Generic placeholder image

Current Biochemical Engineering (Discontinued)

Editor-in-Chief

ISSN (Print): 2212-7119
ISSN (Online): 2212-7127

Review Article

Microstructure and Mechanical Properties of Friction Stir Welded and Processed Joints with the Addition of Nanoparticles: A Review

Author(s): Danial Ghahremani-Moghadam* and Seyedmeysam Khaleghian

Volume 6, Issue 2, 2020

Page: [82 - 90] Pages: 9

DOI: 10.2174/2212711906666200401090508

Price: $65

Abstract

Background: Friction Stir Welding (FSW) is an efficient process for solid-state joining of two different material without melting by using a non-consumable tool. FSW process was developed for the modification of metallic material microstructure. FSW requires a precise investigation of the process, microstructure, and the welds mechanical properties in order to be used in the fabrication of high- quality engineering components. Through the efforts of improving the weld's mechanical and microstructural properties and conveying the current knowledge of the friction stir to other applications, multiple new technologies have been developed over the time. One of the latest methods to fabricate high performance joints or Nanocomposites alloys is the addition of nano- reinforcements to the joint in Friction Stir Welding (FSW) or the metal matrix in Friction Stir Processing (FSP).

Objective: In this study, an overview of the effect of nanoparticles on microstructural and mechanical properties of the FSW/ FSP joints is presented. The review revealed that the most widely employed additions are SiC, SiO2, Al2O3, and graphite nano-powders. Microstructural evolutions, such as grain size, second phase particles, and reinforcement distribution, usually are investigated using optical methods and Scanning Electron Microscopy (SEM). Furthermore, the mechanical properties of the joints, such as tensile strength, hardness, and wear performance, are also investigated. Based on most of the researches, microstructural evolution associated with adding nanoparticles led to improve the joints mechanical properties.

Keywords: Friction Stir Welding (FSW), Friction Stir Processing (FSP), microstructure, mechanical properties, nanoparticles, nanocomposites.

« Previous
Graphical Abstract

[1]
M.A. Wahid, Z.A. Khan, and A.N. Siddiquee, "Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties", " Transact. Nonferrous Metal.Soc. China, vol. 28. 2018, no. 2, pp. 193-219, .
[2]
P. Subramanya, M. Amar, S. Arun, H. Mervin, and R. Shrikantha, "Friction stir welding of Aluminium matrix composites – A Review", MATEC Web Conf., vol. 144, 2018-03002
[http://dx.doi.org/10.1051/matecconf/201814403002]
[3]
L. Murr, "A review of FSW research on dissimilar metal and alloy systems", J. Mater. Eng. Perform., vol. 19, no. 8, pp. 1071-1089, 2010.
[http://dx.doi.org/10.1007/s11665-010-9598-0]
[4]
T. Chen, "Process parameters study on FSW joint of dissimilar metals for aluminum–steel", J. Mater. Sci., vol. 44, no. 10, pp. 2573-2580, 2009.
[http://dx.doi.org/10.1007/s10853-009-3336-8]
[5]
P. Carlone, A. Astarita, G.S. Palazzo, V. Paradiso, and A. Squillace, "Microstructural aspects in Al–Cu dissimilar joining by FSW", Int. J. Adv. Manuf. Technol., vol. 79, no. 5-8, pp. 1109-1116, 2015.
[http://dx.doi.org/10.1007/s00170-015-6874-z]
[6]
D.G. Moghadam, and K. Farhangdoost, "Influence of welding parameters on fracture toughness and fatigue crack growth rate in friction stir welded nugget of 2024-T351 aluminum alloy joints", Trans. Nonferrous Met. Soc. China, vol. 26, no. 10, pp. 2567-2585, 2016.
[http://dx.doi.org/10.1016/S1003-6326(16)64383-2]
[7]
J. Zhao, F. Jiang, H. Jian, K. Wen, L. Jiang, and X. Chen, "Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al–Mg–Sc alloy plates", Mater. Des., vol. 31, no. 1, pp. 306-311, 2010.
[http://dx.doi.org/10.1016/j.matdes.2009.06.012]
[8]
P. Cavaliere, M. Cabibbo, F. Panella, and A. Squillace, "2198 Al–Li plates joined by friction stir welding: mechanical and microstructural behavior", Mater. Des., vol. 30, no. 9, pp. 3622-3631, 2009.
[http://dx.doi.org/10.1016/j.matdes.2009.02.021]
[9]
W. Thomas, and E. Nicholas, "Friction stir welding for the transportation industries", Mater. Des., vol. 18, no. 4-6, pp. 269-273, 1997.
[http://dx.doi.org/10.1016/S0261-3069(97)00062-9]
[10]
A. Shafiei-Zarghani, S. Kashani-Bozorg, and A. Zarei-Hanzaki, "Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing", Mater. Sci. Eng. A, vol. 500, no. 1-2, pp. 84-91, 2009.
[http://dx.doi.org/10.1016/j.msea.2008.09.064]
[11]
R.S. Mishra, and Z. Ma, "Friction stir welding and processing", Mater. Sci. Eng. Rep., vol. 50, no. 1-2, pp. 1-78, 2005.
[http://dx.doi.org/10.1016/j.mser.2005.07.001]
[12]
A. Shafiei Zarghani, S. Kashani Bozorg, and A. Zarei-Hanzaki, "Ultrafine grained 6082 aluminum alloy fabricated by friction stir processing", Int. J. Modern Physics B, vol. 22, no. 18n19,, pp. 2874-2878. 2008
[http://dx.doi.org/10.1142/S0217979208047705]
[13]
M. Azizieh, A. Kokabi, and P. Abachi, "Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing", Mater. Des., vol. 32, no. 4, pp. 2034-2041, 2011.
[http://dx.doi.org/10.1016/j.matdes.2010.11.055]
[14]
Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, "Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31", Mater. Sci. Eng. A, vol. 433, no. 1-2, pp. 50-54, 2006.
[http://dx.doi.org/10.1016/j.msea.2006.06.089]
[15]
A. Shamsipur, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, "The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer", Surf. Coat. Tech., vol. 206, no. 6, pp. 1372-1381, 2011.
[http://dx.doi.org/10.1016/j.surfcoat.2011.08.065]
[16]
C. Lee, J. Huang, and P. Hsieh, "Mg based nano-composites fabricated by friction stir processing", Scr. Mater., vol. 54, no. 7, pp. 1415-1420, 2006.
[http://dx.doi.org/10.1016/j.scriptamat.2005.11.056]
[17]
F. Khodabakhshi, M. Nosko, and A.P. Gerlich, "Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing", Surf. Coat. Tech., vol. 335, pp. 288-305, 2018.
[http://dx.doi.org/10.1016/j.surfcoat.2017.12.045]
[18]
D. Ni, D. Chen, D. Wang, B. Xiao, and Z. Ma, "Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet", Mater. Des., vol. 51, pp. 199-205, 2013.
[http://dx.doi.org/10.1016/j.matdes.2013.04.027]
[19]
F. Khodabakhshi, A. Gerlich, and P. Švec, "Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing", Mater. Sci. Eng. A, vol. 698, pp. 313-325, 2017.
[http://dx.doi.org/10.1016/j.msea.2017.05.065]
[20]
F. Khodabakhshi, A. Simchi, A. Kokabi, and A. Gerlich, "Similar and dissimilar friction-stir welding of an PM aluminum-matrix hybrid nanocomposite and commercial pure aluminum: microstructure and mechanical properties", Mater. Sci. Eng. A, vol. 666, pp. 225-237, 2016.
[http://dx.doi.org/10.1016/j.msea.2016.04.078]
[21]
M. Ashjari, A.M. Asl, and S. Rouhi, "Experimental investigation on the effect of process environment on the mechanical properties of AA5083/Al2O3 nanocomposite fabricated via friction stir processing", Mater. Sci. Eng. A, vol. 645, pp. 40-46, 2015.
[http://dx.doi.org/10.1016/j.msea.2015.07.093]
[22]
F. Khodabakhshi, H.G. Yazdabadi, A. Kokabi, and A. Simchi, "Friction stir welding of a P/M Al–Al2O3 nanocomposite: microstructure and mechanical properties", Mater. Sci. Eng. A, vol. 585, pp. 222-232, 2013.
[http://dx.doi.org/10.1016/j.msea.2013.07.062]
[23]
F. Khodabakhshi, A. Simchi, A. Kokabi, A. Gerlich, M. Nosko, and P. Švec, "Influence of hard inclusions on microstructural characteristics and textural components during dissimilar friction-stir welding of an PM Al–Al2O3–SiC hybrid nanocomposite with AA1050 alloy", Sci. Technol. Weld. Join., vol. 22, no. 5, pp. 412-427, 2017.
[http://dx.doi.org/10.1080/13621718.2016.1251714]
[24]
M. Narimani, B. Lotfi, and Z. Sadeghian, "Evaluation of the microstructure and wear behaviour of AA6063-B4C/TiB2 mono and hybrid composite layers produced by friction stir processing", Surf. Coat. Tech., vol. 285, pp. 1-10, 2016.
[http://dx.doi.org/10.1016/j.surfcoat.2015.11.015]
[25]
N. Yuvaraj, and S. Aravindan, "Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization", J. Mat. Res. Technol, vol. 4 2015, no. 4, pp. 398-410.
[http://dx.doi.org/10.1016/j.jmrt.2015.02.006]
[26]
C.M. Rejil, I. Dinaharan, S. Vijay, and N. Murugan, "Microstructure and sliding wear behavior of AA6360/(TiC+ B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate", Mater. Sci. Eng. A, vol. 552, pp. 336-344, 2012.
[http://dx.doi.org/10.1016/j.msea.2012.05.049]
[27]
Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, and M. Fukusumi, "Fullerene/A5083 composites fabricated by material flow during friction stir processing", Compos., Part A Appl. Sci. Manuf., vol. 38, no. 10, pp. 2097-2101, 2007.
[http://dx.doi.org/10.1016/j.compositesa.2007.07.004]
[28]
S. Ramesh, A. Sivasamy, K. Rhee, S. Park, and D. Hui, "Preparation and characterization of maleimide–polystyrene/SiO2–Al2O3 hybrid nanocomposites by an in situ sol–gel process and its antimicrobial activity", Compos., Part B Eng., vol. 75, pp. 167-175, 2015.
[http://dx.doi.org/10.1016/j.compositesb.2015.01.040]
[29]
G. You, N. Ho, and P. Kao, "In-situ formation of Al2O3 nanoparticles during friction stir processing of AlSiO2 composite", Mater. Charact., vol. 80, pp. 1-8, 2013.
[http://dx.doi.org/10.1016/j.matchar.2013.03.004]
[30]
F. Khodabakhshi, A. Gerlich, A. Simchi, and A. Kokabi, "Hot deformation behavior of an aluminum-matrix hybrid nanocomposite fabricated by friction stir processing", Mater. Sci. Eng. A, vol. 626, pp. 458-466, 2015.
[http://dx.doi.org/10.1016/j.msea.2014.12.110]
[31]
F. Khodabakhshi, A. Gerlich, A. Simchi, and A. Kokabi, "Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites", Mater. Sci. Eng. A, vol. 620, pp. 471-482, 2015.
[http://dx.doi.org/10.1016/j.msea.2014.10.048]
[32]
F. Khodabakhshi, A. Simchi, A. Kokabi, M. Sadeghahmadi, and A. Gerlich, "Reactive friction stir processing of AA 5052–TiO2 nanocomposite: Process–microstructure–mechanical characteristics", Mater. Sci. Technol., vol. 31, no. 4, pp. 426-435, 2015.
[http://dx.doi.org/10.1179/1743284714Y.0000000573]
[33]
H. Eskandari, R. Taheri, and F. Khodabakhshi, "Friction-stir processing of an AA8026-TiB2-Al2O3 hybrid nanocomposite: microstructural developments and mechanical properties", Mater. Sci. Eng. A, vol. 660, pp. 84-96, 2016.
[http://dx.doi.org/10.1016/j.msea.2016.02.081]
[34]
F. Khodabakhshi, A. Simchi, A. Kokabi, and A. Gerlich, "Friction stir processing of an aluminum-magnesium alloy with pre-placing elemental titanium powder: in-situ formation of an Al3Ti-reinforced nanocomposite and materials characterization", Mater. Charact., vol. 108, pp. 102-114, 2015.
[http://dx.doi.org/10.1016/j.matchar.2015.08.016]
[35]
Z. Liu, B. Xiao, W. Wang, and Z. Ma, "Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing", Carbon, vol. 50, no. 5, pp. 1843-1852, 2012.
[http://dx.doi.org/10.1016/j.carbon.2011.12.034]
[36]
W. Kim, T. Lee, and S. Han, "Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties", Carbon, vol. 69, pp. 55-65, 2014.
[http://dx.doi.org/10.1016/j.carbon.2013.11.058]
[37]
K. Kondoh, H. Fukuda, J. Umeda, H. Imai, and B. Fugetsu, "Microstructural and mechanical behavior of multi-walled carbon nanotubes reinforced Al–Mg–Si alloy composites in aging treatment", Carbon, vol. 72, pp. 15-21, 2014.
[http://dx.doi.org/10.1016/j.carbon.2014.01.013]
[38]
A.N. Siddiquee, and S. Pandey, "Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel", Int. J. Adv. Manuf. Technol., vol. 73, no. 1-4, pp. 479-486, 2014.
[http://dx.doi.org/10.1007/s00170-014-5846-z]
[39]
J-H. Cho, S.H. Han, and C.G. Lee, "Cooling effect on microstructure and mechanical properties during friction stir welding of Al-Mg-Si aluminum alloys", Mater. Lett., vol. 180, pp. 157-161, 2016.
[http://dx.doi.org/10.1016/j.matlet.2016.05.157]
[40]
A.N. Siddiquee, and N.Z. Khan, "Friction stir welding of austenitic stainless steel: a study on microstructure and effect of parameters on tensile strength", Mat. Today: Proceed., vol. 2, no. 4-5, pp. 1388-1397, 2015.
[41]
H. Sidhar, N.Y. Martinez, R.S. Mishra, and J. Silvanus, "Friction stir welding of Al–Mg–Li 1424 alloy", Mater. Des., vol. 106, pp. 146-152, 2016.
[http://dx.doi.org/10.1016/j.matdes.2016.05.111]
[42]
D.G. Moghadam, K. Farhangdoost, and R.M. Nejad, "Microstructure and residual stress distributions under the influence of welding speed in friction stir welded 2024 aluminum alloy", Metall. Mater. Trans., B, Process Metall. Mater. Proc. Sci., vol. 47, no. 3, pp. 2048-2062, 2016.
[http://dx.doi.org/10.1007/s11663-016-0611-3]
[43]
P. Asadi, G. Faraji, and M.K. Besharati, "Producing of AZ91/SiC composite by friction stir processing (FSP)", Int. J. Adv. Manuf. Technol., vol. 51, no. 1-4, pp. 247-260, 2010.
[http://dx.doi.org/10.1007/s00170-010-2600-z]
[44]
P. Threadgill, A. Leonard, H. Shercliff, and P. Withers, "Friction stir welding of aluminium alloys", Int. Mater. Rev., vol. 54, no. 2, pp. 49-93, 2009.
[http://dx.doi.org/10.1179/174328009X411136]
[45]
Y. Zhang, X. Cao, S. Larose, and P. Wanjara, "Review of tools for friction stir welding and processing", Can. Metall. Q., vol. 51, no. 3, pp. 250-261, 2012.
[http://dx.doi.org/10.1179/1879139512Y.0000000015]
[46]
W.M. Thomas, D. Staines, I. Norris, and R. De Frias, "Friction stir welding tools and developments", Weld. World, vol. 47, no. 11-12, pp. 10-17, 2003.
[http://dx.doi.org/10.1007/BF03266403]
[47]
O.S. Salih, H. Ou, W. Sun, and D. McCartney, "A review of friction stir welding of aluminium matrix composites", Mater. Des., vol. 86, pp. 61-71, 2015.
[http://dx.doi.org/10.1016/j.matdes.2015.07.071]
[48]
D. Wang, B. Xiao, D. Ni, and Z. Ma, "Friction stir welding of discontinuously reinforced aluminum matrix composites: A review", Acta Metall. Engl. Lett., vol. 27, no. 5, pp. 816-824, 2014.
[http://dx.doi.org/10.1007/s40195-014-0143-2]
[49]
F. Liu, Y. Hovanski, M. Miles, C. Sorensen, and T. Nelson, "A review of friction stir welding of steels: Tool, material flow, microstructure, and properties", J. Mater. Sci. Technol., vol. 34, no. 1, pp. 39-57, 2018.
[http://dx.doi.org/10.1016/j.jmst.2017.10.024]
[50]
K. Gangwar, and M. Ramulu, "Friction stir welding of titanium alloys: a review", Mater. Des., vol. 141, pp. 230-255, 2018.
[http://dx.doi.org/10.1016/j.matdes.2017.12.033] [PMID: 30581921]
[51]
H. Arora, H. Singh, and B. Dhindaw, "Composite fabrication using friction stir processing-a review", Int. J. Adv. Manuf. Technol., vol. 61, no. 9-12, pp. 1043-1055, 2012.
[http://dx.doi.org/10.1007/s00170-011-3758-8]
[52]
G. Padhy, C. Wu, and S. Gao, "Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review", J. Mater. Sci. Technol., vol. 34, no. 1, pp. 1-38, 2018.
[http://dx.doi.org/10.1016/j.jmst.2017.11.029]
[53]
J. Gou, S. O’Braint, H. Gu, and G. Song, "Damping augmentation of nanocomposites using carbon nanofiber paper", J. Nanomater., vol. 2006, 2006.
[http://dx.doi.org/10.1155/JNM/2006/32803]
[54]
Y. Sun, and H. Fujii, "The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints", Mater. Sci. Eng. A, vol. 528, no. 16-17, pp. 5470-5475, 2011.
[http://dx.doi.org/10.1016/j.msea.2011.03.077]
[55]
G. Nandipati, N. Damera, and R. Nallu, "Effect of microstructural changes on mechanical properties of friction stir welded nano SiC reinforced AA6061composite", Int. J. Eng. Sci. Technol., vol. 2, no. 11, pp. 6491-6499, 2010.
[56]
A. S. Shaikh, M. S. Tahir, and M. K. A. Qureshi, Experimental investigation of mechanical properties of friction stir welded HDPE with additions of silicon carbide, silica, nano-alumina, and graphite.
[57]
M. Bahrami, K. Dehghani, and M.K.B. Givi, "A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique", Mater. Des., vol. 53, pp. 217-225, 2014.
[http://dx.doi.org/10.1016/j.matdes.2013.07.006]
[58]
M. Bahrami, N. Helmi, K. Dehghani, and M.K.B. Givi, "Exploring the effects of SiC reinforcement incorporation on mechanical properties of friction stir welded 7075 aluminum alloy: fatigue life, impact energy, tensile strength", Mater. Sci. Eng. A, vol. 595, pp. 173-178, 2014.
[http://dx.doi.org/10.1016/j.msea.2013.11.068]
[59]
M. Bahrami, M.K.B. Givi, K. Dehghani, and N. Parvin, "On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique", Mater. Des., vol. 53, pp. 519-527, 2014.
[http://dx.doi.org/10.1016/j.matdes.2013.07.049]
[60]
M. Bahrami, M. Farahmand Nikoo, and M.K. Besharati Givi, “Microstructural and mechanical behaviors of nano-SiC-reinforced AA7075-O FSW joints prepared through two passes,” Materials Science and Engineering A, Structural Materials: Properties., Microstructure and Processing, 2015, pp. 220-228.
[61]
A. Hamdollahzadeh, M. Bahrami, M.F. Nikoo, A. Yusefi, M.B. Givi, and N. Parvin, "Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing", J. Manuf. Process., vol. 20, pp. 367-373, 2015.
[http://dx.doi.org/10.1016/j.jmapro.2015.06.017]
[62]
H.M. Jamalian, H. Ramezani, H. Ghobadi, M. Ansari, S. Yari, and M.K.B. Givi, "Processing–structure–property correlation in nano-SiC-reinforced friction stir welded aluminum joints", J. Manuf. Process., vol. 21, pp. 180-189, 2016.
[http://dx.doi.org/10.1016/j.jmapro.2015.12.008]
[63]
A. Abdolahzadeh, H. Omidvar, M.A. Safarkhanian, and M. Bahrami, "Studying microstructure and mechanical properties of SiC-incorporated AZ31 joints fabricated through FSW: the effects of rotational and traveling speeds", Int. J. Adv. Manuf. Technol., vol. 75, no. 5-8, pp. 1189-1196, 2014.
[http://dx.doi.org/10.1007/s00170-014-6205-9]
[64]
F.J. Humphreys, and M. Hatherly, Recrystallization and related annealing phenomena., Elsevier, 2012.
[65]
K. Sun, Q. Shi, Y. Sun, and G. Chen, "Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing", Mater. Sci. Eng. A, vol. 547, pp. 32-37, 2012.
[http://dx.doi.org/10.1016/j.msea.2012.03.071]
[66]
A. Abdollahzadeh, A. Shokuhfar, H. Omidvar, J. Cabrera, A. Solonin, A. Ostovari, and M. Abbasi, "Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications,, vol. 233, no. 5,, pp. 831-841 2019
[http://dx.doi.org/10.1177/1464420717708485]
[67]
M. Bodaghi, and K. Dehghani, "Friction stir welding of AA5052: the effects of SiC nano-particles addition", Int. J. Adv. Manuf. Technol., vol. 88, no. 9-12, pp. 2651-2660, 2017.
[http://dx.doi.org/10.1007/s00170-016-8959-8]
[68]
M. Rashid, N. Yuvraj, and S.K. Singh, "Micro Structural and Mechanical Behaviours of Nano-TiC-Reinforced AA6082 FSW Joints", Fus. Sci. Technol., pp. 18-22, 2016.
[69]
M.F. Nikoo, H. Azizi, N. Parvin, and H.Y. Naghibi, "The influence of heat treatment on microstructure and wear properties of friction stir welded AA6061-T6/Al2O3 nanocomposite joint at four different traveling speed", J. Manuf. Process., vol. 22, pp. 90-98, 2016.
[http://dx.doi.org/10.1016/j.jmapro.2016.01.003]
[70]
M. Saeidi, R. Abdi Behnagh, B. Manafi, M. Farahmand Nikoo, and M.K. Besharati Givi, "Study on ultrafine-grained aluminum matrix nanocomposite joint fabricated by friction stir welding", Proceedingsof the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications,, vol. 230, no. 1, pp. 311-318, 2016.
[http://dx.doi.org/10.1177/1464420715572235]
[71]
A. Trowsdale, B. Noble, S. Harris, I. Gibbins, G. Thompson, and G. Wood, "The influence of silicon carbide reinforcement on the pitting behaviour of aluminium", Corros. Sci., vol. 38, no. 2, pp. 177-191, 1996.
[http://dx.doi.org/10.1016/0010-938X(96)00098-4]
[72]
D. Pantelis, P. Karakizis, N. Daniolos, C. Charitidis, E. Koumoulos, and D. Dragatogiannis, "Microstructural study and mechanical properties of dissimilar friction stir welded AA5083-H111 and AA6082-T6 reinforced with SiC nanoparticles", Mater. Manuf. Process., vol. 31, no. 3, pp. 264-274, 2016.
[http://dx.doi.org/10.1080/10426914.2015.1019095]
[73]
D. Dragatogiannis, E. Koumoulos, I. Kartsonakis, D. Pantelis, P. Karakizis, and C. Charitidis, "Dissimilar friction stir welding between 5083 and 6082 Al alloys reinforced with TiC nanoparticles", Mater. Manuf. Process., vol. 31, no. 16, pp. 2101-2114, 2016.
[http://dx.doi.org/10.1080/10426914.2015.1103856]
[74]
M. Tabasi, M. Farahani, M.B. Givi, M. Farzami, and A. Moharami, "Dissimilar friction stir welding of 7075 aluminum alloy to AZ31 magnesium alloy using SiC nanoparticles", Int. J. Adv. Manuf. Technol., vol. 86, no. 1-4, pp. 705-715, 2016.
[http://dx.doi.org/10.1007/s00170-015-8211-y]
[75]
D. Jayabalakrishnan, and M. Balasubramanian, "Eccentric-weave FSW between Cu and AA 6061-T6 with reinforced Graphene nanoparticles", Mater. Manuf. Process., vol. 33, no. 3, pp. 333-342, 2018.
[http://dx.doi.org/10.1080/10426914.2017.1339323]
[76]
A. Fallahi, A. Shokuhfar, A.O. Moghaddam, and A. Abdolahzadeh, "Analysis of SiC nano-powder effects on friction stir welding of dissimilar Al-Mg alloy to A316L stainless steel", J. Manuf. Process., vol. 30, pp. 418-430, 2017.
[http://dx.doi.org/10.1016/j.jmapro.2017.09.027]
[77]
Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi, "MWCNTs/AZ31 surface composites fabricated by friction stir processing", Mater. Sci. Eng. A, vol. 419, no. 1-2, pp. 344-348, 2006.
[http://dx.doi.org/10.1016/j.msea.2006.01.016]
[78]
M. Yang, C. Xu, C. Wu, K-c. Lin, Y.J. Chao, and L. An, "Fabrication of AA6061/Al 2 O 3 nano ceramic particle reinforced composite coating by using friction stir processing", J. Mater. Sci., vol. 45, no. 16, pp. 4431-4438, 2010.
[http://dx.doi.org/10.1007/s10853-010-4525-1]
[79]
P. Asadi, G. Faraji, A. Masoumi, and M.B. Givi, "Experimental investigation of magnesium-base nanocomposite produced by friction stir processing: effects of particle types and number of friction stir processing passes", Metall. Mater. Trans., A Phys. Metall. Mater. Sci., vol. 42, no. 9, pp. 2820-2832, 2011.
[http://dx.doi.org/10.1007/s11661-011-0698-8]
[80]
C. Hsu, C. Chang, P. Kao, N. Ho, and C. Chang, "Al–Al3Ti nanocomposites produced in situ by friction stir processing", Acta Mater., vol. 54, no. 19, pp. 5241-5249, 2006.
[http://dx.doi.org/10.1016/j.actamat.2006.06.054]
[81]
R. Bauri, D. Yadav, and G. Suhas, "Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite", Mater. Sci. Eng. A, vol. 528, no. 13-14, pp. 4732-4739, 2011.
[http://dx.doi.org/10.1016/j.msea.2011.02.085]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy