and the influence of gender and testosterone: A randomized double-blind placebo-controlled study in young recreational athletes. J. Clin. Endocrinol. Metab., 2008, 93(6), 2213-2222.
[http://dx.doi.org/10.1210/jc.2008-0402] [PMID: 18381573]
[114]
Powrie, J.K.; Bassett, E.E.; Rosen, T.; Jorgensen, J.O.; Napoli, R.; Sacca, L.; Christiansen, J.S.; Bengtsson, B.A.; Sönksen, P.H. GH-2000 Project Study Group. Detection of growth hormone abuse in sport. Growth Horm. IGF Res., 2007, 17(3), 220-226.
[http://dx.doi.org/10.1016/j.ghir.2007.01.011] [PMID: 17339122]
[115]
Wallace, J.D.; Cuneo, R.C.; Baxter, R.; Orskov, H.; Keay, N.; Pentecost, C.; Dall, R.; Rosén, T.; Jorgensen, J.O.; Cittadini, A.; Longobardi, S.; Sacca, L.; Christiansen, J.S.; Bengtsson, B.A.; Sönksen, P.H. Responses of the growth hormone (GH) and insulin-like growth factor axis to exercise, GH administration, and GH withdrawal in trained adult males: A potential test for GH abuse in sport. J. Clin. Endocrinol. Metab., 1999, 84(10), 3591-3601.
[PMID: 10523001]
[116]
Ehrnborg, C.; Lange, K.H.; Dall, R.; Christiansen, J.S.; Lundberg, P.A.; Baxter, R.C.; Boroujerdi, M.A.; Bengtsson, B.A.; Healey, M.L.; Pentecost, C.; Longobardi, S.; Napoli, R.; Rosén, T. GH-2000 Study Group. The growth hormone/insulin-like growth factor-I axis hormones and bone markers in elite athletes in response to a maximum exercise test. J. Clin. Endocrinol. Metab., 2003, 88(1), 394-401.
[http://dx.doi.org/10.1210/jc.2002-020037] [PMID: 12519882]
[117]
Tan, S.H.; Lee, A.; Pascovici, D.; Care, N.; Birzniece, V.; Ho, K.; Molloy, M.P.; Khan, A. Plasma biomarker proteins for detection of human growth hormone administration in athletes. Sci. Rep., 2017, 7(1), 10039.
[http://dx.doi.org/10.1038/s41598-017-09968-7] [PMID: 28855568]
[118]
Edén, S.; Wiklund, O.; Oscarsson, J.; Rosén, T.; Bengtsson, B.A. Growth hormone treatment of growth hormone-deficient adults results in a marked increase in Lp(a) and HDL cholesterol concentrations. Arterioscler. Thromb., 1993, 13(2), 296-301.
[http://dx.doi.org/10.1161/01.ATV.13.2.296] [PMID: 8427864]
[119]
Tao, R.; Acquati, F.; Marcovina, S.M.; Hobbs, H.H. Human growth hormone increases apo(a) expression in transgenic mice. Arterioscler. Thromb. Vasc. Biol., 1999, 19(10), 2439-2447.
[http://dx.doi.org/10.1161/01.ATV.19.10.2439] [PMID: 10521374]
[120]
von Bülow, F.A.; Janas, M.S.; Terkelsen, O.B.; Mollgård, K. Human fetuin/alpha 2 HS glycoprotein in colloid and parenchymal cells in human fetal pituitary gland. Histochemistry, 1993, 99(1), 13-22.
[http://dx.doi.org/10.1007/BF00268015] [PMID: 7682208]
[121]
Goustin, A.S.; Derar, N.; Abou-Samra, A.B. Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor. Cell. Signal., 2013, 25(4), 981-988.
[http://dx.doi.org/10.1016/j.cellsig.2012.12.011] [PMID: 23314177]
[122]
Dreval, A.V.; Trigolosova, I.V.; Misnikova, I.V.; Kovalyova, Y.A.; Tishenina, R.S.; Barsukov, I.A.; Vinogradova, A.V.; Wolffenbuttel, B.H. Prevalence of diabetes mellitus in patients with acromegaly. Endocr. Connect., 2014, 3(2), 93-98.
[http://dx.doi.org/10.1530/EC-14-0021] [PMID: 24692509]
[123]
Altinova, A.E.; Ozkan, C.; Akturk, M.; Gulbahar, O.; Yalcin, M.; Cakir, N.; Toruner, F.B. Vitamin D-binding protein and free vitamin D concentrations in acromegaly. Endocrine, 2016, 52(2), 374-379.
[http://dx.doi.org/10.1007/s12020-015-0789-1] [PMID: 26547217]
[124]
Brixen, K.; Nielsen, H.K.; Bouillon, R.; Flyvbjerg, A.; Mosekilde, L. Effects of short-term growth hormone treatment on PTH, calcitriol, thyroid hormones, insulin and glucagon. Acta Endocrinol. (Copenh.), 1992, 127(4), 331-336.
[http://dx.doi.org/10.1530/acta.0.1270331] [PMID: 1449044]
[125]
Kelly, B.N.; Haverstick, D.M.; Lee, J.K.; Thorner, M.O.; Vance, M.L.; Xin, W.; Bruns, D.E. Circulating microRNA as a biomarker of human growth hormone administration to patients. Drug Test. Anal., 2014, 6(3), 234-238.
[http://dx.doi.org/10.1002/dta.1469] [PMID: 23495241]
[126]
Wang, X. miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 2008, 14(6), 1012-1017.
[http://dx.doi.org/10.1261/rna.965408] [PMID: 18426918]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy