Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Establishment and In Vitro Evaluation of Porous Ion-Responsive Targeted Drug Delivery System

Author(s): Hongfei Liu, Jie Zhu, Pengyue Bao, Yueping Ding, Jiapeng Wang, Yi Du, Yang Qu* and Ying Xu*

Volume 27, Issue 11, 2020

Page: [1102 - 1113] Pages: 12

DOI: 10.2174/0929866527666200320095453

Price: $65

Abstract

Background: Protein drugs have disadvantages, such as short half-lives, unstable biological activities, and low utilization efficiency.

Objective: In this paper, a porous ion-responsive targeted drug delivery system was designed, combining biodegradable carriers with ion exchange technology to overcome problems for protein drug delivery systems.

Methods: Carboxymethyl Chitosan Porous Microspheres (CCPM) were prepared using an emulsification- chemical crosslinking method. Chitosan-bovine serum albumin-carboxymethyl chitosan porous microspheres (CBCCPM) were prepared using a dynamic ion exchange method and static self-assembly technology.

Results: CCPM were round in appearance mostly with a particle size distribution of 5-15 μm, which facilitates passive targeting to the lungs. CCPM had a total ion exchange capacity of 9.97 ± 0.07 mmol/g and showed a strong ability to attract and contain positively charged drugs. A potentiometric titration curve was used to identify the dissociation behavior of exchangeable groups on the microspheres; the optimal pH for ion exchange of microspheres was ≥ 4.3. CCPM had ion responsiveness, in vitro degradation ability, thermal stability and biocompatibility. In vitro release results confirmed that BSA and CCPM were mainly bound together by ionic bonds and the drug release mechanism of the self-assembled microspheres changed from particle diffusion to membrane diffusion under pH 7.4 PBS solution containing 0.02% Tween 80. Circular dichroism and sodium dodecyl-sulfate polyacrylamide gel electrophoresis results showed no significant change in the secondary structure and purity of BSA after binding to CCPM. The cumulative in vitro release rate of microspheres after 24 h was 86.78%.

Conclusion: In this paper, CBCCPM, a porous ion-responsive targeted drug delivery system, was designed.

Keywords: BSA, carboxymethyl chitosan, ion exchange, lung targeting, porous microspheres, self-assembly.

Erratum In:
Establishment and In Vitro Evaluation of Porous Ion-Responsive Targeted Drug Delivery System

Graphical Abstract

[1]
Peng, Q.; Mu, H. The potential of protein-nanomaterial interaction for advanced drug delivery. J. Control. Release, 2016, 225(1), 121-132.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.041] [PMID: 26812004]
[2]
Yang, J.; Zhou, Y.; Chen, L. Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food Funct., 2014, 5(1), 92-101.
[http://dx.doi.org/10.1039/C3FO60351B] [PMID: 24281138]
[3]
Breitsamer, M.; Winter, G. Vesicular phospholipid gels as drug delivery systems for small molecular weight drugs, peptides and proteins: State of the art review. Int. J. Pharm., 2019, 557, 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.030] [PMID: 30572079]
[4]
Li, C.; Arakawa, T. Application of native polyacrylamide gel electrophoresis for protein analysis: Bovine serum albumin as a model protein. Int. J. Biol. Macromol., 2019, 125, 566-571.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.090] [PMID: 30543882]
[5]
Guo, B.L.; Gao, Q.Y. Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly (N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr. Res., 2007, 342(16), 2416-2422.
[http://dx.doi.org/10.1016/j.carres.2007.07.007] [PMID: 17669378]
[6]
Sonia, T.A.; Sharma, C.P. An overview of natural polymers for oral insulin delivery. Drug Discov. Today, 2012, 17(13-14), 784-792.
[http://dx.doi.org/10.1016/j.drudis.2012.03.019] [PMID: 22521664]
[7]
Liu, H.F.; Su, X.Y.; Li, X.; Zhao, X.; Zang, L.; Pan, W.S. Development of prolonged release microspheres of metformin hydrochloride using ion exchange resins. J. Chin. Pharm. Sci., 2006, 15(3), 155-161.
[8]
Wang, S.; Chen, K.; Li, L.; Guo, X. Binding between proteins and cationic spherical polyelectrolyte brushes: Effect of pH, ionic strength, and stoichiometry. Biomacromolecules, 2013, 14(3), 818-827.
[http://dx.doi.org/10.1021/bm301865g] [PMID: 23402270]
[9]
Yang, C.; Xu, L.; Zhou, Y.; Zhang, X.M.; Huang, X.; Wang, M.; Han, Y.; Zhai, M.L.; Wei, S.C.; Li, J.Q. A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohydr. Polym., 2010, 82(4), 1297-1305.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.013]
[10]
Guo, X.; Chang, R.K.; Hussain, M.A. Ion-exchange resins as drug delivery carriers. J. Pharm. Sci., 2009, 98(11), 3886-3902.
[http://dx.doi.org/10.1002/jps.21706] [PMID: 19226637]
[11]
Shang, R.; Liu, C.; Quan, P.; Zhao, H.; Fang, L. Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int. J. Pharm., 2018, 545(1-2), 163-169.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.004] [PMID: 29729403]
[12]
Ichikawa, H.; Fujioka, K.; Adeyeye, M.C.; Fukumori, Y. Use of ion-exchange resins to prepare 100 microm-sized microcapsules with prolonged drug-release by the Wurster process. Int. J. Pharm., 2001, 216(1-2), 67-76.
[http://dx.doi.org/10.1016/S0378-5173(01)00573-7] [PMID: 11274808]
[13]
Liu, H.; Zhang, S.; Nie, S.; Zhao, X.; Sun, X.; Yang, X.; Pan, W. Preparation and characterization of a novel pH-sensitive ion exchange resin. Chem. Pharm. Bull. (Tokyo), 2005, 53(6), 631-633.
[http://dx.doi.org/10.1248/cpb.53.631] [PMID: 15930772]
[14]
Liu, H.F.; Liu, D.; Chen, C. Preparation and evaluation of carbinoxamine maleate sustained release uspensions with ion exchange resin as the carriers. Lat. Am. J. Pharm., 2017, 36(4), 797-809.
[15]
Zhong, Q.; Tian, J.H.; Liu, T.L. Preparation and antibacterial properties of carboxymethyl chitosan/ZnO nanocomposite microspheres with enhanced biocompatibility. Mater. Lett., 2018, 212, 58-61.
[http://dx.doi.org/10.1016/j.matlet.2017.10.062]
[16]
Cheng, F.; Wu, Y.; Li, H.; Yan, T.; Wei, X.; Wu, G.; He, J.; Huang, Y.; Biodegradable, N. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr. Polym., 2019, 207, 180-190.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.077] [PMID: 30599998]
[17]
Li, T.; Yang, J.; Liu, R.; Yi, Y.; Huang, M.; Wu, Y.; Tu, H.; Zhang, L. Efficient fabrication of reversible pH-induced carboxymethyl chitosan nanoparticles for antitumor drug delivery under weakly acidic microenvironment. Int. J. Biol. Macromol., 2019, 126, 68-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.178] [PMID: 30579898]
[18]
Anitha, A.; Maya, S.; Deepa, N.; Chennazhi, K.P.; Nair, S.V.; Tamura, H.; Jayakumar, R. Efficient water-soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr. Polym., 2011, 83(2), 452-461.
[http://dx.doi.org/10.1016/j.carbpol.2010.08.008]
[19]
Yu, Y.; Feng, R.; Yu, S.; Li, J.; Wang, Y.; Song, Y.; Yang, X.; Pan, W.; Li, S. Nanostructured lipid carrier-based pH and temperature dual-responsive hydrogel composed of carboxymethyl chitosan and poloxamer for drug delivery. Int. J. Biol. Macromol., 2018, 114, 462-469.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.117] [PMID: 29578017]
[20]
Li, G.; Cao, L.; Zhou, Z.; Chen, Z.; Huang, Y.; Zhao, Y. Rapamycin loaded magnetic Fe3O4/carboxymethylchitosan nanoparticles as tumor-targeted drug delivery system: Synthesis and in vitro characterization. Colloids Surf. B Biointerfaces, 2015, 128, 379-388.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.035] [PMID: 25779605]
[21]
Liu, H.F.; Shi, S.S.; Sun, C.S.; Zhao, X.; Shen, S.; He, H. Investigation of the pharmacokinetics of a novel sustained release metformin hydrochloride suspension with ion exchange resin as carriers in Beagle dogs. Afr. J. Pharm. Pharmacol., 2012, 6(7), 502-504.
[22]
Raghunathan, Y.; Amsel, L.; Hinsvark, O.; Bryant, W. Sustained-release drug delivery system I: Coated ion-exchange resin system for phenylpropanolamine and other drugs. J. Pharm. Sci., 1981, 70(4), 379-384.
[http://dx.doi.org/10.1002/jps.2600700409] [PMID: 7229946]
[23]
Qian, X.; Qing, F.; Jun, O.; Hong, S. Construction of drug-loaded titanium implants via layer-by-layer electrostatic self-assembly. Hua Xi Kou Qiang Yi Xue Za Zhi, 2014, 32(6), 537-541.
[PMID: 25665415]
[24]
Zhao, W.; Zhang, H.; Lu, T.L.; Liu, W.; Ma, Y.; Chen, T. Electrostatic self-assembly: An innovative approach to fabricate novel-structured magnetic liposomes. Appl. Surf. Sci., 2013, 265(1), 101-107.
[http://dx.doi.org/10.1016/j.apsusc.2012.10.131]
[25]
Kapoor, M.P.; Vinu, A.; Fujii, W.; Kimura, T.; Yang, Q.; Kasama, Y.; Yanagi, M.; Juneja, L.R. Self-assembly of mesoporous silicas hollow microspheres via food grade emulsifiers for delivery systems. Microporous Mesoporous Mater., 2010, 128(1-3), 187-193.
[http://dx.doi.org/10.1016/j.micromeso.2009.08.019]
[26]
Desfougères, Y.; Croguennec, T.; Lechevalier, V.; Bouhallab, S.; Nau, F. Charge and size drive spontaneous self-assembly of oppositely charged globular proteins into microspheres. J. Phys. Chem. B, 2010, 114(12), 4138-4144.
[http://dx.doi.org/10.1021/jp9090427] [PMID: 20218578]
[27]
Wang, L.L.; Huang, J.; Lai, D.C.; Leng, C.Y. The Konjac/Chitosan microspheres prepared by emulsion crosslinking method. Key Eng. Mater., 2016, 709, 32-37.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.709.32]
[28]
Zhang, H.; Wang, W.; Chu, D.; Liu, Y.; Guan, J. Preliminary study on chitosan/HAP bilayered scaffold. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2008, 22(11), 1358-1363.
[PMID: 19068607]
[29]
Li, X.; Nan, K.; Chen, H.; Xu, Y. Preparation and characterization of chitosan nanopores membranes for the transport of drugs. Int. J. Pharm., 2011, 420(2), 371-377.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.049] [PMID: 21907774]
[30]
Sheng, J.; Wei, S.L. Study on carboxymethyl dextran microspheres. J. Beijing Med. Univ., 1995, 27(5), 399-400.
[31]
Guo, S.; Wang, G.H.; Wu, T.; Bai, F.; Xu, J.; Zhang, X. Solid dispersion of berberine hydrochloride and Eudragit® S100: Formulation, physicochemical characterization and cytotoxicity evaluation. J. Drug Deliv. Sci. Technol., 2017, 40, 21-27.
[http://dx.doi.org/10.1016/j.jddst.2017.02.003]
[32]
Li, N.; Huang, H.Q.; Zhang, G.S.; Cui, W. Effect of 5- AZn-2 '-deoxycytidine on proliferation of human lung adenocarcinoma cell line A549 in vitro. Asian Pac. J. Trop. Med., 2013, 6(12), 982-985.
[http://dx.doi.org/10.1016/S1995-7645(13)60176-5] [PMID: 24144032]
[33]
United States Pharmacopeial Convention. Committee of Revision. USP XXII, or, NF XVII, or The United States pharmacopeia, or, The national formulary. United States Pharmacopeial Convention, Inc.: Rockville, MD, 1990
[34]
Wang, Q.Z. Preparation of chitosan, chitosan derivative microspheres and basic researches as interventional therapy biomaterials, Ocean University of China. 2006
[35]
Guo, X.; Chen, M.; Feng, W.; Liang, J.; Zhao, H.; Tian, L.; Chao, H.; Zou, X. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin. Int. J. Nanomedicine, 2011, 6, 3057-3064.
[PMID: 22162662]
[36]
Curry-Mccoy, T.V.; Osna, N.A.; Donohue, T.M. Modulation of lysozyme function and degradation after nitration with peroxynitrite. Biochim. Biophys. Acta (BBA), 2009, 1790(8), 778-786.
[http://dx.doi.org/10.1016/j.bbagen.2009.04.008]
[37]
Ponikova, S.; Kubackova, J.; Bednarikova, Z.; Marek, J.; Demjen, E.; Antosova, A.; Musatov, A.; Gazova, Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim. Biophys. Acta., 2017, 1861(11 Pt A), 2934-2943.
[http://dx.doi.org/10.1016/j.bbagen.2017.08.023] [PMID: 28865760]
[38]
Su, Z.Q.; Wu, S.H.; Zhang, H.L.; Feng, Y.F. Development and validation of an improved Bradford method for determination of insulin from chitosan nanoparticulate systems. Pharm. Biol., 2010, 48(9), 966-973.
[http://dx.doi.org/10.3109/13880200903325615] [PMID: 20731546]
[39]
Jiang, Y.B. Metal ion-protein chelates for sustained release of interferon. Shenyang Pharmaceutical University, 2011.
[40]
Elham, S.B.; Mehrorang, G.; Mohammadreza, A. Curcumin loaded nanostructured lipid carriers: In vitro digestion and release studies. Polyhedron, 2019, 164, 113-122.
[http://dx.doi.org/10.1016/j.poly.2019.02.002]
[41]
Lin, X.; Yang, H.; Su, L. Effect of size on the in vitro/in vivo drug release and degradation of exenatide-loaded PLGA microspheres. J. Drug Deliv. Sci. Technol., 2018, 45, 346-356.
[http://dx.doi.org/10.1016/j.jddst.2018.03.024]
[42]
Ruozi, B.; Tosi, G.; Leo, E.; Vandelli, M.A. Application of atomic force microscopy to characterize liposomes as drug and gene carriers. Talanta, 2007, 73(1), 12-22.
[http://dx.doi.org/10.1016/j.talanta.2007.03.031] [PMID: 19071844]
[43]
Chen, H.F.; Pan, S.R.; Hu, Y. Study on the biodegradation of carboxymethyl chitosan with lysozyme in vitro. Shenzhen Sci. Technol., 2005, 11, 146-150.
[44]
Mason, D.Y.; Taylor, C.R. The distribution of muramidase (lysozyme) in human tissues. J. Clin. Pathol., 1975, 28(2), 124-132.
[http://dx.doi.org/10.1136/jcp.28.2.124] [PMID: 1092717]
[45]
Kutscher, H.L.; Chao, P.; Deshmukh, M.; Singh, Y.; Hu, P.; Joseph, L.B.; Reimer, D.C.; Stein, S.; Laskin, D.L.; Sinko, P.J. Threshold size for optimal passive pulmonary targeting and retention of rigid microparticles in rats. J. Control. Release, 2010, 143(1), 31-37.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.019] [PMID: 20043961]
[46]
Wang, Q.; Zhang, S.R.; Nie, F. Spectroscopic study on the effect of two antibacterial drugs on structural changes of bovine serum albumin. Chemical Res. Appl., 2014, 26(8), 1188-1194.
[47]
Varma, S.; Sadasivan, C. A long acting biodegradable controlled delivery of chitosan microspheres loaded with tetanus toxoide as model antigen. Biomed. Pharmacother., 2014, 68(2), 225-230.
[http://dx.doi.org/10.1016/j.biopha.2013.08.009] [PMID: 24051124]
[48]
Van den Mooter, G.; Vervoort, L.; Kinget, R. Characterization of methacrylated inulin hydrogels designed for colon targeting: in vitro release of BSA. Pharm. Res., 2003, 20(2), 303-307.
[http://dx.doi.org/10.1023/A:1022295725841] [PMID: 12636172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy