Abstract
Background: In this paper, we have discussed the rheological analysis of the twodimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as a base nanofluid with convective boundary conditions based on the advantages of nanofluid flows in CNT.
Methods: Our main focus is to study on the rheological analysis of CNT suspended nanofluid with convective boundary condition using spectral method. Here, similarity transformations are used to transform the governing boundary layer equations.
Results: The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using recently developed Spectral Quasilinearization Method (SQLM).
Conclusion: The influence of the flow parameters on the dimensionless velocity, temperature and concentration profiles along with skin friction, Nusselt number and Sherwood number are depicted and described in forms of graphs and tables.
Keywords: Rheological analysis, nanofluid flow, carbon nanotube (CNT), convective boundary condition, spectral quasilineari- method.
Graphical Abstract
[http://dx.doi.org/10.1016/S0017-9310(99)00369-5]
[http://dx.doi.org/10.1016/S0017-9310(03)00156-X]
[http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.015]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032]
[http://dx.doi.org/10.12785/amis/080419]
[http://dx.doi.org/10.1166/jctn.2014.3334]
[http://dx.doi.org/10.1002/zamm.19890691115]
[http://dx.doi.org/10.1016/j.nucengdes.2011.04.011]
[http://dx.doi.org/10.1002/aic.690070108]
[http://dx.doi.org/10.1016/j.camwa.2008.09.013]
[http://dx.doi.org/10.1016/j.nonrwa.2008.09.010]
[http://dx.doi.org/10.1016/j.ijthermalsci.2009.12.005]
[http://dx.doi.org/10.1007/s11012-012-9541-6]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.019]
[http://dx.doi.org/10.1088/0253-6102/67/6/681]
[http://dx.doi.org/10.1016/j.aej.2014.09.001]
[http://dx.doi.org/10.1016/j.joems.2014.05.009]
[http://dx.doi.org/10.1063/1.4940133]
[http://dx.doi.org/10.1002/polb.22144]
[http://dx.doi.org/10.1080/00986445.2013.766882]
[http://dx.doi.org/10.1155/2014/341964]
[http://dx.doi.org/10.1016/j.proeng.2015.11.317]
[http://dx.doi.org/10.1371/journal.pone.0138355 PMID: 26414006]
[http://dx.doi.org/10.1016/j.asej.2015.10.015]
[http://dx.doi.org/10.1166/jctn.2016.5743]
[http://dx.doi.org/10.1016/j.aej.2016.03.003]
[http://dx.doi.org/10.1166/jctn.2016.5097]
[http://dx.doi.org/10.1515/phys-2017-0074]
[http://dx.doi.org/10.1080/00319104.2017.1399265]
[http://dx.doi.org/10.1007/s12648-013-0339-8]