Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Discovery of a Highly Potent and Novel Gambogic Acid Derivative as an Anticancer Drug Candidate

Author(s): Huiping Ling, Hong Li, Meijun Chen, Baolong Lai, Haiming Zhou, Hui Gao, Jiangye Zhang, Yan Huang* and Yiwen Tao*

Volume 21, Issue 9, 2021

Published on: 08 April, 2020

Page: [1110 - 1119] Pages: 10

DOI: 10.2174/1871520620666200408080040

Price: $65

Abstract

Background and Purpose: Gambogic Acid (GA), a promising anti-cancer agent isolated from the resin of Garcinia species in Southeast Asia, exhibits high potency in inhibiting a wide variety of cancer cells’ growth. Moreover, the fact that it is amenable to chemical modification makes GA an attractive molecule for the development of anti-cancer agents.

Methods: Gambogic acid-3-(4-pyrimidinyloxy) propyl ester (compound 4) was derived from the reaction between 4-hydroxypropoxy pyrimidine and GA. Its structure was elucidated by comprehensive analysis of ESIMS, HRESIMS, 1 D NMR data. Anti-tumor activities of compound 4 and GA in vitro against HepG-2, A549 and MCF-7 cells were investigated by MTT assay. FITC/PI dye was used to test apoptosis. The binding affinity difference of compound 4 and GA binding to IKKβ was studied by using Discovery Studio 2016.

Results: Compound 4 was successfully synthesized and showed strong inhibitory effects on HepG-2, A549 and MCF-7 cells lines with an IC50 value of 1.49±0.11, 1.37±0.06 and 0.64±0.16μM, respectively. Molecular docking study demonstrated that four more hydrogen bonds were established between IKKβ and compound 4, compared with GA.

Conclusion: Our results suggested that compound 4 showed significant effects in inducing apoptosis. Further molecular docking study indicated that the introduction of pyrimidine could improve GA’s binding affinity to IKKβ. Compound 4 may serve as a potential lead compound for the development of new anti-cancer drugs.

Keywords: Gambogic acid derivatives, molecular docking, anti-tumor activity, HepG-2 cells, A549 cells, MCF-7 cells.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[2]
Liesenklas, W.; Auterhoff, H. The constitution of gambogic acid and its isomerization. 4. Chemistry of gum-resin. Arch. Pharm. Ber. Dtsch. Pharm. Ges., 1966, 299(9), 797-798.
[http://dx.doi.org/10.1002/ardp.19662990911] [PMID: 5234498]
[3]
Zhao, L.; Guo, Q.L.; You, Q.D.; Wu, Z.Q.; Gu, H.Y. Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biol. Pharm. Bull., 2004, 27(7), 998-1003.
[http://dx.doi.org/10.1248/bpb.27.998] [PMID: 15256729]
[4]
Liu, W.; Guo, Q.L.; You, Q.D.; Zhao, L.; Gu, H.Y.; Yuan, S.T. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J. Gastroenterol., 2005, 11(24), 3655-3659.
[http://dx.doi.org/10.3748/wjg.v11.i24.3655] [PMID: 15968715]
[5]
Wu, Z.Q.; Guo, Q.L.; You, Q.D.; Zhao, L.; Gu, H.Y. Gambogic acid inhibits proliferation of human lung carcinoma SPC-A1 cells in vivo and in vitro and represses telomerase activity and telomerase reverse transcriptase mRNA expression in the cells. Biol. Pharm. Bull., 2004, 27(11), 1769-1774.
[http://dx.doi.org/10.1248/bpb.27.1769] [PMID: 15516720]
[6]
Zhou, Z.T.; Wang, J.W. PhaseIhuman tolerability trial of gambogic acid. Zhongguo Xin Yao Zazhi, 2007, 16(1), 79-83.
[7]
Deng, X.J.; Gu, Y.; Lu, Q. Inhibitory effect of 5-azacytidine and gambogic acid on K562/A02-resistant cell lines. Jiangsu Med. J., 2010, 36(22), 2676.
[8]
Huang, K.F.; Lu, Y.H.; He, R.; Xi, T. Effects of gambogic acid on apoptosis of BGC-803 cells and expression of survivin gene in gastric carcinoma. Zhongguo Yaoke Daxue Xuebao, 2008, 39(5), 474-478.
[9]
Li, N.G.; Wang, J.X.; Liu, X.R.; Lin, C.J.; You, Q.D.; Guo, Q.L. A novel and efficient route to the construction of the 4-oxa-tricyclo[4.3.1.0]decan-2-one scaffold. Tetrahedron Lett., 2007, 48(37), 6586-6589.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.005]
[10]
Kasibhatla, S.; Jessen, K.A.; Maliartchouk, S.; Wang, J.Y.; English, N.M.; Drewe, J.; Qiu, L.; Archer, S.P.; Ponce, A.E.; Sirisoma, N.; Jiang, S.; Zhang, H.Z.; Gehlsen, K.R.; Cai, S.X.; Green, D.R.; Tseng, B. A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc. Natl. Acad. Sci. USA, 2005, 102(34), 12095-12100.
[http://dx.doi.org/10.1073/pnas.0406731102] [PMID: 16103367]
[11]
Tian, L.; Liu, J.; Chen, B.A. Effects of mayis acid on drug resistance of leukemia K562/A02 cells. Ch. J. Experim. Hematol., 2012, 20(2), 252.
[PMID: 22541076]
[12]
Yi, T.; Yi, Z.; Cho, S.G.; Luo, J.; Pandey, M.K.; Aggarwal, B.B.; Liu, M. Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res., 2008, 68(6), 1843-1850.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5944] [PMID: 18339865]
[13]
Wang, T.; Wei, J.; Qian, X.; Ding, Y.; Yu, L.; Liu, B. Gambogic acid, a potent inhibitor of survivin, reverses docetaxel resistance in gastric cancer cells. Cancer Lett., 2008, 262(2), 214-222.
[http://dx.doi.org/10.1016/j.canlet.2007.12.004] [PMID: 18248784]
[14]
Yang, P.; Cao, J.; Zhang, T.; Wang, Q.; Sun, Z.; Zhang, W.J.; Zeng, S.Q. Effects of gambogic acid on the expression of APC protein in human colon cancer SW480 cell proliferation. J. Trop. Med., 2013, 6, 726-728.
[15]
Zhao, Q.; Yang, Y.; Yu, J.; You, Q.D.; Zeng, S.; Gu, H.Y.; Lu, N.; Qi, Q.; Liu, W.; Wang, X.T.; Guo, Q.L. Posttranscriptional regulation of the telomerase hTERT by gambogic acid in human gastric carcinoma 823 cells. Cancer Lett., 2008, 262(2), 223-231.
[http://dx.doi.org/10.1016/j.canlet.2007.12.002] [PMID: 18226852]
[16]
Trowbridge, I.S.; Lopez, F. Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. Proc. Natl. Acad. Sci. USA, 1982, 79(4), 1175-1179.
[http://dx.doi.org/10.1073/pnas.79.4.1175] [PMID: 6280171]
[17]
Yang, Y.; Yang, L.; You, Q.D.; Nie, F.F.; Gu, H.Y.; Zhao, L.; Wang, X.T.; Guo, Q.L. Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett., 2007, 256(2), 259-266.
[http://dx.doi.org/10.1016/j.canlet.2007.06.014] [PMID: 17693016]
[18]
Yen, C.T.; Nakagawa-Goto, K.; Hwang, T.L.; Morris-Natschke, S.L.; Bastow, K.F.; Wu, Y.C.; Lee, K.H. Design and synthesis of gambogic acid analogs as potent cytotoxic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 2012, 22(12), 4018-4022.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.084] [PMID: 22595179]
[19]
Chantarasriwong, O.; Cho, W.C.; Batova, A.; Chavasiri, W.; Moore, C.; Rheingold, A.L.; Theodorakis, E.A. Evaluation of the pharmacophoric motif of the caged Garcinia xanthones. Org. Biomol. Chem., 2009, 7(23), 4886-4894.
[http://dx.doi.org/10.1039/b913496d] [PMID: 19907779]
[20]
Sun, H.; Chen, F.; Wang, X.; Liu, Z.; Yang, Q.; Zhang, X.; Zhu, J.; Qiang, L.; Guo, Q.; You, Q. Studies on gambogic acid (IV): Exploring structure-activity relationship with IκB kinase-beta (IKKβ). Eur. J. Med. Chem., 2012, 51, 110-123.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.029] [PMID: 22472167]
[21]
Zhang, H.Z.; Kasibhatla, S.; Wang, Y.; Herich, J.; Guastella, J.; Tseng, B.; Drewe, J.; Cai, S.X. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg. Med. Chem., 2004, 12(2), 309-317.
[http://dx.doi.org/10.1016/j.bmc.2003.11.013] [PMID: 14723951]
[22]
Hou, X.F.; Chuang, S.S.; Yang, Q.; Wu, Y.X.; He, L.Q. Preparation of N-benzyl sophoro acetate. Guangzhou Huagong, 2012, 8, 85-86.
[23]
Liu, J.; Wang, Y.; Zhou, Y.P.; Li, C.Y.; Chen, Y.; Jiang, M.J.; Zhang, Q.S.; Xu, L.F. Preparation of gambogic acid derivatives. Ch. J. Synthet. Chem., 2013, 2, 217-219.
[24]
Chen, T.; Zhang, R.H.; He, S.C.; Xu, Q.Y.; Ma, L.; Wang, G.C.; Qiu, N.; Peng, F.; Chen, J.Y.; Qiu, J.X.; Peng, A.H.; Chen, L.J. Synthesis and antiangiogenic activity of novel gambogic acid derivatives. Molecules, 2012, 17(6), 6249-6268.
[http://dx.doi.org/10.3390/molecules17066249] [PMID: 22634837]
[25]
Li, J.H.; Huang, Y.; Tan, Y.; Zhang, Z.J.; Tao, Y.W.; Liao, S.Y. Synthesis and antitumor activity of novel gambogic acid derivatives. Ch. J. Synthet. Chem., 2014, 22(6), 753-758.
[26]
Meijun, C.; Jinhai, L.; Zhijia, Z.; Siyan, L.; Yan, H.; Yin, T. Synthesis and antitumor activity of cyanamide glycosyl derivatives. Chin. J. Appl. Chem., 2016, 33(8), 905-912.
[27]
Zhang, Z.J.; Li, J.H.; Chen, M.J.; Huang, Y.; Zhao, L.N. Preparation and antitumor activity of novel aromatic modified glutamic acid derivatives. Ch. J. Synthet. Chem., 2015, 12, 1085-1094.
[28]
Zhao, G.Y.; Huang, W.L. Preparation and vasodilatory activity of trans-3-hydroxy-4-aminobenzopyranyl acetylate. Ch. J. Appl. Chem., 2007, 24(6), 698-702.
[29]
Zhang, J.; Lai, Z.; Huang, W.; Ling, H.; Lin, M.; Tang, S.; Liu, Y.; Tao, Y. Apicidin inhibited proliferation and invasion and induced apoptosis via mitochondrial pathway in non-small cell lung cancer GLC-82 cells. Anticancer. Agents Med. Chem., 2017, 17(10), 1374-1382.
[http://dx.doi.org/10.2174/1871520617666170419120044] [PMID: 28425856]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy