Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Microwave-Assisted Extraction of Trace Metals from Sediments using Dilute Hydrogen Peroxide and Dilute Nitric Acid Prior to their Determination by Inductively Couple Plasma-Optical Emission Spectrometry

Author(s): Dibueng P. Mokoena, Sihle V. Mngadi and Philiswa N. Nomngongo*

Volume 16, Issue 8, 2020

Page: [970 - 978] Pages: 9

DOI: 10.2174/1573411016666200318144655

Price: $65

Abstract

Background and Objectives: Contamination of aquatic sediments by trace metals is one of the global problems. This is because trace metals in sediments are persistent and nonbiodegradable. They may pose danger to flora and fauna since they can be released into freshwater systems. This study aimed at the development of microwave-assisted extraction using diluted hydrogen peroxide and nitric acid for extraction of trace elements from sediment samples prior to inductively coupled plasma optical emission spectrometry (ICP OES) determination.

Methods: Response surface methodology (RSM) based on the Box-Behnken design was used for the optimization of factors affecting the microwave-assisted extraction process. The optimum conditions, for quantitative extraction of trace metals such as Cd2+, Cu2+, Cr2+, Pb2+ and Zn2+ were 16 min, 1.5 mol L-1 and 15% for extraction time, nitric acid concentration and H2O2 concentration, respectively.

Results and Discussion: Under optimized conditions, the accuracy of the method was evaluated by analyzing loamy clay certified reference materials (CRM052) and the recoveries were above 92%, suggesting that the obtained results were in good agreement with the certified values. The developed method has shown reproducibility (RSD < 5%), as well as relative low limits of detection (0.02-0.09 μg g-1) and limit of quantitation (0.07-0.3 μg g-1). The developed analytical method was applied for extraction and the determination of trace metals in freshwater sediment samples.

Conclusion: The method displayed advantages such as simplicity, rapidity, environmentally friendly and safe compared to classical methods that are based on concentrated acids.

Keywords: Couple plasma-optical emission spectrometry, desirability function, dilute hydrogen peroxide, freshwater sediments, microwave-assisted extraction, trace metals.

Graphical Abstract

[1]
Niazi, A.; Khorshidi, N.; Ghaemmaghami, P. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135, 69-75.
[http://dx.doi.org/10.1016/j.saa.2014.06.148] [PMID: 25062051]
[2]
Ahmed, M.; Chin, Y.H.; Guo, X.; Zhao, X-M. Microwave assisted digestion followed by ICP-MS for determination of trace metals in atmospheric and lake ecosystem. J. Environ. Sci. (China), 2017, 55, 1-10.
[http://dx.doi.org/10.1016/j.jes.2016.06.014] [PMID: 28477801]
[3]
Zhang, S.; Chen, B.; He, M.; Hu, B. Switchable solvent based liquid phase microextraction of trace lead and cadmium from environmental and biological samples prior to graphite furnace atomic absorption spectrometry detection. Microchem. J., 2018, 139, 380-385.
[http://dx.doi.org/10.1016/j.microc.2018.03.017]
[4]
Chand, V.; Prasad, S. ICP-OES assessment of heavy metal contamination in tropical marine sediments: a comparative study of two digestion techniques. Microchem. J., 2013, 111, 53-61.
[http://dx.doi.org/10.1016/j.microc.2012.11.007]
[5]
Sandroni, V.; Smith, C.M. Microwave digestion of sludge, soil and sediment samples for metal analysis by inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta, 2002, 468(2), 335-344.
[http://dx.doi.org/10.1016/S0003-2670(02)00655-4]
[6]
Sakan, S.; Đorđević, D.; Dević, G.; Relić, D.; Anđelković, I.; Ðuričić, J. A study of trace element contamination in river sediments in Serbia using microwave-assisted aqua regia digestion and multivariate statistical analysis. Microchem. J., 2011, 99(2), 492-502.
[http://dx.doi.org/10.1016/j.microc.2011.06.027]
[7]
Peng, Y.; Chen, R.; Yang, R. Analysis of heavy metals in Pseudostellaria heterophylla in Baiyi Country of Wudang District. J. Geochem. Explor., 2017, 176, 57-63.
[http://dx.doi.org/10.1016/j.gexplo.2016.02.011]
[8]
Xu, B.; Xu, Q.; Liang, C.; Li, L.; Jiang, L. Occurrence and health risk assessment of trace heavy metals via groundwater in Shizhuyuan Polymetallic Mine in Chenzhou City, China. Front. Environ. Sci. Eng., 2015, 9(3), 482-493.
[http://dx.doi.org/10.1007/s11783-014-0675-8]
[9]
Mancinelli, E.; Baltrėnaitė, E.; Baltrėnas, P.; Paliulis, D.; Passerini, G. Trace metals in biochars from biodegradable by-products of industrial processes. Water Air Soil Pollut., 2016, 227(6), 198.
[http://dx.doi.org/10.1007/s11270-016-2892-1]
[10]
Bing, H.; Wu, Y.; Zhou, J.; Liang, J.; Wang, J.; Yang, Z. Mobility and eco-risk of trace metals in soils at the Hailuogou Glacier foreland in eastern Tibetan Plateau. Environ. Sci. Pollut. Res. Int., 2016, 23(6), 5721-5732.
[http://dx.doi.org/10.1007/s11356-015-5592-2] [PMID: 26581692]
[11]
Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manage., 2011, 92(10), 2355-2388.
[http://dx.doi.org/10.1016/j.jenvman.2011.06.009] [PMID: 21708421]
[12]
Fırat, M.; Bakırdere, S.; Fındıkoğlu, M.S.; Kafa, E.B.; Yazıcı, E.; Yolcu, M.; Büyükpınar, Ç.; Chormey, D.S.; Sel, S.; Turak, F. Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Spectrochim. Acta B At. Spectrosc., 2017, 129, 37-41.
[http://dx.doi.org/10.1016/j.sab.2017.01.006]
[13]
Yang, X.; Low, G-C. Validation of a digestion procedure for ICP-AES and dynamic reaction cell ICP-MS for trace elemental analysis in environmental samples. Environmen. Chem. Lett., 2009, 7(4), 381-387.
[http://dx.doi.org/10.1007/s10311-008-0183-9]
[14]
Costa, V.C.; Silva, E.G.; Lima, D.C.; Franco, M.; Jesus, R.M.; Bezerra, M.A.; Amorim, F.A. Use of mixture design with minimal restrictions to optimize an extraction procedure employing diluted acids assisted by ultrasound and microwave for nutrient element determination in vegetal samples. J. Brazil. Chem. Soc., 2018, 29(6), 1189-1198.
[15]
de Sousa, R.A.; Ribeiro, A.S.; Vieira, M.A.; Curtius, A.J.; Baccan, N.; Cadore, S. Determination of trace elements in liquid aspartame sweeteners by ICP OES and ICP-MS following acid digestion. Mikrochim. Acta, 2007, 159(3-4), 241-246.
[http://dx.doi.org/10.1007/s00604-007-0782-3]
[16]
Lima, D.C.; Guedes, W.N.; Costa, V.C.; Amorim, F.A. Application of factorial design and desirability function to develop a single analytical procedure for the determination of metals in different tissues of blue crab (callinectes danae). J. Brazil. Chem. Soc., 2018, 29(9), 1885-1893.
[http://dx.doi.org/10.21577/0103-5053.20180064]
[17]
Tarantino, T.B.; Barbosa, I.S.; Lima, D.C.; Pereira, M.G.; Teixeira, L.S.; Korn, M.G.A. Microwave-assisted digestion using diluted nitric acid for multi-element determination in rice by ICP OES and ICP-MS. Food Anal. Methods, 2017, 10(4), 1007-1015.
[http://dx.doi.org/10.1007/s12161-016-0658-4]
[18]
Mokoena, D.P.; Mngadi, S.V.; Sihlahla, M.; Dimpe, M.K.; Nomngongo, P.N. Development of a rapid and simple digestion method of freshwater sediments for As, Cd, Cr, Cu, Pb, Fe, and Zn Determination by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES): An Evaluation of Dilute Nitric Acid. Soil Sediment Contam., 2019, 28, 1-11.
[http://dx.doi.org/10.1080/15320383.2019.1575334]
[19]
Mishra, A.; Mishra, S.; Bhargav, S.; Bhargava, C.; Thakur, M. Microwave assisted extraction, antioxidant potential and chromatographic studies of some Rasayana drugs. Chin. J. Integr. Med., 2015, 21(7), 523-529.
[http://dx.doi.org/10.1007/s11655-014-1771-5] [PMID: 25511426]
[20]
Letellier, M.; Budzinski, H.; Charrier, L.; Capes, S.; Dorthe, A. Optimization by factorial design of focused microwave assisted extraction of polycyclic aromatic hydrocarbons from marine sediment. Fresenius J. Anal. Chem., 1999, 364(3), 228-237.
[http://dx.doi.org/10.1007/s002160051329]
[21]
Kovács, Á.; Ganzler, K.; Simon-Sarkadi, L. Microwave-assisted extraction of free amino acids from foods. Zeitschrift für Lebensmitteluntersuchung und-Forschung A , 1998, 207(1), 26-30.
[http://dx.doi.org/10.1007/s002170050290 ]
[22]
Pallaroni, L.; von Holst, C.; Eskilsson, S.; Björklund, E. Microwave-assisted extraction of zearalenone from wheat and corn. Anal. Bioanal. Chem., 2002, 374(1), 161-166.
[http://dx.doi.org/10.1007/s00216-002-1426-4] [PMID: 12207259]
[23]
Luque-García, J.; Morales-Muñoz, S.; de Castro, M.L. Microwave assisted water extraction of acid herbicides from soils coupled to continuous filtration, pre-concentration, chromatographic separation and UV detection. Chromatographia, 2002, 55(3-4), 117-122.
[http://dx.doi.org/10.1007/BF02492130]
[24]
Kwon, J-H.; Bélanger, J.M.; Paré, J.R. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology. J. Agric. Food Chem., 2003, 51(7), 1807-1810.
[http://dx.doi.org/10.1021/jf026068a] [PMID: 12643634]
[25]
Zhang, Y.; Zheng, B.; Tian, Y.; Huang, S. Microwave-assisted extraction and anti-oxidation activity of polyphenols from lotus (Nelumbo nucifera Gaertn.) seeds. Food Sci. Biotechnol., 2012, 21(6), 1577-1584.
[http://dx.doi.org/10.1007/s10068-012-0210-2]
[26]
Bader, N. Sample preparation for trace element analysis by Graphite Furnace Atomic Absorption Spectroscopy (GFAAS): An overview , 2011, 2, pp. 211-219.
[27]
Priego-Capote, F.; de Castro, L. Ultrasound-assisted digestion: a useful alternative in sample preparation. J. Biochem. Biophys. Methods, 2007, 70(2), 299-310.
[http://dx.doi.org/10.1016/j.jbbm.2006.09.006] [PMID: 17081614]
[28]
Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC. Trends Analyt. Chem., 2009, 28(8), 943-951.
[http://dx.doi.org/10.1016/j.trac.2009.06.001]
[29]
Enamorado-Báez, S.; Abril, J.; Gómez-Guzmán, J. Determination of 25 trace element concentrations in biological reference materials by ICP-MS following different microwave-assisted acid digestion methods based on scaling masses of digested samples. ISRN Anal. Chem., 2013, 2013, Article ID 851713.
[http://dx.doi.org/10.1155/2013/851713]
[30]
Muller, E.I.; Souza, J.P.; Muller, C.C.; Muller, A.L.H.; Mello, P.A.; Bizzi, C.A. Microwave-assisted wet digestion with H2O2 at high temperature and pressure using single reaction chamber for elemental determination in milk powder by ICP-OES and ICP-MS. Talanta, 2016, 156-157, 232-238.
[http://dx.doi.org/10.1016/j.talanta.2016.05.019] [PMID: 27260458]
[31]
Alsaleh, K.A.M.; Meuser, H.; Usman, A.R.A.; Al-Wabel, M.I.; Al-Farraj, A.S. A comparison of two digestion methods for assessing heavy metals level in urban soils influenced by mining and industrial activities. J. Environ. Manage., 2018, 206, 731-739.
[http://dx.doi.org/10.1016/j.jenvman.2017.11.026] [PMID: 29161675]
[32]
Santoro, A.; Held, A.; Linsinger, T.P.J.; Perez, A.; Ricci, M. Comparison of total and aqua regia extractability of heavy metals in sewage sludge: The case study of a certified reference material. Trends Analyt. Chem., 2017, 89, 34-40.
[http://dx.doi.org/10.1016/j.trac.2017.01.010] [PMID: 28413235]
[33]
Mketo, N.; Nomngongo, P.N.; Ngila, J.C. Evaluation of different microwave-assisted dilute acid extracting reagents on simultaneous coal desulphurization and demineralization. Fuel, 2016, 163, 189-195.
[http://dx.doi.org/10.1016/j.fuel.2015.09.033]
[34]
Barela, P.; Silva, N.; Pereira, J.; Marques, J.; Rodrigues, L.; Moraes, D. Microwave-assisted digestion using diluted nitric acid for further trace elements determination in biodiesel by SF-ICP-MS. Fuel, 2017, 204, 85-90.
[http://dx.doi.org/10.1016/j.fuel.2017.05.028]
[35]
Terán-Baamonde, J.; Soto-Ferreiro, R-M.; Carlosena, A.; Andrade, J-M.; Prada, D. Determination of cadmium in sediments by diluted HCI extraction and isotope dilution ICP-MS. Talanta, 2018, 186, 272-278.
[http://dx.doi.org/10.1016/j.talanta.2018.04.054] [PMID: 29784360]
[36]
Trindade, A.S.; Dantas, A.F.; Lima, D.C.; Ferreira, S.L.; Teixeira, L.S. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high resolution continuum source atomic absorption spectrometry. Food Chem., 2015, 185, 145-150.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.118] [PMID: 25952852]
[37]
Zhang, W.; Hu, Y.; Cheng, H. Optimization of microwave-assisted extraction for six inorganic and organic arsenic species in chicken tissues using response surface methodology. J. Sep. Sci., 2015, 38(17), 3063-3070.
[http://dx.doi.org/10.1002/jssc.201500065] [PMID: 26106064]
[38]
Evgenakis, E.; Christophoridis, C.; Fytianos, K. Method optimization for heavy metal determination in milk powder: Application to milk samples from Greece. Environ. Sci. Pollut. Res. Int., 2018, 25(27), 26766-26779.
[http://dx.doi.org/10.1007/s11356-017-9863-y] [PMID: 28875392]
[39]
Asfaram, A.; Ghaedi, M.; Abidi, H.; Javadian, H.; Zoladl, M.; Sadeghfar, F. Synthesis of Fe3O4@CuS@Ni2P-CNTs magnetic nanocomposite for sonochemical-assisted sorption and pre-concentration of trace Allura Red from aqueous samples prior to HPLC-UV detection: CCD-RSM design. Ultrason. Sonochem., 2018, 44, 240-250.
[http://dx.doi.org/10.1016/j.ultsonch.2018.02.011] [PMID: 29680609]
[40]
Akçay, H.; Anagün, A.S. Multi response optimization application on a manufacturing factory. Math. Comput. Appl., 2013, 18(3), 531-538.
[http://dx.doi.org/10.3390/mca18030531]
[41]
Canadian sediment quality guidelines for the protection of aquatic life. summary tables; Canadian Council of Ministers of the Environment Winnipeg: MB, Canada, 2002.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy