Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Comprehensive Analysis of Features and Annotations of Pathway Databases

Author(s): Ali Ghulam, Xiujuan Lei*, Min Guo and Chen Bian

Volume 15, Issue 8, 2020

Page: [803 - 820] Pages: 18

DOI: 10.2174/1574893615999200413123352

Price: $65

Abstract

This study focused on describing the necessary information related to pathway mechanisms, characteristics, and databases feature annotations. Various difficulties related to data storage and retrieval in biological pathway databases are discussed. These focus on different techniques for retrieving annotations, features, and methods of digital pathway databases for biological pathway analysis. Furthermore, many pathway databases annotations, features, and search databases were also examined (which are reasonable for the integration into microarray examination). The investigation was performed on the databases, which contain human pathways to understand the hidden components of cells applied in this process. Three different domain-specific pathways were selected for this study and the information of pathway databases was extracted from the existing literature. The research compared different pathways and performed molecular level relations. Moreover, the associations between pathway networks were also evaluated. The study involved datasets for gene pathway matrices and pathway scoring techniques. Additionally, different pathways techniques, such as metabolomics and biochemical pathways, translation, control, and signaling pathways and signal transduction, were also considered. We also analyzed the list of gene sets and constructed a gene pathway network. This article will serve as a useful manual for storing a repository of specific biological data and disease pathways.

Keywords: Biological pathways, pathway databases, database features, pathway database annotations, metabolomics, gene.

Graphical Abstract

[1]
Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T. Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 2018; 7(1): 501.
[2]
Krishnamurthy L, Nadeau J, Ozsoyoglu G, et al. Pathways database system: an integrated system for biological pathways. Bioinformatics 2003; 19(8): 930-7.
[http://dx.doi.org/10.1093/bioinformatics/btg113] [PMID: 12761054]
[3]
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[4]
Cavalieri D, Castagnini C, Toti S, et al. Eugene Analyzer a tool for integrating gene expression data with pathway databases. Bioinformatics 2007; 23(19): 2631-2.
[http://dx.doi.org/10.1093/bioinformatics/btm333] [PMID: 17599938]
[5]
Liberzon A, Thorvaldsdóttir BC, Ghandi MH, Mesirov J, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst 2015; 1(6): 417-25.
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[6]
Glaab E, Baudot A, Krasnogor N, Valencia A. Extending pathways and processes using molecular interaction networks to analyse cancer genome data. BMC Bioinformatics 2010; 11(1): 597.
[http://dx.doi.org/10.1186/1471-2105-11-597] [PMID: 21144022]
[7]
Babbi G, Martelli PL, Casadio R. PhenPath: a tool for characterizing biological functions underlying different phenotypes. BMC Genomics 2019; 20(Suppl. 8): 548.
[http://dx.doi.org/10.1186/s12864-019-5868-x] [PMID: 31307376]
[8]
Brodie A, Tovia-Brodie O, Ofran Y. Large scale analysis of phenotype-pathway relationships based on GWAS results. PLoS One 2014; 9(7)e100887
[9]
Komai T. Semi-Allelic Genes. Am Nat 1950; 84(818): 381-92.
[http://dx.doi.org/10.1086/281636]
[10]
Karp PD, Paley SM. Representations of metabolic knowledge: pathways. Proc Int Conf Intell Syst Mol Biol 1994; 2: 203-11.
[PMID: 7584392]
[11]
Kanehisa M. A database for post-genome analysis. Trends Genet 1997; 13(9): 375-6.
[http://dx.doi.org/10.1016/S0168-9525(97)01223-7] [PMID: 9287494]
[12]
Gatza ML, Lucas JE, Barry WT, et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA 2010; 107(15): 6994-9.
[http://dx.doi.org/10.1073/pnas.0912708107] [PMID: 20335537]
[13]
Karp PD, Paley S, Romero P. The pathway tools software. Bioinformatics 2002; 18(1): 225-32.
[14]
Targonski CA, Shearer CA, Shealy BT, Smith MC, Feltus FA. Uncovering biomarker genes with enriched classification potential from Hallmark gene sets. Sci Rep 2019; 9(1): 9747.
[http://dx.doi.org/10.1038/s41598-019-46059-1] [PMID: 31278367]
[15]
Goto S, Okuno Y, Hattori M, Nishioka T, Kanehisa M. LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res 2002; 30(1): 402-4.
[http://dx.doi.org/10.1093/nar/30.1.402] [PMID: 11752349]
[16]
Lee E, Chuang HY, Kim JW, Ideker T, Lee D. Inferring pathway activity toward precise disease classification. PLOS Comput Biol 2008; 4(11)e1000217
[http://dx.doi.org/10.1371/journal.pcbi.1000217] [PMID: 18989396]
[17]
Domingo-Fernández D, Mubeen S, Marín-Llaó J, Hoyt CT, Hofmann-Apitius M. PathMe: merging and exploring mechanistic pathway knowledge. BMC Bioinformatics 2019; 20(1): 243.
[http://dx.doi.org/10.1186/s12859-019-2863-9] [PMID: 31092193]
[18]
Michael PC. Pathway information for systems biology. Febs Lett 2005; 579(8): 1815-20.
[19]
Carter H, Hofree M, Ideker T. Genotype to phenotype via network analysis. Curr Opin Genet Dev 2013; 23(6): 611-21.
[http://dx.doi.org/10.1016/j.gde.2013.10.003] [PMID: 24238873]
[20]
Robert LY, Settleman J. Recent advances in pathway-targeted cancer drug therapies emerging from cancer genome analysis. Curr Opin Genet Dev 2012; 22(1): 45-9.
[21]
Henderson-Maclennan Nicole K, et al. Pathway analysis software: annotation errors and solutions. Mol Genet Metab 2010; 2(3): 135-40.
[22]
Croft D, Mundo AF, Haw R, et al. The Reactome pathway knowledgebase. Nucleic Acids Res 2014; 42(Database issue): D472-7.
[http://dx.doi.org/10.1093/nar/gkt1102] [PMID: 24243840]
[23]
Kim JH. Network biology, sequence, pathway and ontology informatics. Genome Data Analysis 2019; 2019: 175-87.
[24]
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44: 457-62.
[25]
Nishimura D. BioCarta. Biotech Softw Internet Rep 2001; 2(3): 117-20.
[http://dx.doi.org/10.1089/152791601750294344]
[26]
Kamburov A, Wierling C, Lehrach H, Herwig R. “ConsensusPathDB--a database for integrating human functional interaction networks.” Nucleic Acids Research 37. Database (Oxford) 2009; 2009: D623-8.
[27]
Yamamoto S, Sakai N, Nakamura H, Fukagawa H, Fukuda K, Takagi T. INOH: ontology-based highly structured database of signal transduction pathways. Database (Oxford) 2011; 2011: bar52-2.
[http://dx.doi.org/10.1093/database/bar052] [PMID: 22120663]
[28]
Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim DH. IPAVS: Integrated Pathway Resources, Analysis and Visualization System. Nucleic Acids Res 2012; 40(Database issue): D803-8.
[http://dx.doi.org/10.1093/nar/gkr1208] [PMID: 22140115]
[29]
Belinky F, Nativ N, Stelzer G, et al. PathCards: multi-source consolidation of human biological pathways. Database (Oxford) 2015; 2015: bav006-6.
[http://dx.doi.org/10.1093/database/bav006] [PMID: 25725062]
[30]
Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res 2017; 45(D1): D419-26.
[http://dx.doi.org/10.1093/nar/gkw1082] [PMID: 27899558]
[31]
Ethan GC, Gross BE, Demir E, et al. Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 2011; 39(Database issue): 685-90.
[32]
Croft D, Jupe S, Mattews L, et al. The Reactome pathway knowledgebase. Nucleic Acids Res 2014; 42(Database issue): 472-7.
[33]
Kelder T, van Iersel MP, Hanspers K, et al. WikiPathways: building research communities on biological pathways. Nucleic Acids Res 2012; 40(Database issue): D1301-7.
[http://dx.doi.org/10.1093/nar/gkr1074] [PMID: 22096230]
[34]
Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 2012; 92(4): 414-7.
[http://dx.doi.org/10.1038/clpt.2012.96] [PMID: 22992668]
[35]
Ma H, Sorokin A, Mazein A, et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 2007; 3: 135-5.
[http://dx.doi.org/10.1038/msb4100177] [PMID: 17882155]
[36]
Caspi R, Foerster H, Fulcher CA, et al. The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2008; 36(Database issue): D623-31.
[PMID: 17965431]
[37]
Frolkis A, Knox C, Lim E, et al. SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res 2010; 38(Database issue): D480-7.
[http://dx.doi.org/10.1093/nar/gkp1002] [PMID: 19948758]
[38]
Kandasamy K, Mohan SS, Raju R, et al. NetPath: a public resource of curated signal transduction pathways. Genome Biol 2010.
[39]
Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol 2009; 563: 123-40.
[http://dx.doi.org/10.1007/978-1-60761-175-2_7] [PMID: 19597783]
[40]
Perfetto L, Briganti L, Calderone A, et al. SIGNOR: a database of causal relationships between biological entities. Nucleic Acids Res 2015.
[PMID: 26467481]
[41]
Simo EM, Sinigaglia M, Bugs CA, et al. Induced genome maintenance pathways in pre-cancer tissues describe an anti-cancer barrier in tumor development. Mol Biosyst 2012; 8(11): 3003.
[42]
Cheifet B. Where is genomics going next? Genome Biol 2019; 20(1): 17.
[http://dx.doi.org/10.1186/s13059-019-1626-2] [PMID: 30670080]
[43]
Gough NR. Science’s Signal Transduction Knowledge Environment. Annals of the New York Academy of Sciences 2002; 971(1): 585-7.
[44]
BioCarta BioCarta Pathways: interactive graphic models of molecular and cellular pathways 2009.http://www.biocarta.com/genes/index.asp
[45]
Fabregat A, Sidiropoulos K, Garapati P, et al. The Reactome pathway knowledgebase. Nucleic Acids Res 2016; 44(D1): D481-7.
[http://dx.doi.org/10.1093/nar/gkv1351] [PMID: 26656494]
[46]
Kemper B, Matsuzaki T, Matsuoka Y, et al. PathText: a text mining integrator for biological pathway visualizations. Bioinformatics 2010; 26(12): i374-81.
[http://dx.doi.org/10.1093/bioinformatics/btq221] [PMID: 20529930]
[47]
Ravikumar KE, Wagholikar KB, Liu H. Challenges in adapting text mining for full-text article to assist pathway curationACMBCB2014 - Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics. 551-8.
[http://dx.doi.org/10.1145/2649387.2649444]
[48]
Huang CC, Lu Z. Community challenges in biomedical text mining over 10 years: success, failure and the future. Brief Bioinform 2016; 17(1): 132-44.
[http://dx.doi.org/10.1093/bib/bbv024] [PMID: 25935162]
[49]
Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res 2016; 44(D1): D336-42.
[http://dx.doi.org/10.1093/nar/gkv1194] [PMID: 26578592]
[50]
Rodchenkov I, Babur O, Luna A, et al. Pathway Commons 2019 Update: integration, analysis and exploration of pathway data. Nucleic Acids Res 2020; 48(D1): D489-97.
[PMID: 31647099]
[51]
Barel Gal. Network and Pathway Analysis of Toxicogenomics Data. Front Genet 2018.
[52]
Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics 2007; 23(23): 3251-3.
[http://dx.doi.org/10.1093/bioinformatics/btm369] [PMID: 17644558]
[53]
Schaefer CF, Anthony K, Krupa S, et al. PID: the pathway interaction databaseNucleic Acids Res 2009.37(Database): 674-9.
[54]
Sreenivasaiah PK, Rani S, Cayetano J, Arul N, Kim DH. IPAVS: Integrated Pathway Resources, Analysis and Visualization System. Nucleic Acids Res 2011; 40(D.1)D803-8.
[PMID: 22140115]
[55]
Kutmon M, Riutta A, Nunes N, et al. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res 2016; 44(D1): D488-94.
[http://dx.doi.org/10.1093/nar/gkv1024] [PMID: 26481357]
[56]
Del-Toro N, Duesbury M, Koch M, Perfetto L, Shrivastava A, Ochoa D, et al. Capturing variation impact on molecular interactions in the IMEx Consortium mutations data set. Nat Commun 2019; 10(1): 1-14.
[http://dx.doi.org/10.1038/s41467-018-07709-6] [PMID: 30602773]
[57]
Vastrik I, D’Eustachio P, Schmidt E, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol 2007; 8(3): R39.
[http://dx.doi.org/10.1186/gb-2007-8-3-r39] [PMID: 17367534]
[58]
Krupa S, Anthony K, Buchoff JR, Day M. Abstract LB-130: The NCI-Nature Pathway Interaction Database: A cell signaling resource. Cancer Res 2007; 70(8)(Suppl.).
[59]
Thomas PD, Kejariwal A, Campbell MJ, et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 2003; 31(1): 334-41.
[http://dx.doi.org/10.1093/nar/gkg115] [PMID: 12520017]
[60]
Wajant H. Fas signaling pathwaySci STKE 2007.http://stke.sciencemag.org/cgi/cm/stkecm;CMP_7966
[61]
Chowdhury S, Sarkar RR. Comparison of human cell signaling pathway databases--evolution, drawbacks and challenges. Database (Oxford) 2015.
[62]
Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010; 38(Database issue): D355-60.
[http://dx.doi.org/10.1093/nar/gkp896] [PMID: 19880382]
[63]
Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545-50.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[64]
Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting genome data at the network level with ConsensusPathDB. Nat Protoc 2016; 11(10): 1889-907.
[http://dx.doi.org/10.1038/nprot.2016.117] [PMID: 27606777]
[65]
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 2015; 43(Database issue): D512-20.
[http://dx.doi.org/10.1093/nar/gku1267] [PMID: 25514926]
[66]
Licata L, Lo Surdo P, Iannuccelli M, et al. SIGNOR 2.0, the Signaling network open resource 2.0: 2019 update. Nucleic Acids Res 2020; 48(D1): D504-10.
[PMID: 31665520]
[67]
Paz A, Brownstein Z, Ber Y, et al. SPIKE: a database of highly curated human signaling pathways. Nucleic Acids Res 2011; 39(Database issue)(Suppl. 1): D793-9.
[http://dx.doi.org/10.1093/nar/gkq1167] [PMID: 21097778]
[68]
Kutmon M, van Iersel MP, Bohler A, et al. PathVisio 3: an extendable pathway analysis toolbox. PLOS Comput Biol 2015; 11(2)e1004085
[http://dx.doi.org/10.1371/journal.pcbi.1004085] [PMID: 25706687]
[69]
Funahashi A, Matsuoka Y, Jouraku A, et al. CellDesigner 3.5: A versatile modeling tool for biochemical networks. Proceedings of the IEEE 96. 1254-65.
[http://dx.doi.org/10.1109/JPROC.2008.925458]
[70]
Slenter DN, Kutmon M, Hanspers K, et al. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 2018; 46(D1): D661-7.
[http://dx.doi.org/10.1093/nar/gkx1064] [PMID: 29136241]
[71]
Bahceci I, Dogrusoz U, La KC, Babur Ö, Gao J, Schultz N. PathwayMapper: a collaborative visual web editor for cancer pathways and genomic data. Bioinformatics 2017; 33(14): 2238-40.
[http://dx.doi.org/10.1093/bioinformatics/btx149] [PMID: 28334343]
[72]
Kelder T, Pico AR, Hanspers K, van Iersel MP, Evelo C, Conklin BR. Mining biological pathways using WikiPathways web services. PLoS One 2009; 4(7)e6447
[http://dx.doi.org/10.1371/journal.pone.0006447] [PMID: 19649250]
[73]
PathCards Pathway unification database, Weizmann Institute of Science, Rehovot, Israel 2019.http://pathcards.genecards.org/
[74]
FAIRsharingorg IPAVS; Integrated Pathway Analysis and Visualization System 2019.
[75]
Luna A, Babur Ö, Aksoy BA, Demir E, Sander C. PaxtoolsR: pathway analysis in R using Pathway Commons. Bioinformatics 2016; 32(8): 1262-4.
[http://dx.doi.org/10.1093/bioinformatics/btv733] [PMID: 26685306]
[76]
Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4(1): 44-57.
[http://dx.doi.org/10.1038/nprot.2008.211] [PMID: 19131956]
[77]
Mi H, Huang X, Muruganujan A, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 2017; 45(D1): D183-9.
[http://dx.doi.org/10.1093/nar/gkw1138] [PMID: 27899595]
[78]
Atanas K, Christoph W, Hans L, Ralf H. Consensuspathdb—a database for integrating human functional interaction networks.Nucleic Acids Res 2009; 37(suppl_1): D623-D628..
[79]
Reimand J. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, Cytoscape and Enrichment Map. Nat Protoc 2019; 14(2): 482-517.
[80]
Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT. Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 2008; 7(10): 2048-60.
[http://dx.doi.org/10.1074/mcp.M700550-MCP200] [PMID: 18487680]
[81]
Rahmati S, Abovsky M, Pastrello C, et al. pathDIP 4: an extended pathway annotations and enrichment analysis resource for human, model organisms and domesticated species. Nucleic Acids Res 2020; 48(D1): D479-88.
[PMID: 31733064]
[82]
Gray KA, Yates B, Seal LR, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 2015; 43(D1): D1079-85.
[83]
Maglott D, Ostell J, Pruitt KD, Tatusova T. Entrez gene: Gene-centered information at NCBI. Nucleic Acids Res 2004; 33(Database issue): D54-8.
[84]
UniProt: a hub for protein information. Nucleic Acids Res 2015; 43(Database issue): D204-12.
[PMID: 25348405]
[85]
Mubeen S, Hoyt CT, Gemünd A, Hofmann-Apitius M, Fröhlich H, Domingo-Fernández D. The impact of pathway database choice on statistical enrichment analysis and predictive modeling. Front Genet 2019; 10: 1203.
[http://dx.doi.org/10.3389/fgene.2019.01203] [PMID: 31824580]
[86]
Sales G, Calura E, Cavalieri D, Romualdi C. Graphite - a bioconductor package to convert pathway topology to gene network. BMC Bioinformatics 2012; 13: 20.
[http://dx.doi.org/10.1186/1471-2105-13-20] [PMID: 22292714]
[87]
Ivan YI, Vorsanova SG, Yurov YB. Pathway-based classification of genetic diseases. Mol Cytogenet 2019; 12(1): 4.
[88]
Passarge E. Molecular Nuclear Medicine. Berlin, Heidelberg: Springer 2003; pp. 31-7.
[http://dx.doi.org/10.1007/978-3-642-55539-8_2]
[89]
Turnpenny PD, Ellard S. Emery’s elements of medical genetics. 15th ed. E-book. Elsevier Health Sciences 2016.
[90]
Heng HH. The genome-centric concept: resynthesis of evolutionary theory. BioEssays 2009; 31(5): 512-25.
[http://dx.doi.org/10.1002/bies.200800182] [PMID: 19334004]
[91]
Heng HH, Liu G, Stevens JB, et al. Decoding the genome beyond sequencing: the new phase of genomic research. Genomics 2011; 98(4): 242-52.
[http://dx.doi.org/10.1016/j.ygeno.2011.05.008] [PMID: 21640814]
[92]
List M, Alcaraz N, Batra R. De Novo Pathway-Based Classification of Breast Cancer SubtypesProtein-Protein Interaction Networks Methods in Molecular Biology. New York, NY: Humana 2020; Vol. 2074.
[93]
Heng HH, Regan S. A systems biology perspective on molecular cytogenetics. Curr Bioinform 2017; 12(1): 4-10.
[94]
Voyle N, Keohane A, Newhouse S, et al. A Pathway Based Classification Method for Analyzing Gene Expression for Alzheimer’s Disease Diagnosis. J Alzheimers Dis 2016; 49(3): 659-69.
[http://dx.doi.org/10.3233/JAD-150440] [PMID: 26484910]
[95]
Li Y, Agarwal P. A pathway-based view of human diseases and disease relationships. PLoS One 2009; 4(2)e4346
[96]
Zhilong M, Binghui G, Ziqiao Y, Jiahui L, Zhiming Z. Disease classification via gene network integrating modules and pathways. R Soc Open Sci 2019; 6(7)190214
[97]
Kim S, Kon M, DeLisi C. Pathway-based classification of cancer subtypes. Biol Direct 2012; 7: 21.
[PMID: 22759382]
[98]
Kim Y-A, Wuchty S, Przytycka TM. Identifying causal genes and dysregulated pathways in complex diseases. PLOS Comput Biol 2011; 7(3)e1001095
[99]
Culf-Cuperlovic M. Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites 2018; 8(1): 4.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy