Generic placeholder image

Current Microwave Chemistry

Editor-in-Chief

ISSN (Print): 2213-3356
ISSN (Online): 2213-3364

Review Article

Microwave-accelerated Approaches to Diverse Xanthenes: A Review

Author(s): Jagmeet Singh, Ankit Lathwal, Shalini Agarwal and Mahendra Nath*

Volume 7, Issue 2, 2020

Page: [99 - 111] Pages: 13

DOI: 10.2174/2213335607999200417173336

Price: $65

Abstract

Microwave-accelerated methods have emerged as powerful tools in organic synthesis to enhance the reaction rates and provide products with high yields, improved selectivity, lower energy consumption, mild reaction conditions and negligible waste generation. Xanthenes are an important class of biologically important oxygen-containing heterocyclic molecules that possess a multitude of pharmaceutical properties. By considering the medicinal and material significance of these molecules, a large number of synthetic methodologies and catalytic systems have been reported for the synthesis of a wide range of xanthenes in the past. However, the focus of the present review is to summarize various microwave-assisted protocols for the synthesis of diversely substituted xanthene analogues.

Keywords: Dibenzo[a, j]xanthenes, 1, 8-dioxoxanthenes, microwave irradiation, synthesis, tetrahydrobenzo[a]xanthenes, xanthones.

Graphical Abstract

[1]
Dallinger, D.; Kappe, C.O. Microwave-assisted synthesis in water as solvent. Chem. Rev., 2007, 107(6), 2563-2591.
[http://dx.doi.org/10.1021/cr0509410] [PMID: 17451275]
[2]
Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
[3]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[4]
Roberts, B.A.; Strauss, C.R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res., 2005, 38(8), 653-661.
[http://dx.doi.org/10.1021/ar040278m] [PMID: 16104688]
[5]
Hoz A, de la; Prieto, M.P.; Rajzmann, M. Cozar, A.de; Diaz-Ortiz, A.; Moreno, A.; Cossio, F.P. Selectivity under microwave irradiation. Benzylation of 2-pyridone: an experimental and theoretical study. Tetrahedron, 2008, 64, 8169-8176.
[http://dx.doi.org/10.1016/j.tet.2008.06.052]
[6]
de la Hoz, A.; Díaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem. Soc. Rev., 2005, 34(2), 164-178.
[http://dx.doi.org/10.1039/B411438H] [PMID: 15672180]
[7]
Bougrin, K.; Loupy, A.; Soufiaoui, M. Microwave-assisted solvent-free heterocyclic synthesis. J. Photochem. Photobiol. Photochem. Rev., 2005, 6, 139-167.
[http://dx.doi.org/10.1016/j.jphotochemrev.2005.07.001]
[8]
Rodríguez, A.M.; Prieto, P.; de la Hoz, A.; Díaz-Ortiz, Á.; Martín, D.R.; García, J.I. Hoz, A.de la; Diaz-Ortiz, A.; Martin, D.R.; Garcia, J.I. Influence of polarity and activation energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen, 2015, 4(3), 308-317.
[http://dx.doi.org/10.1002/open.201402123] [PMID: 26246993]
[9]
Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave-assisted organic synthesis-a review. Tetrahedron, 2001, 57, 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[10]
Strauss, C.R.; Rooney, D.W. Accounting for clean, fast and high yielding reactions under microwave conditions. Green Chem., 2010, 12, 1340-1344.
[http://dx.doi.org/10.1039/c0gc00024h]
[11]
Polshettiwar, V.; Varma, R.S. Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem. Soc. Rev., 2008, 37(8), 1546-1557.
[http://dx.doi.org/10.1039/b716534j] [PMID: 18648680]
[12]
Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res., 2002, 35(9), 717-727.
[http://dx.doi.org/10.1021/ar010074v] [PMID: 12234201]
[13]
Ortiz, A.D.; Hoz, A.D.L.; Langa, F. Microwave irradiation in solvent-free conditions: an eco-friendly methodology to prepare indazoles, pyrazolopyridines and bipyrazoles by cycloaddition reactions. Green Chem., 2000, 2, 165-172.
[http://dx.doi.org/10.1039/b003752o]
[14]
Reddi Mohan Naidu, K.; Satheesh Krishna, B.; Anil Kumar, M.; Arulselvan, P.; Ibrahim Khalivulla, S.; Lasekan, O. Design, synthesis and antiviral potential of 14-aryl/heteroaryl-14H-dibenzo[a,j]xanthenes using an efficient polymer-supported catalyst. Molecules, 2012, 17(6), 7543-7555.
[http://dx.doi.org/10.3390/molecules17067543] [PMID: 22710828]
[15]
Wang, H.; Lu, L.; Zhu, S.; Li, Y.; Cai, W. The phototoxicity of xanthene derivatives against Escherichia coli, Staphylococcus aureus, and Saccharomyces cerevisiae. Curr. Microbiol., 2006, 52(1), 1-5.
[http://dx.doi.org/10.1007/s00284-005-0040-z] [PMID: 16392007]
[16]
Limsuwan, S.; Trip, E.N.; Kouwen, T.R.H.M.; Piersma, S.; Hiranrat, A.; Mahabusarakam, W.; Voravuthikunchai, S.P.; van Dijl, J.M.; Kayser, O. Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine, 2009, 16(6-7), 645-651.
[http://dx.doi.org/10.1016/j.phymed.2009.01.010] [PMID: 19303274]
[17]
Bhattacharya, A.K.; Rana, K.C.; Mujahid, M.; Sehar, I.; Saxena, A.K. Synthesis and in vitro study of 14-aryl-14H-dibenzo[a.j]xanthenes as cytotoxic agents. Bioorg. Med. Chem. Lett., 2009, 19(19), 5590-5593.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.033] [PMID: 19717302]
