Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Rheological Analysis of CNT Suspended Nanofluid with Convective Boundary Condition Using Spectral Method

Author(s): Soumyodipta Karmakar , Magagula V. Mpendulo and Sabyasachi Mondal*

Volume 11, Issue 2, 2021

Published on: 19 March, 2020

Page: [163 - 173] Pages: 11

DOI: 10.2174/2210681210666200319150308

Price: $65

Abstract

Background: In this paper, we have discussed the rheological analysis of the twodimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as a base nanofluid with convective boundary conditions based on the advantages of nanofluid flows in CNT.

Methods: Our main focus is to study on the rheological analysis of CNT suspended nanofluid with convective boundary condition using spectral method. Here, similarity transformations are used to transform the governing boundary layer equations.

Results: The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using recently developed Spectral Quasilinearization Method (SQLM).

Conclusion: The influence of the flow parameters on the dimensionless velocity, temperature and concentration profiles along with skin friction, Nusselt number and Sherwood number are depicted and described in forms of graphs and tables.

Keywords: Rheological analysis, nanofluid flow, carbon nanotube (CNT), convective boundary condition, spectral quasilineari- method.

Graphical Abstract

[1]
Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles, D.A. Siginer, H.P. Wang (Eds.), Developments and Applications of Non-Newtonian Flflows, ASME, New York vol. 66, pp. 99-105.
[2]
Xuan, Y.; Roetzel, W. Conceptions for heat transfer correlation of nano fluids. Heat Mass Transf., 2000, 43, 3701-3707.
[http://dx.doi.org/10.1016/S0017-9310(99)00369-5]
[3]
Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nano fluids. Heat Mass Transf., 2003, 46(5), 3639-3653.
[http://dx.doi.org/10.1016/S0017-9310(03)00156-X]
[4]
Kuznetsov, A.V.; Nifield, D.A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. Therm. Sci., 2010, 49, 243-247.
[http://dx.doi.org/10.1016/j.ijthermalsci.2009.07.015]
[5]
Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Heat Mass Transf., 2010, 53, 2477-2483.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.01.032]
[6]
Ebaid, A.; Al-Jeaid, H.K.; Al-Aly, H. Notes on the perturbation solutions of the boundary layer flflow of nano fluids past a stretching sheet. Appl. Math. Sci., 2013, 7(122), 6077-6085.
[7]
Ebaid, A.; Aly, E.H. Exact analytical solution of the peristaltic nano fluids flow in an asymmetric channel with exible walls: Application to cancer treatment. Comput. Math. Methods Med., 2013, 825376, 8.
[8]
Ebaid, A.; El-arabawy, H.A.; Nader, Y. New exact solutions for boundary-layer flow of a nanofluid past a stretching sheet. Differential Equ., 2013, 865464, 8.
[9]
Ebaid, A.; Aly, E.H.; Abdelazem, N.Y. Analytical and numerical investigations for the flow and heat transfer of nano fluids over a stretching sheet with partial slip boundary condition. J. Appl. Math. Inf. Sci., 2014, 8(4), 1639-1645.
[http://dx.doi.org/10.12785/amis/080419]
[10]
Ebaid, A.; Wazwaz, A.M. On the generalized Exp-function method and its application to boundary layer flow at nano-scale. Comput. Theor. Nanosci., 2014, 11(1), 178-184.
[http://dx.doi.org/10.1166/jctn.2014.3334]
[11]
Wang, C.Y. Free convection on a vertical stretching surface. ZAMM J. Appl. Math. Mech., 1989, 69(11), 418-420.
[http://dx.doi.org/10.1002/zamm.19890691115]
[12]
Kandasamy, R.; Loganathan, P.; Puvi, A.P. Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suc-tion/injection. Nucl. Eng. Des., 2011, 241(6), 2053-2059.
[http://dx.doi.org/10.1016/j.nucengdes.2011.04.011]
[13]
Sakiadis, B.C. Boundary{layer behavior on continuous solid surfaces: I. boundary{layer equations for two{dimensional and axisymmetric flow. J. American Instit. Chem. Eng., 1961, 7, 26.
[http://dx.doi.org/10.1002/aic.690070108]
[14]
Hiemenz, K. The boundary layer on a straight circular cylinder immersed in the uniform liqfluid flow. Dinglers Polytech. J., 1911, 326, 321.
[15]
Ishak, A.; Nazar, R.; Pop, I. Magnetohydrodynamic (MHD) flow of a micropolar fluid tflowards a stagnation point on a vertical surface. Comput. Math. Appl., 2008, 56(12), 3188-3194.
[http://dx.doi.org/10.1016/j.camwa.2008.09.013]
[16]
Ishak, A.; Nazar, R.; Pop, I. Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature. Nonlinear Anal. RWA, 2009, 10, 2909-2913.
[http://dx.doi.org/10.1016/j.nonrwa.2008.09.010]
[17]
Labropulu, F.; Pop, I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-newtonian fluid with heat transfer. Int. J. Therm. Sci., 2010, 49, 1042-1050.
[http://dx.doi.org/10.1016/j.ijthermalsci.2009.12.005]
[18]
Mahapatra, T.R.; Nandy, S.K.; Vajravelu, K.; Van Gorder, R.A. Stability analysis of the dual solutions for stagnation-point flow over a non-linearly stretching surface. Meccanica, 2012, 47, 1623-1632.
[http://dx.doi.org/10.1007/s11012-012-9541-6]
[19]
Nadeem, S.; Rashid, M.; Akbar, N.S. Non-orthogonal stagnation point flow of a nano non-Newtonian fluid tflowards a stretching surface with heat transfer. Int. J. Heat Mass Transf., 2013, 57(2), 679-689.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.019]
[20]
Akbar, N.S.; Khalique, C.M.; Hayat, K.Z. Cattanneo-Christov Heat Flux Model Study for Water-Based CNT Suspended Nanofluid Past a Stretching Surface; IntechOpen, 2017.
[21]
Akbar, N.S.; Khan, Z.H. Rheological Analysis of CNT suspended nanofluid with variable viscosity: numerical solution. Commum. Theor. Phys., 2017, 67(6), 681-687.
[http://dx.doi.org/10.1088/0253-6102/67/6/681]
[22]
Nandy, S.K.; Sidui, S.; Mahapatra, T.R. Unsteady MHD boundary-layer flow and heat trans-fer of nanofluid over a permeable shrinking sheet in the presence of thermal radiation. Alex. Eng. J., 2014, 53, 929-937.
[http://dx.doi.org/10.1016/j.aej.2014.09.001]
[23]
Das, K.; Duari, P.R.; Kundu, P.K. Numerical simulation of nanofluid flow with convective boundary condition. J. Egyptian Mathe. Society, 2015, 23, 435-439.
[http://dx.doi.org/10.1016/j.joems.2014.05.009]
[24]
Mushtaq, A.; Abbasbandy, S.; Mustafa, M.; Hayat, T.; Alsaedi, A. Numerical solution for Sakiadis flow of upper-convected Maxwell fluid using Cattaneo-Christov heat ux model. AIP Adv., 2016, 6(1), 015208.
[http://dx.doi.org/10.1063/1.4940133]
[25]
Taha, S. Flflow of non{newtonian fluids in porous media. J. Polym. Sci., B, Polym. Phys., 2010, 48(23), 2437-2767.
[http://dx.doi.org/10.1002/polb.22144]
[26]
Motsa, S.S. A new spectral relaxation method for similarity variable nonlinear boundary layer flow systems. Chem. Eng. Commun., 2014, 201, 241-256.
[http://dx.doi.org/10.1080/00986445.2013.766882]
[27]
Motsa, S.S.; Dlamini, P.G.; Khumalo, M. Spectral relaxation method and spectral quasilin-earization method for solving unsteady boundary layer flow problems. Adv. Math. Phys., 2014, 2014, 341964.
[http://dx.doi.org/10.1155/2014/341964]
[28]
Motsa, S.S.; Makukula, Z.G. On spectral relaxation method approach for steady von Karman flow of a Reiner-Rivlin fluid with Joule heating and viscous dissipation. Cent. Eur. J. Phys., 2013, 11, 363-374.
[29]
Haroun, N.A.; Sibanda, P.; Mondal, S.; Motsa, S.S.; Rashidi, M.M. Heat and mass transfer of nanofluid through an impulsively vertical stretching surface using the spectral relaxation method, 2015.
[30]
Haroun, N.A.H.; Mondal, S.; Sibanda, P. Unsteady natural convective boundary-layer flow of MHD nanofluid over a stretching surfaces with chemical reaction using the spectral relaxation method: A revised model. Proc. Eng., 2015, 127, 18-24.
[http://dx.doi.org/10.1016/j.proeng.2015.11.317]
[31]
Mondal, S.; Haroun, N.A.H.; Sibanda, P. The e ects of thermal radiation on an un-steady MHD axisymmetric stagnation- point flow over a shrinking sheet in presence of tem-perature dependent thermal conductivity with Navier slip. PLoS One, 2015, 10(9), e0138355.
[http://dx.doi.org/10.1371/journal.pone.0138355 PMID: 26414006]
[32]
Motsa, S.S. A new spectral local linearization method for nonlinear boundary layer flow prob-lems. J. Appl. Math., 2013, 2013, 1-15.
[33]
Agbaje, T.M.; Motsa, S.S.; Mondal, S.; Sibanda, P. A Large parameter Spectral Perturbation method for nonlinear systems of partial di erential equations that models boundary layer flow problems. Front. Heat Mass Transf., 2017, 9(36), 1-13.
[34]
Agbaje, T.M.; Mondal, S.; Makukula, Z.G.; Motsa, S.S.; Sibanda, P. A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet. Ain Shams Eng. J., 2018, 9(2), 233-243.
[http://dx.doi.org/10.1016/j.asej.2015.10.015]
[35]
Goqo, S.P.; Mondal, S. Sibanda., Motsa S.S., An unsteady MHD Je ery nanofluid flow over a shrinking sheet with thermal radiation and convective boundary condition using spectral quasilinearisation method. J. Comput. Theor. Nanosci., 2016, 13, 7483-7492.
[http://dx.doi.org/10.1166/jctn.2016.5743]
[36]
Haroun, N.A.; Sibanda, P.; Mondal, S.; Motsa, S.S. On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method. Boundary Value Problems, 2015, 24, 1-17.
[37]
Oyelakin, I.S.; Mondal, S.; Sibanda, P. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions. Alexandria Eng. J., 2016, 55, 1025-1035.
[http://dx.doi.org/10.1016/j.aej.2016.03.003]
[38]
Ahamed, S.M.S.; Mondal, S.; Sibanda, P. Thermo-diffusion e ects on unsteady mixed convec-tion in a magneto-nanofluid flow along an inclined cylinder with a heat source, Ohmic and viscous dissipation. J. Comput. Theor. Nanosci., 2016, 13, 1-15.
[http://dx.doi.org/10.1166/jctn.2016.5097]
[39]
Norfieldin, O.A.I.; Mondal, S.; Sibanda, P. Thermal instability of double-di usive natural convection in an inclined open square cavity. Acta Tech. CSAV, 2018, 63(3), 385-406.
[40]
Mondal, S.; Nandy, S.K.; Sibanda, P. MHD flow and heat transfer of Maxwell nanofluid over an unsteady permeable shrinking sheet with convective boundary conditions, 2018.
[41]
Haroun, N.A.H.; Mondal, S.; Sibanda, P. Hydromagnetic nano fluids flow through a porous medium with thermal radiation, chemical reaction and viscous dissipation using the spectral relax-ation method, 2018.
[42]
Sithole, H.M.; Mondal, S.; Sibanda, P.; Motsa, S.S. An unsteady MHD Maxwell nanofluid flow with convective boundary conditions using spectral local linearization method. Open Phys., 2017, 15, 637-646.
[http://dx.doi.org/10.1515/phys-2017-0074]
[43]
Ahamed, S.M.S.; Mondal, S.; Sibanda, P. Impulsive nanofluid flow along a vertical stretching cone, 2017.
[44]
Oyelakin, I.S.; Mondal, S.; Sibanda, P. A multi-domain spectral method for non-Darcian mixed convection flow in a pflower-law fluid with viscous dissipation. Phys. Chem. Fluids, 2018, 56(6), 771-789.
[http://dx.doi.org/10.1080/00319104.2017.1399265]
[45]
Nadeem, S.; Ijaz, S. Single wall carbon nanotube (SWCNT) examination on blood flow through a multiplestenosed artery with variable nanofluid viscosity. American Inst. Phys., 2015, 5, 107217.
[46]
Noreen, S.A.; Nadeem, S. Numerical solutions of Magneto-hydrodynamic boundary layer flow of tangent hyperbolic fluid tflowards a stretching sheet. Indian J. Phys., 2013, 87, 1121-1124.
[http://dx.doi.org/10.1007/s12648-013-0339-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy