Generic placeholder image

Current Mechanics and Advanced Materials

Editor-in-Chief

ISSN (Print): 2666-1845
ISSN (Online): 2666-1853

Research Article

Li1.2Mn0.6Ni0.2O2 Cathode Material Prepared by the Ultrasonic Dispersionassisted Method

Author(s): Tingting Fang, Hailiang Chu, Junqiang Hua, Ying Zhu, Shujun Qiu*, Shengzhou Bu, Liangbin Zhang, Mingzhong Yuan, Yongjin Zou, Cuili Xiang, Huanzhi Zhang , Erhu Yan, Fen Xu and Lixian Sun*

Volume 1, Issue 1, 2021

Published on: 31 March, 2020

Page: [58 - 65] Pages: 8

DOI: 10.2174/2666184501666200331125614

Abstract

Background: Lithium-rich layered materials with high discharge capacity are regarded as one of the most promising cathodes for lithium-ion batteries (LIBs). However, they have been suffering from rapid voltage fading and poor rate performance, which impede their practical application.

Methods: Herein, Li1.2Mn0.6Ni0.2O2 with layered structure was successfully prepared by the ultrasonic dispersion-assisted chemical reduction. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and electrochemical measurements were used to characterize its microstructure and electrochemical properties.

Results: The secondary particles of an as-prepared micro/nanostructured sample consist of irregular and sheet-like rectangular blocks. Electrochemical results show that the initial charge and discharge capacity within 2.0~4.8 V is 337.5 mA h g-1 and 236.9 mA h g-1 at 0.2C (1C = 200 mA g-1). The subsequent discharge capacity is stabilized at about 210 mA h g-1 for more than 100 cycles. When the current density is increased to 2C, the cycling columbic efficiency is maintained at 99.3% after 100 cycles.

Conclusion: Thus, the Li1.2Mn0.6Ni0.2O2 cathode material prepared by ultrasonic dispersion-assisted chemical reduction has a promising application in LIBs with high energy density and long cycle life.

Keywords: Cathode, electrochemical properties, layered oxide, lithium-ion battery, rate performance, voltage decay.

Graphical Abstract

[1]
J. Chen, "Recent progress in advanced materials for lithium ion batteries", Materials (Basel), vol. 6, no. 1, pp. 156-183, 2013.
[http://dx.doi.org/10.3390/ma6010156] [PMID: 28809300]
[2]
C. Kim, P.J. Phillips, L.P. Xu, A.G. Dong, R. Buonsanti, R.F. Klie, and J. Cabana, "Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells", Chem. Mater., vol. 27, no. 1, pp. 394-399, 2014.
[http://dx.doi.org/10.1021/cm503615w]
[3]
E. Erickson, F. Schipper, T.R. Penki, J.Y. Shin, C. Erk, F.F. Chesneau, B. Markovsky, and D. Aurbach, "Review-recent advances and remaining challenges for lithium ion battery cathodes ii. lithium-rich, xLi2MnO3•(1-x)LiNiaCobMncO2", J. Electrochem. Soc., vol. 164, no. 1, pp. A6341-A6348, 2017.
[http://dx.doi.org/10.1149/2.0461701jes]
[4]
N. Rapulenyane, E. Ferg, and H. Luo, "High-performance Li1.2Mn0.6Ni0.2O2 cathode materials prepared through a facile one-pot co-precipitation process for lithium ion batteries", J. Alloys Compd., vol. 762, pp. 272-281, 2018.
[http://dx.doi.org/10.1016/j.jallcom.2018.05.207]
[5]
J. Wang, X. He, E. Paillard, N. Laszczynski, J. Li, and S. Passerini, "Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries", Adv. Energy Mater., vol. 6, no. 21, . 1600906, 2016
[http://dx.doi.org/10.1002/aenm.201600906]
[6]
L. Wen, X. Hu, H. Luo, F. Li, and H. Cheng, "Open-pore LiFePO4/C microspheres with high volumetric energy density for lithium ion batteries", Particuology, vol. 22, pp. 24-29, 2015.
[http://dx.doi.org/10.1016/j.partic.2014.11.002]
[7]
Z. Huang, X.H. Li, Y.H. Liang, Z.J. He, H. Chen, Z.X. Wang, and H.J. Guo, "Structural and electrochemical characterization of Mg-doped Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion batteries", Solid State Ion., vol. 282, pp. 88-94, 2015.
[http://dx.doi.org/10.1016/j.ssi.2015.10.005]
[8]
B. Wu, X.K. Yang, Y. Zhang, R.Z. Yu, P. Gao, H.B. Shu, L. Liu, and X.Y. Wang, "A novel facile synthesis of hollow multi-component Li1.4Mn0.6Co0.2Ni0.2O2+δ spheres via controlling the porosity of precursor", J. Alloys Compd., vol. 744, pp. 809-820, 2018.
[http://dx.doi.org/10.1016/j.jallcom.2018.02.084]
[9]
J. Zhao, Z. Wang, H. Guo, X. Li, Z. He, and T. Li, "Synthesis and electrochemical characterization of Zn-doped Li-rich layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material", Ceram. Int., vol. 41, no. 9, pp. 11396-11401, 2015.
[http://dx.doi.org/10.1016/j.ceramint.2015.05.102]
[10]
D. Wang, I. Belharouak, L.H. Ortega, X.F. Zhang, R. Xu, D.H. Zhou, G.W. Zhou, and K. Amine, "Synthesis of high capacity cathodes for lithium-ion batteries by morphology-tailored hydroxide co-precipitation", J. Power Sources, vol. 274, pp. 451-457, 2015.
[http://dx.doi.org/10.1016/j.jpowsour.2014.10.016]
[11]
X. Huang, Q.S. Zhang, H.T. Chang, J.L. Gan, H.J. Yue, and Y. Yang, "Hydrothermal Synthesis of nanosized LiMnO2-Li2MnO3 compounds and their electrochemical performances", J. Electrochem. Soc., vol. 156, no. 3, pp. A162-A168, 2009.
[http://dx.doi.org/10.1149/1.3054397]
[12]
Y. Zou, Y. Yin, Y.B. Gao, C.L. Xiang, H.L. Chu, S.J. Qiu, E.H. Yan, F. Xu, and L.X. Sun, "Chitosan-mediated Co-Ce-B nanoparticles for catalyzing the hydrolysis of sodium borohydride", Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4912-4921, 2018.
[http://dx.doi.org/10.1016/j.ijhydene.2018.01.125]
[13]
S.J. Qiu, J.L. Huang, F.H. Shen, R. Pang, H.L. Chu, Y.J. Zou, C.L. Xiang, F. Xu, Y. Du, J.C. Wang, L.X. Sun, and H.Y. Zhou, "Ternary Co-Ni-B amorphous alloy with a superior electrochemical performance in a wide temperature range", Int. J. Hydrogen Energy, vol. 41, no. 6, pp. 3955-3960, 2016.
[http://dx.doi.org/10.1016/j.ijhydene.2016.01.020]
[14]
B. Chen, B.C. Zhao, J.F. Zhou, J.Y. Song, Z.T. Fang, J.M. Dai, X.B. Zhu, and Y.P. Sun, "Enhanced electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode materials through facile layered/spinel phase tuning", J. Solid State Electrochem., vol. 22, no. 8, pp. 2587-2596, 2018.
[http://dx.doi.org/10.1007/s10008-018-3953-8]
[15]
Z. Zhuo, X.D. Guo, Y.J. Zhong, W.B. Hua, C.H. Shen, S.L. Chou, and X.S. Yang, "Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances", Electrochim. Acta, vol. 188, pp. 336-343, 2016.
[http://dx.doi.org/10.1016/j.electacta.2015.12.021]
[16]
S. Sun, Y. Yin, N. Wan, Q. Wu, X. Zhang, D. Pan, Y. Bai, and X. Lu, "AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries", ChemSusChem, vol. 8, no. 15, pp. 2544-2550, 2015.
[http://dx.doi.org/10.1002/cssc.201500143] [PMID: 26105748]
[17]
Q. Zhang, J.T. Mei, X.L. Xie, X.M. Wang, and J.Y. Zhang, "Solution combustion synthesis and enhanced electrochemical performance Li1.2Ni0.2Mn0.6O2 nanoparticles by controlling NO3-/CH3COO- ratio of the precursors", Mater. Res. Bull., vol. 70, pp. 397-402, 2015.
[http://dx.doi.org/10.1016/j.materresbull.2015.05.005]
[18]
Y. Li, X.H. Li, Z.X. Wang, H.J. Guo, and J.X. Wang, "Spray pyrolysis synthesis of nickel-rich layered cathodes LiNi1−2xCoxMnxO2 (x = 0.075, 0.05, 0.025) for lithium-ion batteries", J. Energy Chem., vol. 27, no. 2, pp. 447-450, 2018.
[http://dx.doi.org/10.1016/j.jechem.2017.11.025]
[19]
E. Wang, C.F. Shao, S.J. Qiu, H.L. Chu, Y.J. Zou, C.L. Xiang, F. Xu, and L.X. Sun, "Organic carbon gel assisted-synthesis of Li1.2Mn0.6Ni0.2O2 for a high-performance cathode material for Li-ion batteries", RSC Advances, vol. 7, no. 3, pp. 1561-1566, 2017.
[http://dx.doi.org/10.1039/C6RA26077B]
[20]
L. Zhou, M.J. Tian, Y.L. Deng, Q.J. Zheng, C.G. Xu, and D.M. Lin, "La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries", Ceram. Int., vol. 42, no. 14, pp. 15623-15633, 2016.
[http://dx.doi.org/10.1016/j.ceramint.2016.07.016]
[21]
P. Ying, X.Y. Qiu, Q.Q. Zhang, and Q.C. Zhuang, "Synthesis and electrochemical properties of Li-rich cathode material Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/4, 1/3) for Li-ion battery", Ionics, vol. 21, no. 3, pp. 657-665, 2014.
[http://dx.doi.org/10.1007/s11581-014-1207-z]
[22]
J. Lin, D.B. Mu, Y. Jin, B.R. Wu, Y.F. Ma, and F. Wu, "Li-rich layered composite Li[Li0.2Ni0.2Mn0.6]O2 synthesized by a novel approach as cathode material for lithium ion battery", J. Power Sources, vol. 230, pp. 76-80, 2013.
[http://dx.doi.org/10.1016/j.jpowsour.2012.12.042]
[23]
W. Pan, W.J. Peng, G.C. Yan, H.J. Guo, Z.X. Wang, X.H. Li, W.H. Gui, J.X. Wang, and N. Chen, "Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 coating", Energy Technol. (Weinheim), vol. 6, no. 11, pp. 2139-2145, 2018.
[http://dx.doi.org/10.1002/ente.201800253]
[24]
T. Yu, J.L. Li, G.F. Xu, J.G. Li, F.X. Ding, and F.Y. Kang, "Improved cycle performance of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by Ga doping for lithium ion battery cathode material", Solid State Ion., vol. 301, pp. 64-71, 2017.
[http://dx.doi.org/10.1016/j.ssi.2017.01.008]
[25]
S. Shi, T. Wang, M. Cao, J. Wang, M. Zhao, and G. Yang, "Rapid self-assembly spherical Li1.2Mn0.56Ni0.16Co0.08O2 with improved performances by microwave hydrothermal method as cathode for lithium-ion batteries", ACS Appl. Mater. Interfaces, vol. 8, no. 18, pp. 11476-11487, 2016.
[http://dx.doi.org/10.1021/acsami.6b01683] [PMID: 27098184]
[26]
S. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, and C.D. Gu, "Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability", J. Power Sources, vol. 228, pp. 14-23, 2013.
[http://dx.doi.org/10.1016/j.jpowsour.2012.11.091]
[27]
P.G. Bruce, B. Scrosati, and J.M. Tarascon, "Nanomaterials for rechargeable lithium batteries", Angew. Chem. Int. Ed. Engl., vol. 47, no. 16, pp. 2930-2946, 2008.
[http://dx.doi.org/10.1002/anie.200702505] [PMID: 18338357]
[28]
Y. Li, Y. Bai, X. Bi, J. Qian, L. Ma, J. Tian, C. Wu, F. Wu, J. Lu, and K. Amine, "An effectively activated hierarchical nano-/microspherical Li1.2Ni0.2Mn0.6O2 cathode for long-life and high-rate lithium-ion batteries", ChemSusChem, vol. 9, no. 7, pp. 728-735, 2016.
[http://dx.doi.org/10.1002/cssc.201501548] [PMID: 26940745]
[29]
D. Ma, P.X. Zhang, Y.L. Li, A.M. Abdelkader, D.P. Singh, X.Z. Ren, and L.B. Deng, "3D networks of carbon-coated magnesium-doped olivine nanofiber as binder-free cathodes for high-performance Li-ion battery", Adv. Mater. Interfaces, vol. 3, no. 17, . 1600241, 2016
[http://dx.doi.org/10.1002/admi.201600241]
[30]
K. Redel, A. Kulka, A. Plewa, and J. Molenda, "High-performance Li-rich layered transition metal oxide cathode materials for Li-ion batteries", J. Electrochem. Soc., vol. 3, no. 166, pp. A5333-A5342, 2019.
[http://dx.doi.org/10.1149/2.0511903jes]
[31]
C. Du, F. Zhang, C.X. Ma, J.W. Wu, Z.Y. Tang, X.H. Zhang, and D.Y. Qu, "Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery", Ionics, vol. 22, no. 2, pp. 209-218, 2015.
[http://dx.doi.org/10.1007/s11581-015-1541-9]
[32]
X. Zhang, X.B. Meng, J.W. Elam, and I. Belharouak, "Electrochemical characterization of voltage fade of Li1.2Ni0.2Mn0.6O2 cathode", Solid State Ion., vol. 268, pp. 231-235, 2014.
[http://dx.doi.org/10.1016/j.ssi.2013.09.052]
[33]
H. Xu, Q.Y. Wang, and C.H. Chen, "Synthesis of Li[Li0.2Ni0.2Mn0.6]O2 by radiated polymer gel method and impact of deficient Li on its structure and electrochemical properties", J. Solid State Electrochem., vol. 12, no. 9, pp. 1173-1178, 2008.
[http://dx.doi.org/10.1007/s10008-008-0546-y]
[34]
C. Johnson, J.S. Kim, C. Lefief, N. Li, J.T. Vaughey, and M.M. Thackeray, "The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3•(1-x)LiMn0.5Ni0.5O2 electrodes", Electrochem. Commun., vol. 6, no. 10, pp. 1085-1091, 2004.
[http://dx.doi.org/10.1016/j.elecom.2004.08.002]
[35]
C.W. Cao, J.X. Liu, L.L. Kwan, M. Wang, Y. Liu, R.G. Ma, S.L. Yang, Z.G. Lu, and C.Y. Chung, "Facile synthesis of porous Li-rich layered Li[Li0.2Mn0.534Ni0.133Co0.133]O2 as high-performance cathode materials for Li-ion batteries", RSC Advances, vol. 5, no. 39, pp. 30507-30513, 2015.
[http://dx.doi.org/10.1039/C5RA03445K]
[36]
S.L. Qiu, T.T. Fang, Y. Zhu, J.Q. Hua, H.L. Chu, Y.J. Zou, J.L. Zeng, F. Xu, and L.X. Sun, "Li1.2Mn0.6Ni0.2O2 with 3D porous rod-like hierarchical micro/nanostructure for high-performance cathode material", J. Alloys Compd., vol. 790, pp. 863-870, 2019.
[http://dx.doi.org/10.1016/j.jallcom.2019.03.282]
[37]
S.J. Shi, J.P. Tu, Y.D. Zhang, Y.J. Zhang, C.D. Gu, and X.L. Wang, "Morphology and electrochemical performance of Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode materials prepared with different metal sources", Electrochim. Acta, vol. 109, pp. 828-834, 2013.
[http://dx.doi.org/10.1016/j.electacta.2013.08.002]

© 2024 Bentham Science Publishers | Privacy Policy