[18]
Mulakayala, N.; Murthy, P.V.N.S.; Rambabu, D.; Aeluri, M.; Adepu, R.; Krishna, G.R.; Reddy, C.M.; Prasad, K.R.S.; Chaitanya, M.; Kumar, C.S.; Rao, M.V.; Pal, M. Catalysis by molecular iodine: a rapid synthesis of 1,8-dioxo-octahydroxanthenes and their evaluation as potential anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(6), 2186-2191.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.126] [PMID: 22365759]
[19]
Hafez, H.N.; Hegab, M.I.; Ahmed-Farag, I.S.; el-Gazzar, A.B.A. A facile regioselective synthesis of novel spiro-thioxanthene and spiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2008, 18(16), 4538-4543.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.042] [PMID: 18667305]
[20]
Omolo, J.J.; Johnson, M.M.; van Vuuren, S.F.; de Koning, C.B. The synthesis of xanthones, xanthenediones, and spirobenzofurans: their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett., 2011, 21(23), 7085-7088.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.088] [PMID: 22014830]
[21]
Zelefack, F.; Guilet, D.; Fabre, N.; Bayet, C.; Chevalley, S.; Ngouela, S.; Lenta, B.N.; Valentin, A.; Tsamo, E.; Dijoux-Franca, M.G. Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea. J. Nat. Prod., 2009, 72(5), 954-957.
[http://dx.doi.org/10.1021/np8005953] [PMID: 19296616]
[22]
Iniyavan, P.; Sarveswari, S.; Vijayakumar, V. Synthesis and antioxidant studies of novel bi-, tri-, and tetrapodal 9-aryl-1,8-dioxo-octahydroxanthenes. Tetrahedron Lett., 2015, 56, 1401-1406.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.162]
[23]
Chibale, K.; Visser, M.; van Schalkwyk, D.; Smith, P.J.; Saravanamuthu, A.; Fairlamb, A.H. Exploring the potential of xanthene derivatives as trypanothionereductase inhibitors and chloroquine potentiating agents. Tetrahedron, 2003, 59, 2289-2296.
[http://dx.doi.org/10.1016/S0040-4020(03)00240-0]
[24]
Kumar, A.; Sharma, S.; Maurya, R.A.; Sarkar, J. Diversity oriented synthesis of benzoxanthene and benzochromene libraries via one-pot, three-component reactions and their anti-proliferative activity. J. Comb. Chem., 2010, 12(1), 20-24.
[http://dx.doi.org/10.1021/cc900143h] [PMID: 19954208]
[25]
Saint-Ruf, G. Huynh-Trong-Hieu; Poupelin, J.P. The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine. Naturwissenschaften, 1975, 62(12), 584-585.
[http://dx.doi.org/10.1007/BF01166986] [PMID: 1214868]
[26]
Ion, R.M. The photodynamic therapy of cancer-a photosensitization or a photocatalytic process. Prog. Catal., 1997, 2, 55-76.
[27]
Kaya, M.; Demir, E.; Bekci, H. Synthesis, characterization and antimicrobial activity of novel xanthene sulfonamide and carboxamide derivatives. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 885-893.
[http://dx.doi.org/10.3109/14756366.2012.692087] [PMID: 22803669]
[28]
Zhang, X.; Yang, L.; Wu, Y.; Du, J.; Mao, Y.; Wang, X.; Luan, S.; Lei, Y.; Li, X.; Sun, H.; You, Q. Microwave-assisted transition-metal-free intramolecular Ullmann-type O-arylation in water for the synthesis of xanthones and azaxanthones. Tetrahedron Lett., 2014, 55, 4883-4887.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.003]
[29]
Bhowmik, B.B.; Ganguly, P. Photophysics of xanthene dyes in surfactant solution. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 61(9), 1997-2003.
[http://dx.doi.org/10.1016/j.saa.2004.07.031] [PMID: 15911383]
[30]
Fleming, G.R.; Knight, A.W.E.; Morris, J.M.; Morrison, R.J.S.; Robinson, G.W. Picosecond fluorescence studies of xanthene dyes. J. Am. Chem. Soc., 1977, 99, 4306-4311.
[http://dx.doi.org/10.1021/ja00455a017]
[31]
Ellis, G.P. Chemistry of Heterocyclic Compounds, Chromenes, Chromanones and Chromones; John Wiley: New York, 1977.
[http://dx.doi.org/10.1002/9780470187012]
[32]
Callan, J.F.; De Silva, P.; Magri, D.C. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61, 8551-8588.
[http://dx.doi.org/10.1016/j.tet.2005.05.043]
[33]
Liu, J.; Diwu, Z.; Leung, W-Y. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators. Bioorg. Med. Chem. Lett., 2001, 11(22), 2903-2905.
[http://dx.doi.org/10.1016/S0960-894X(01)00595-9] [PMID: 11677123]
[34]
El-Brashy, A.M.; El-Sayed Metwally, M.; El-Sepai, F.A. Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes. Farmaco, 2004, 59(10), 809-817.
[http://dx.doi.org/10.1016/j.farmac.2004.07.001] [PMID: 15474058]
[35]
Ahmad, M.; King, T.A.; Ko, D.K.; Cha, B.H.; Lee, J. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D Appl. Phys., 2002, 35, 1473-1476.
[http://dx.doi.org/10.1088/0022-3727/35/13/303]
[36]
Klimtchuk, E.; Rodgers, M.A.J.; Neckem, D.C. Laser flash photolysis studies of novel xanthene dye derivatives. J. Phys. Chem., 1992, 96, 9817-9820.
[http://dx.doi.org/10.1021/j100203a044]
[37]
Knight, D.W.; Little, P.B. The first efficient method for the intramolecular trapping of benzynes by phenols: a new approach to xanthenes. J. Chem. Soc. Perkin Trans., 2001, 1, 1771-1777.
[http://dx.doi.org/10.1039/b103834f]
[38]
Jha, A.; Beal, J. Convenient synthesis of 12H-benzo[a]xanthenes from 2-tetralone. Tetrahedron Lett., 2004, 45, 8999-9001.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.046]
[39]
Casiraghi, G.; Casnati, G.; Cornia, M. Regiospecific reactions of phenol salts: reaction-pathways of alkylphenoxy-magnesiumhalides with triethylorthoformate. Tetrahedron Lett., 1973, 14, 679-682.
[http://dx.doi.org/10.1016/S0040-4039(00)72432-4]
[40]
Quintas, D.; Garcia, A.; Bomiuguez, D. Synthesis of spiro[pyrrolidine or piperidine-3,9′-xanthenes] by anionic cycloacylation of carbamates. Tetrahedron Lett., 2003, 44, 9291-9294.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.065]
[41]
Kuo, C-W.; Fang, J-M. Synthesis of xanthenes, indanes and tetrahydronaphthalenes via intramolecular phenyl-carbonyl coupling reactions. Synth. Commun., 2001, 31, 877-892.
[http://dx.doi.org/10.1081/SCC-100103323]
[42]
Sen, R.N.; Sarkar, N.N. The condensation of primary alcohols with resorcinol and other hydroxyl compounds. J. Am. Chem. Soc., 1925, 47, 1079-1091.
[http://dx.doi.org/10.1021/ja01681a023]
[43]
Fan, X.; Hu, X.; Zhang, X.; Wang, J. InCl3.4H2O-promoted green preparation of xanthenedione derivatives in ionic liquids. Can. J. Chem., 2005, 83, 16-20.
[http://dx.doi.org/10.1139/v04-155]
[44]
Song, G.; Wang, B.; Luo, H.; Yang, L. Fe3+-montmorillonite as a cost-effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catal. Commun., 2007, 8, 673-676.
[http://dx.doi.org/10.1016/j.catcom.2005.12.018]
[45]
Das, B.; Thirupathi, P.; Mahender, I.; Reddy, V.S.; Rao, Y.K. Amberlyst-15: an efficient reusable heterogeneous catalyst for the synthesis of 1,8-dioxooctahydroxanthenes and 1,8-dioxodecahydroacridines. J. Mol. Catal. Chem., 2006, 247, 233-239.
[http://dx.doi.org/10.1016/j.molcata.2005.11.048]
[46]
Karthikeyan, G.; Pandurangan, A. Heteropolyacid (H3PW12O40) supported MCM-41: An efficient solid acid catalyst for the green synthesis of xanthenedione derivatives. J. Mol. Catal. Chem., 2009, 311, 36-45.
[http://dx.doi.org/10.1016/j.molcata.2009.06.020]
[47]
Kantevari, S.; Bantu, R.; Nagarapu, L. TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxooctahydroxanthene derivatives. ARKIVOC, 2006, 16, 136-148.
[48]
Das, B.; Thirupathi, P.; Reddy, K.R.; Ravikanth, B.; Nagarapu, L. An efficient synthesis of 1,8-dioxooctahydroxanthenes using heterogeneous catalysts. Catal. Commun., 2007, 8, 535-538.
[http://dx.doi.org/10.1016/j.catcom.2006.02.023]
[49]
Zhang, Z-H.; Liu, Y-H. Antimony trichloride/SiO2 promoted synthesis of 9-aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catal. Commun., 2008, 9, 1715-1719.
[http://dx.doi.org/10.1016/j.catcom.2008.01.031]
[50]
Ilangovan, A.; Muralidharan, S.; Sakthivel, P.; Malayappasamy, S.; Karuppusamy, S.; Kaushik, M.P. Simple and cost effective acid catalysts for efficient synthesis of 9-aryl-1,8-dioxooctahydroxanthene. Tetrahedron Lett., 2013, 54, 491-494.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.058]
[51]
Bigdeli, M.A.; Heravi, M.M.; Mahdavinia, G.H. Wet cyanuric chloride catalyzed simple and efficient synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes. Catal. Commun., 2007, 8, 1595-1598.
[http://dx.doi.org/10.1016/j.catcom.2007.01.007]
[52]
Bigdeli, M.A.; Heravi, M.M.; Mahdavinia, G.H. Silica supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14H dibenzo[a,j]xanthenes. J. Mol. Catal. Chem., 2007, 275, 25-29.
[http://dx.doi.org/10.1016/j.molcata.2007.05.007]
[53]
Das, B.; Ravikanth, B.; Ramu, R.; Laxminarayana, K.; Rao, B.J.V. Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14-H-dibenzo[a,j]xanthenes. J. Mol. Catal. Chem., 2006, 255, 74-77.
[http://dx.doi.org/10.1016/j.molcata.2006.04.007]
[54]
Shakibaei, G.I.; Mirzaei, P.; Bazgir, A. Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j]xanthene and 1,8-dioxooctahydroxanthene derivatives under solvent-free conditions. Appl. Catal. A Gen., 2007, 325, 188-192.
[http://dx.doi.org/10.1016/j.apcata.2007.03.008]
[55]
Tabatabaeian, K.; Khorshidi, A.; Mamaghani, M.; Dadashi, A. Facile and efficient method for the synthesis of 14-substituted-14-h-dibenzo[a,j]xanthenes catalyzed by ruthenium chloride hydrate as a homogeneous catalyst. Synth. Commun., 2011, 4, 1427-1434.
[http://dx.doi.org/10.1080/00397911.2010.486507]
[56]
Su, W.; Yang, D.; Jin, C.; Zhang, B. Yb(OTf)3 catalyzed condensation reaction of β-naphthol and aldehyde in ionic liquids: a green synthesis of aryl-14H-dibenzo[a,j]xanthenes. Tetrahedron Lett., 2008, 49, 3391-3394.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.124]
[57]
Dabiri, M.; Baghbanzadeh, M.; Nikcheh, M.S.; Arzroomchilar, E. Eco-friendly and efficient one-pot synthesis of alkyl- or aryl-14H-dibenzo[a,j]xanthenes in water. Bioorg. Med. Chem. Lett., 2008, 18(1), 436-438.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.008] [PMID: 18055199]
[58]
Seyyedhamzeh, M.; Mirzaei, P.; Bazgir, A. Solvent-free synthesis of aryl-14H-dibenzo[a,j]xanthenes and 1,8-dioxooctahydroxanthenes using silica sulfuric acid as catalyst. Dyes Pigm., 2008, 76, 836-839.
[http://dx.doi.org/10.1016/j.dyepig.2007.02.001]
[59]
Nandi, G.C.; Samai, S.; Kumar, R.; Singh, M.S. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition. Tetrahedron, 2009, 65, 7129-7134.
[http://dx.doi.org/10.1016/j.tet.2009.06.024]
[60]
Shinde, P.V.; Kategaonkar, A.H.; Shingate, B.B.; Shingare, M.S. Surfactant catalyzed convenient and greener synthesis of tetrahydrobenzo[a]xanthene-11-ones at ambient temperature. Beilstein J. Org. Chem., 2011, 7, 53-58.
[http://dx.doi.org/10.3762/bjoc.7.9] [PMID: 21286395]
[61]
Wang, R-Z.; Zhang, L-F.; Cui, Z-S. Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydro-benzo[a]xanthen-11-one derivatives via multicomponent reaction. Synth. Commun., 2009, 39, 2101-2107.
[http://dx.doi.org/10.1080/00397910802638511]
[62]
Khurana, J.M.; Magoo, D. PTSA-catalyzed one-pot synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in ionic liquid and neat conditions. Tetrahedron Lett., 2009, 50, 4777-4780.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.029]
[63]
Li, J.; Lu, L.; Su, W. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett., 2010, 51, 2434-2437.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.149]
[64]
Zhang, Z.H.; Wang, H.J.; Ren, X.Q.; Zhang, Y.Y. A facile and efficient method for synthesis of xanthone derivatives catalyzed by HBF4/SiO2 under solvent-free conditions. Monatsh. Chem., 2009, 140, 1481-1483.
[http://dx.doi.org/10.1007/s00706-009-0204-9]
[65]
Silva, A.M.S.; Pinto, D.C.G.A.; Tavares, H.R.; Cavaleiro, J.A.S.; Jimeno, M.L.; Elguero, J. Novel (E)‐ and (Z)‐2‐Styrylchromones from (E, E)‐2′‐hydroxycinnamylidene-acetophenones-xanthones from daylight photooxidative cyclization of (E)‐2‐styrylchromones. Eur. J. Org. Chem., 1998, 2031-2038.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199809)1998:9<2031:AID-EJOC2031>3.0.CO;2-#]
[66]
Wang, P.; Rao, H.; Hua, R.; Li, C-J. Rhodium-catalyzed xanthone formation from 2-aryloxybenzaldehydes via cross-dehydrogenative coupling (CDC). Org. Lett., 2012, 14(3), 902-905.
[http://dx.doi.org/10.1021/ol203381q] [PMID: 22272652]
[67]
Barbero, N.; SanMartin, R.; Dominguez, E. An efficient copper-catalytic system for performing intramolecular O-arylation reactions in aqueous media. New synthesis of xanthones. Green Chem., 2009, 11, 830-836.
[http://dx.doi.org/10.1039/b900931k]
[68]
Zhao, J.; Larock, R.C. One-pot synthesis of xanthones and thioxanthones by the tandem coupling-cyclization of arynes and salicylates. Org. Lett., 2005, 7(19), 4273-4275.
[http://dx.doi.org/10.1021/ol0517731] [PMID: 16146405]
[69]
Ashry, E.S.H.E.; Awad, L.F.; Ibrahim, E.S.I.; Bdeewy, O.K. Microwave irradiation for accerating the synthesis of acridine and xanthene derivatives from dimedone. ARKIVOC, 2006, 2, 178-186.
[70]
Kumar, D. Suresh; Sandhu, J.S. Aldonitrones as aldehyde equivalents: An efficient, green, and novel protocol for the synthesis of 1,8-dioxo-octahydroxanthenes. Synth. Commun., 2013, 43, 2739-2747.
[http://dx.doi.org/10.1080/00397911.2012.736584]
[71]
Kar, P.; Samantaray, S.; Mishra, B.G. Catalytic application of chromia-pillared montmorillonite towards environmentally benign synthesis of octahydroxanthenes. React. Kinet. Mech. Catal., 2013, 108, 241-251.
[http://dx.doi.org/10.1007/s11144-012-0499-0]
[72]
Dadhania, A.N.; Patel, V.K.; Raval, D.K. Ionic liquid promoted facile and green synthesis of 1,8-dioxo-octahydroxanthene derivatives under microwave irradiation. J. Saudi Chem. Soc., 2017, 21, S163-S169.
[http://dx.doi.org/10.1016/j.jscs.2013.12.003]
[73]
Shitre, P.V.; Harale, R.R.; Sathe, B.R.; Shingare, M.S. Microwave assisted synthetic approach for 1,8-dioxo-octahydroxanthene derivatives under solvent free conditions. Chem. Biol. Interact., 2016, 6, 137-142.
[74]
Kusumpally, U.; Varala, R.; Kamatala, C.R.; Abbagoni, S. Rate accelerations with zeolite Y in the synthesis of octahydroxanthenes and benzoxanthenes and their simple bio assay data. Chem. Data Collect., 2019, 20, 100201-100209.
[http://dx.doi.org/10.1016/j.cdc.2019.100201]
[75]
Moosavi-Zare, A.R.; Rezaei, M.; Merajoddin, M.; Hamidian, H.; Zare, A.; Kazem-Rostami, M. Efficient synthesis of 9-aryl-1,8-dioxo-octahydroxanthenes using melamine trisulfonic acid under thermal, microwave and ultrasound conditions. Sci. Iran., 2014, 21, 2049-2058.
[76]
Rajitha, B.; Kumar, B.S.; Reddy, Y.T.; Reddy, P.N.; Sreenivasulu, N. Sulfamic acid: a novel and efficient catalyst for the synthesis of aryl-14H-dibenzoo[a.j]xanthenes under conventional heating and microwave irradiation. Tetrahedron Lett., 2005, 46, 8691-8693.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.057]
[77]
Bhattacharya, A.K.; Rana, K.C. Microwave-assisted synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes catalysed by methanesulfonic acid under solvent-free conditions. Mendeleev Commun., 2007, 17, 247-248.
[http://dx.doi.org/10.1016/j.mencom.2007.06.023]
[78]
Ding, F-Q.; An, L-T.; Zou, J-P. Iodine catalyzed microwave-assisted synthesis of 14-aryl(alkyl)-14H-dibenzo[a,j]xanthenes. Chin. J. Chem., 2007, 25, 645-648.
[http://dx.doi.org/10.1002/cjoc.200790120]
[79]
Nagarapu, L.; Kantevari, S.; Mahankhali, V.C.; Apuri, S. Potassium dodecatungstocobaltate trihydrate (K5CoW12O40.3H2O): A mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a.j]xanthenes under conventional heating and microwave irradiation. Catal. Commun., 2007, 8, 1173-1177.
[http://dx.doi.org/10.1016/j.catcom.2006.11.003]
[80]
Shaterian, H.R.; Doostmohammadi, R.; Ghashang, M. Sodium hydrogen sulfate as effective and reusable heterogeneous catalyst for the one-pot preparation of 14H-[(Un)substituted phenyl]-dibenzo[a,j]xanthene Leuco-dye derivatives. Chin. J. Chem., 2008, 26, 338-342.
[http://dx.doi.org/10.1002/cjoc.200890065]
[81]
Prasad, D.; Preetam, A.; Nath, M. Microwave-assisted green synthesis of dibenzo[a,j]xanthenes using p-dodecylbenzenesulfonic acid as an efficient Bronsted acid catalyst under solvent-free conditions. C. R. Chim., 2012, 15, 675-678.
[http://dx.doi.org/10.1016/j.crci.2012.05.018]
[82]
Bamoniri, A.; Mirjalili, B.B.F.; Nazemian, S. Microwave-assisted solvent-free synthesis of 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes and tetrahydrobenzo[a]xanthen-11-ones catalyzed by nano silica phosphoric acid. Curr. Chem. Lett., 2013, 2, 27-34.
[http://dx.doi.org/10.5267/j.ccl.2012.12.002]
[83]
Mirhadi, E.; Ramajani, A.; Rouhani, M.; Joo, S.W. Perlite-SO3H nanoparticles: a novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes under microwave conditions. Chemija, 2013, 24, 320-324.
[84]
Kshatriya, R.B.; Salunke, S.T. Synthesis of xanthene using chloro sulphonic acid as an efficient catalyst. Pharma Chem., 2014, 6, 212-216.
[85]
Kundu, K.; Nayak, S.K. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes. J. Serb. Chem. Soc., 2014, 79, 1051-1058.
[http://dx.doi.org/10.2298/JSC130805021K]
[86]
Shomali, A.; Valizadeh, H.; Banan, A.; Rezaei, R.M. Efficient synthesis of xanthene derivatives using carboxyl functionalized graphene quantum dots as an acidic nano-catalyst under microwave irradiation. RSC Advances, 2015, 5, 88202-88208.
[http://dx.doi.org/10.1039/C5RA19645K]
[87]
Moghanlo, S.P.; Valizadeh, H. Microwave-assisted preparation of graphene quantum dots immobilized nanosilica as an efficient heterogeneous nanocatalyst for the synthesis of xanthenes. Org. Commun, 2019, 12, 1-12.
[http://dx.doi.org/10.25135/acg.oc.53.18.11.1051]
[88]
Kumar, A.; Rout, L.; Achary, L.S.K.; Dhaka, R.S.; Dash, P. Greener route for synthesis of aryl and alkyl-14H-dibenzo[a,j] xanthenes using graphene oxide copper ferrite nanocomposite as a recyclable heterogeneous catalyst. Sci. Rep., 2017, 7, 42975.
[http://dx.doi.org/10.1038/srep42975] [PMID: 28233832]
[89]
Pagadala, R.; Kusampally, U. BTADCI promoted one-pot synthesis of 14-aryl-14H-dibenzo[a,j] xanthenes. J. Heterocycl. Chem., 2018, 56, 710-713.
[http://dx.doi.org/10.1002/jhet.3162]
[90]
Kusampally, U.; Soma, R.; Kamatla, C.R. Thiamine hydrochloride as efficient catalyst for one-pot synthesis of 14-aryl -14H dibenzo[a,j]xanthenes under greenery conditions. Rasayan J. Chem., 2019, 12, 152-156.
[http://dx.doi.org/10.31788/RJC.2019.1215043]
[91]
Kundu, D.; Majee, A.; Hajra, A. Task-specific ionic liquid catalyzed efficient microwave-assisted synthesis of 12-alkyl or aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones under solvent-free conditions. Green Chem. Lett. Rev., 2011, 4, 205-209.
[http://dx.doi.org/10.1080/17518253.2010.544260]
[92]
Mohammed, N.N.G.; Pandharpatte, M.S. Microwave promoted perchloric acid catalyzed one-pot synthesis of xanthenes derivatives under solvent-free conditions. Der Pharma Chem., 2011, 3, 322-326.
[93]
Sun, X.J.; Zhou, J.F.; Zhao, P.S. Molecular iodine-catalyzed one-pot synthesis of tetrahydrobenzo[a]xanthen-11-one and diazobenzo[a]anthracene-9,11-dione derivatives under microwave irradiation. J. Heterocycl. Chem., 2011, 48, 1347-1350.
[http://dx.doi.org/10.1002/jhet.742]
[94]
Khurana, J.M.; Lumb, A.; Pandey, A.; Magoo, D. Green approaches for the synthesis of 12-aryl-8,9,10,12- tetrahydrobenzo[a]xanthen-11-ones in aqeous media and under microwave irradiation in solventless conditions. Synth. Commun., 2012, 42, 1796-1803.
[http://dx.doi.org/10.1080/00397911.2010.544832]
[95]
Sundar, C.S.; Rao, K.U.M.; Reddy, N.B.; Reddy, M.V.N.; Prasad, S.S.; Reddy, C.S. Ytterbium perfluorooctanoate [Yb(PFO)3]: A novel and efficient catalyst for the synthesis of tetrahydrobenzo[a]xanthen-11-ones under microwave irradiation. Catal. Sci. Technol., 2012, 2, 1382-1385.
[http://dx.doi.org/10.1039/c2cy20041d]
[96]
Iniyavan, P.; Sarveswari, S.; Vijayakumar, V. Microwave-assisted clean synthesis of xanthenes and chromenes in [bmim][PF6] and their antioxidant studies. Res. Chem. Intermed., 2015, 41, 7413-7426.
[http://dx.doi.org/10.1007/s11164-014-1821-4]
[97]
Rao, M.S.; Chhikara, B.S.; Tiwari, R.; Shirazi, A.N.; Parang, K.; Kumar, A. Microwave-assisted an scandium triflate catalyzed synthesis of tetrahydrobenzo[a]xanthen-11-ones. Monatsh. Chem., 2012, 143, 263-268.
[http://dx.doi.org/10.1007/s00706-011-0577-4]
[98]
Preetam, A.; Prasad, D.; Sharma, J.K.; Nath, M. Facile one-pot synthesis of oxoxanthene under microwave irradiation. Curr. Microw. Chem., 2015, 2, 15-23.
[http://dx.doi.org/10.2174/221333560201150212102647]
[99]
Xie, F.; Chen, H.; Hu, Y. Efficient construction of a 3C-xanthonelinked 3C-chromone scaffold by novel double Michael additions and cyclizations. Org. Lett., 2010, 12(13), 3086-3089.
[http://dx.doi.org/10.1021/ol101100d] [PMID: 20533853]
[100]
Gong, J.; Xie, F.; Chen, H.; Hu, Y. An efficient approach to functionalized benzo[a]xanthones through reactions of 2-methyl-3-(1-alkynyl)chromones with electron-deficient chromone-fused dienes. Org. Lett., 2010, 12(17), 3848-3851.
[http://dx.doi.org/10.1021/ol101496w] [PMID: 20704333]
[101]
Liu, Y.; Huang, L.; Xie, F.; Hu, Y. Base-promoted one-pot tandem reaction of 3-(1-alkynyl)chromones under microwave irradiation to functionalized amino-substituted xanthones. J. Org. Chem., 2010, 75(18), 6304-6307.
[http://dx.doi.org/10.1021/jo1013614] [PMID: 20738144]
[102]
Xiong, Z.; Zhang, X.; Li, Y.; Peng, X.; Fu, J.; Guo, J.; Xie, F.; Jiang, C.; Lin, B.; Liu, Y.; Cheng, M. Syntheses of 12H-benzo[a]xanthen-12-ones and benzo[a]acridin-12(7H)-ones through Au(i)-catalyzed Michael addition/6-endo-trig cyclization/aromatization cascade annulation. Org. Biomol. Chem., 2018, 16(40), 7361-7374.
[http://dx.doi.org/10.1039/C8OB01684D] [PMID: 30124720]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy