Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Cytotoxic Dehydroabietylamine Derived Compounds

Author(s): Jana Wiemann, Ahmed Al-Harrasi and René Csuk *

Volume 20, Issue 15, 2020

Page: [1756 - 1767] Pages: 12

DOI: 10.2174/1871520620666200317110010

Price: $65

Abstract

Background and Methods: Chemotherapy remains one of the most important methods for the treatment of cancer. More recently in this context, some products derived from natural products have raised scientific interest which especially include many terpenes. Thereby, diterpenoids represent a special class, and within this class of important secondary natural products, especially compounds derived from Dehydroabietylamine (DA), are of particular interest.

Results: This review not only gives a summary of the most important findings on the cytotoxic behavior of DAderived compounds but also shows some drawbacks of these compounds, such low bioavailability and/or poor solubility of several derivatives of DA. It focusses on the chemical aspects and summarizes the DA related biological effects without deep discussion of underlying biochemical pathways.

Conclusion: Dehydroabietylamine-derived cytotoxic compounds hold a high potential to be developed into efficient antitumor active drugs.

Keywords: Dehydroabietylamine, cancer, cytotoxicity, diterpenoids, chemotherapy, natural products.

Graphical Abstract

[1]
Aigner, K.R.; Stephens, F.O.; Allen-Mersh, T.; Hortobagyi, G.; Khayat, D.; Picksley, S.M.; Sugarbaker, P.; Taguchi, T.; Thompson, J.F. Was ist eine maligne Erkrankung. In: Onkologie Basiswissen; Aigner, K.R.; Stephens, F.O., Eds.; Springer: Berlin, Heidelberg, 2016, pp. 3-13.
[http://dx.doi.org/10.1007/978-3-662-48585-9_1]
[2]
Muller-Esterl, W. Molekulare Basis von Krebsentstehung und Krebsbekampfung. In: Biochemie: Eine Einfuhrung fur Mediziner und Naturwissenschaftler; Muller-Esterl, W., Ed.; Springer: Berlin, Heidelberg, 2018, pp. 527-548..
[PMID: 10.1007/978-3-662-54851-6_35]
[3]
Bohm, R.; Cimin-Bredee, N.; Culman, J.; Gohlke, P.; Ley, L.; Luippold, G.; Ufer, M.; Watzig, V. Pharmakotherapie von Tumoren. In Pharmakotherapie: Klinische Pharmakologie., Lemmer, B.; Brune, K., Eds.; Springer: Berlin, Heidelberg., 2010, pp., 155-166..
[4]
Fromm, M.F.; Gramatzki, M. Pharmakotherapie von Tumoren. In Pharmakotherapie: Klinische Pharmakologie., Lemmer, B.; Brune, K., Eds.; Springer: Berlin, Heidelberg., 2010, pp. 155-166..
[http://dx.doi.org/10.1007/978-3-642-10541-8_11]
[5]
Samuelsson, G. Drugs of Natural Origin: A Textbook of Pharmacognosy.Swedish Pharmaceutical Press: Stockholm, 1999.
[6]
Borchardt, J.K. The beginnings of drug therapy: Ancient mesopotamian medicine. Drug News Perspect., 2002, 15(3), 187-192.
[http://dx.doi.org/10.1358/dnp.2002.15.3.840015 ] [PMID: 12677263]
[7]
Cragg, G.M.; Grothaus, P.G.; Newman, D.J. Natural Products in Drug Discovery: Recent Advances. In Plant Bioactives and Drug Discovery - Principles, Practice, and Perspectives., ; Cechinel-Filho, V., Ed.; John Wiley & Sons: Hoboken, NJ, USA. 2012.
[http://dx.doi.org/10.1002/9781118260005.ch1]
[8]
Cragg, G.M.; Newman, D.J. Natural product drug discovery in the next millennium. Pharm. Biol., 2001, 39(Suppl. 1), 8-17.
[PMID: 21554167]
[9]
Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, 2013, 1830(6), 3670-3695.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008 ] [PMID: 23428572]
[10]
Newman, D.J.; Cragg, G.M. Natural products as drugs and leads to drugs: The historical perspective. In Natural Product Chemistry for Drug Discovery., Buss, A.D.; Butler, M.S., Eds.; RSC Publishing: Cambridge, UK., 2009, pp., 3-27.
[http://dx.doi.org/10.1039/9781847559890-00003]
[11]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055 ] [PMID: 26852623]
[12]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657 ] [PMID: 15729362]
[13]
Demain, A.L.; Zhang, L. Natural Products and Drug Discovery. In Natural Products: Drug Discovery and Therapeutic Medicine., Zhang, L.; Demain, A.L., Eds.; Humana Press: Totowa, NJ, USA 2005, pp., 3-29..
[http://dx.doi.org/10.1007/978-1-59259-976-9_1]
[14]
Hanson, J.R. The classes of natural product and their isolation. In: 102 Natural Products: The Secondary Metabolites; Abel, E.W., Ed.; 103 RSC Publishing: Cambridge, UK., 2003, Vol. 17, pp. 1-34..
[http://dx.doi.org/10.1039/9781847551535-00001]
[15]
Clark, A. Natural Products. Foye’s Principles of Medicinal Chemistry., In Foye, W.O.; Lemke, T.L.; Williams, D.A., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA. 2008.
[16]
Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol., 2007, 3(7), 408-414.
[http://dx.doi.org/10.1038/nchembio.2007.5 ] [PMID: 17576428]
[17]
Moses, T.; Pollier, J.; Thevelein, J.M.; Goossens, A. Bioengineering of plant (tri)terpenoids: From metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol., 2013, 200(1), 27-43.
[http://dx.doi.org/10.1111/nph.12325 ] [PMID: 23668256]
[18]
Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep., 2013, 30(10), 1346-1356.
[http://dx.doi.org/10.1039/c3np70046a ] [PMID: 23942594]
[19]
Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep., 2011, 28(10), 1755-1772.
[http://dx.doi.org/10.1039/c1np90021h ] [PMID: 21713271]
[20]
Hanson, J.R. Diterpenoids. Nat. Prod. Rep., 2009, 26(9), 1156-1171.
[http://dx.doi.org/10.1039/b807311m] [PMID: 19693413]
[21]
Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep., 2017, 34(10), 1233-1243.
[http://dx.doi.org/10.1039/C7NP00040E ] [PMID: 28875214]
[22]
Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep., 2015, 32(12), 1654-1663.
[http://dx.doi.org/10.1039/C5NP00087D ] [PMID: 26514379]
[23]
Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep., 2012, 29(8), 890-898.
[http://dx.doi.org/10.1039/c2np20051a ] [PMID: 22695982]
[24]
Hanson, J.R. Diterpenoids of terrestrial origin. Nat. Prod. Rep., 2016, 33(10), 1227-1238.
[http://dx.doi.org/10.1039/C6NP00059B ] [PMID: 27467076]
[25]
Gonzalez, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep., 2015, 32(5), 684-704.
[http://dx.doi.org/10.1039/C4NP00110A ] [PMID: 25643290]
[26]
Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). In Biochemistry and Molecular Biology of Plants., Buchanan, B.; Gruissem, W.; Jones, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA., 2000, pp., 1250-1318..
[27]
Kersten, P.J.; Kopper, B.J.; Raffa, K.F.; Illman, B.L. Rapid analysis of abietanes in conifers. J. Chem. Ecol., 2006, 32(12), 2679-2685.
[http://dx.doi.org/10.1007/s10886-006-9191-z ] [PMID: 17082986]
[28]
Himejima, M.; Hobson, K.R.; Otsuka, T.; Wood, D.L.; Kubo, I. Antimicrobial terpenes from oleoresin of ponderosa pine tree Pinus ponderosa: A defense mechanism against microbial invasion. J. Chem. Ecol., 1992, 18(10), 1809-1818.
[http://dx.doi.org/10.1007/BF02751105 ] [PMID: 24254722]
[29]
Trapp, S.; Croteau, R. Defensive resin biosynthesis in conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, 52(1), 689-724.
[http://dx.doi.org/10.1146/annurev.arplant.52.1.689 ] [PMID: 11337413]
[30]
Langenheim, J.H. Plant resins: Chemistry, evolution, ecology, and ethnobotany. Timber Press: Cambridge, UK, 2003.
[31]
Soderberg, T.A.; Gref, R.; Holm, S.; Elmros, T.; Hallmans, G. Antibacterial activity of rosin and resin acids in vitro. Scand. J. Plast. Reconstr. Surg. Hand Surg., 1990, 24(3), 199-205.
[http://dx.doi.org/10.3109/02844319009041279 ] [PMID: 2281306]
[32]
Lewinsohn, E.; Savage Thomas, J.; Gijzen, M.; Croteau, R. Simultaneous analysis of monoterpenes and diterpenoids of conifer oleoresin. Phytochem. Anal., 2007, 4(5), 220-225.
[http://dx.doi.org/10.1002/pca.2800040506]
[33]
Joye, N.M.; Lawrence, R.V. Resin acid composition of pine oleoresins. J. Chem. Eng. Data, 1967, 12(2), 279-282.
[http://dx.doi.org/10.1021/je60033a034]
[34]
Hillis, W.E. Wood Extractives and Their Significance to the Pulp and Paper Industries.Academic Press Inc.: New York, USA, 1962.
[35]
Bahr, U.; Muller, P.; Muller-Dolezal, H.; Stoltz, R.; Soll, H. Houben-Weyl Methods of Organic Chemistry Vol. V/1c, 4th Edition: Conjugated Dienes, Diels-Alder Reactions. Georg Thieme Verlag: Stuttgart, 2014, pp. 327-421..
[36]
Fieser, L.F.; Campbell, W.P. Concerning dehydroabietic acid and the structure of pine resin acids. J. Am. Chem. Soc., 1938, 60(1), 159-170.
[http://dx.doi.org/10.1021/ja01268a050]
[37]
Fieser, L.F.; Fieser, M. Natural Products Related to Phenanthrene.Reinhold Publishing Corporation: New York, USA, 1949.
[38]
Enoki, A. Isomerization and autoxidation of resin acids. Wood Res., 1976, 59/60, 49-57.
[39]
San Feliciano, A.; Gordaliza, M.; Salinero, M.A.; Miguel del Corral, J.M. Abietane acids: Sources, biological activities, and therapeutic uses. Planta Med., 1993, 59(6), 485-490.
[http://dx.doi.org/10.1055/s-2006-959744 ] [PMID: 8302943]
[40]
Tanaka, R.; Tokuda, H.; Ezaki, Y. Cancer chemopreventive activity of “rosin” constituents of Pinus spez. and their derivatives in two-stage mouse skin carcinogenesis test. Phytomedicine, 2008, 15(11), 985-992.
[http://dx.doi.org/10.1016/j.phymed.2008.02.020 ] [PMID: 18424098]
[41]
Rodrigues-Correa, K.C.S.; de Lima, J.C.; Fett-Neto, A.G. Pine oleoresin: Tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food Energy Secur., 2012, 1(2), 81-93.
[http://dx.doi.org/10.1002/fes3.13]
[42]
Palma, A.; Pereira, J.M.; Soares, P. Resin tapping activity as a contribution to the management of maritime pine forest. For. Syst., 2016, 25(2)
[http://dx.doi.org/10.5424/fs/2016252-08925]
[43]
Baup, S. Lettre sur Plusieurs Nouvelles Substances Tirees du Jus des Plantes: l’Acide Abietique, Pinique, Breine, elemine, Solanine, etc. Ann. Chim. Phys., 1826, 31(2), 108-109.
[44]
Ruzicka, L.; de Graaft, G.B.R.; Müller, H.J. Polyterpene und Polyterpenoide LXXV. uber eine neue Wendung bei der Aufklarung des Kohlenstoffgerüstes der Abietinsaure und der Dextro-pimarsaure. Helv. Chim. Acta, 1932, 15(1), 1300-1303.
[http://dx.doi.org/10.1002/hlca.193201501149]
[45]
Ruzicka, L.; Furter, M. Polyterpene und Polyterpenoide LXVI. Beitrage zur genauen Bestimmung der Bruttoformeln einiger Triterpene und Triterpenoide von saurem Charakter. Helv. Chi. Acta, 1932, 15(1), 472-482.
[http://dx.doi.org/10.1002/hlca.19320150142]
[46]
Ruzicka, L.; Silbermann, H.; Furter, M. Polyterpene und Polyterpenoide LXVII. Beitrage zur Ermittelung der Zahl der Doppelbindungen bei den Amyrinen. Helv. Chim. Acta, 1932, 15(1), 482-490.
[http://dx.doi.org/10.1002/hlca.19320150143]
[47]
Barton, D.; Schmeidler, G. 236. The application of the method of electrostatic energy differences. Part I. Stereochemistry of the diterpenoid resin acids. J. Chem. Soc., 1948, 1197-1203.
[http://dx.doi.org/10.1039/jr9480001197]
[48]
Buckingham, J. Dictionary of natural products.Chapman and Hall: London, UK., 1994.
[49]
Burgstahler, A.W.; Marx, J.N. Synthesis of fichtelite and related derivatives of abietane. J. Org. Chem., 1969, 34(6), 1562-1566.
[http://dx.doi.org/10.1021/jo01258a006]
[50]
Prinz, S.; Müllner, U.; Heilmann, J.; Winkelmann, K.; Sticher, O.; Haslinger, E.; Hüfner, A. Oxidation products of abietic acid and its methyl ester. J. Nat. Prod., 2002, 65(11), 1530-1534.
[http://dx.doi.org/10.1021/np010656l ] [PMID: 12444672]
[51]
Gonzalez, M.A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem., 2014, 87, 834-842.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.023 ] [PMID: 25440884]
[52]
Faustino, C.; Neto, Í.; Fonte, P.; Macedo, A. Cytotoxicity and chemotherapeutic potential of natural rosin abietane diterpenoids and their synthetic derivatives. Curr. Pharm. Des., 2018, 24(36), 4362-4375.
[http://dx.doi.org/10.2174/1381612825666190112162817 ] [PMID: 30648502]
[53]
Sehrawat, A.; Kim, S.H.; Hahm, E.R.; Arlotti, J.A.; Eiseman, J.; Shiva, S.S.; Rigatti, L.H.; Singh, S.V. Cancer-selective death of human breast cancer cells by leelamine is mediated by bax and bak activation. Mol. Carcinog., 2017, 56(2), 337-348.
[http://dx.doi.org/10.1002/mc.22497 ] [PMID: 27149078]
[54]
Gowda, R.; Madhunapantula, S.V.; Kuzu, O.F.; Sharma, A.; Robertson, G.P. Targeting multiple key signaling pathways in melanoma using leelamine. Mol. Cancer Ther., 2014, 13(7), 1679-1689.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0867 ] [PMID: 24688050]
[55]
Kuzu, O.F.; Gowda, R.; Sharma, A.; Robertson, G.P. Leelamine mediates cancer cell death through inhibition of intracellular cholesterol transport. Mol. Cancer Ther., 2014, 13(7), 1690-1703.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0868 ] [PMID: 24688051]
[56]
Arief, M.M.H.; Abdel Fattah Hussein, A.; Mohammed, A.; El Mwafy, H.M. Chemical and bioactivity studies on salvia africana-lutea: cytotoxicity and apoptosis induction by abietane diterpenes isolated from Salvia africana-lutea. J. Basic Environ. Sci., 2018, 5(1), 72-79.
[57]
Deng, Y.; Hua, J.; Wang, W.; Zhan, Z.; Wang, A.; Luo, S. Cytotoxic terpenoids from the roots of Dracocephalum taliense. Molecules, 2017, 23(1)E57
[http://dx.doi.org/10.3390/molecules23010057 ] [PMID: 29280951]
[58]
Eghbaliferiz, S.; Emami, S.A.; Tayarani-Najaran, Z.; Iranshahi, M.; Shakeri, A.; Hohmann, J.; Asili, J. Cytotoxic diterpene quinones from Salvia tebesana Bunge. Fitoterapia, 2018, 128, 97-101.
[http://dx.doi.org/10.1016/j.fitote.2018.05.005 ] [PMID: 29772301]
[59]
Ferreira, R.J.; Kincses, A.; Gajdacs, M.; Spengler, G.; Dos Santos, D.J.V.A.; Molnar, J.; Ferreira, M.U. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J. Nat. Prod., 2018, 81(9), 2032-2040.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00326 ] [PMID: 30199257]
[60]
Garcia, C.; Teodosio, C.; Oliveira, C.; Oliveira, C.; Diaz-Lanza, A.; Reis, C.; Duarte, N.; Rijo, P. Naturally occurring plectranthus-derived diterpenes with antitumoral activities. Curr. Pharm. Des., 2018, 24(36), 4207-4236.
[http://dx.doi.org/10.2174/1381612825666190115144241 ] [PMID: 30644340]
[61]
Hadavand Mirzaei, H.; Firuzi, O.; Chandran, J.N.; Schneider, B.; Jassbi, A.R. Two antiproliferative seco-4,5-abietane diterpenoids from roots of Salvia ceratophylla L. Phytochem. Lett., 2019, 29, 129-133.
[http://dx.doi.org/10.1016/j.phytol.2018.11.017]
[62]
Han, C.; Peng, Y.; Wang, Y.; Huo, X.; Zhang, B.; Li, D.; Leng, A.; Zhang, H.; Ma, X.; Wang, C. Cytotoxic ent-Abietane-type diterpenoids from the roots of Euphorbia ebracteolata. Bioorg. Chem., 2018, 81, 93-97.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.032 ] [PMID: 30118990]
[63]
Hegazy, M.F.; Hamed, A.R.; El-Halawany, A.M.; Hussien, T.A.; Abdelfatah, S.; Ohta, S.; Pare, P.W.; Abdel-Sattar, E.; Efferth, T. Cytotoxicity of abietane diterpenoids from Salvia multicaulis towards multidrug-resistant cancer cells. Fitoterapia, 2018, 130, 54-60.
[http://dx.doi.org/10.1016/j.fitote.2018.08.002 ] [PMID: 30114467]
[64]
Jabbarzadeh, E.; Taylor, W.F.; Eslambolchimoghada, S.; Eslambolchimoghada, S. Deacetylnemorone abietane diterpenoids for use in cancer treatment. US Patent 20,180,369,165A1. 2018.
[65]
Jiang, W.; Shan, T-Z.; Xu, J.J.; Chen, W.J.; Miao, L.; Lv, M.Y.; Tao, L.; Liu, Y.Q.; Xu, J-J.; Chen, W-J. Cytotoxic abietane and kaurane diterpenoids from Celastrus orbiculatus. J. Nat. Med., 2019, 73(4), 841-846.
[http://dx.doi.org/10.1007/s11418-019-01326-3 ] [PMID: 31197550]
[66]
Lin, H.; Zheng, L.; Li, S.; Xie, B.; Cui, B.; Xia, A.; Lin, Z.; Zhou, P. Cytotoxicity of Tanshinone IIA combined with Taxol on drug-resist breast cancer cells MCF-7 through inhibition of Tau. Phytother. Res., 2018, 32(4), 667-671.
[http://dx.doi.org/10.1002/ptr.6014 ] [PMID: 29368408]
[67]
Matias, D.; Nicolai, M.; Saraiva, L.; Pinheiro, R.; Faustino, C.; Diaz Lanza, A.; Pinto Reis, C.; Stankovic, T.; Dinic, J.; Pesic, M.; Rijo, P. Cytotoxic activity of royleanone diterpenes from Plectranthus madagascariensis Benth. ACS Omega, 2019, 4(5), 8094-8103.
[http://dx.doi.org/10.1021/acsomega.9b00512 ] [PMID: 31459900]
[68]
Shi, Q.; Sun, Y.W.; Meng, D. Phytochemical and cytotoxic studies on the roots of Euphorbia fischeriana. Bioorg. Med. Chem. Lett., 2017, 27(2), 266-270.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.063 ] [PMID: 27913179]
[69]
Wang, X.; Pang, F-H.; Huang, L.; Yang, X-P.; Ma, X-L.; Jiang, C-N.; Li, F-Y.; Lei, F-H. Synthesis and biological evaluation of novel dehydroabietic acid-oxazolidinone hybrids for antitumor properties. Int. J. Mol. Sci., 2018, 19(10)E3116
[http://dx.doi.org/10.3390/ijms19103116 ] [PMID: 30314336]
[70]
Zhu, S-S.; Qin, D-P.; Wang, S-X.; Yang, C.; Li, G-P.; Cheng, Y-X.; Commipholactam, A. Commipholactam A, a cytotoxic sesquiterpenoidal lactam from Resina Commiphora. Fitoterapia, 2019, 134, 382-388.
[http://dx.doi.org/10.1016/j.fitote.2019.03.008 ] [PMID: 30890423]
[71]
Moreira, V.M.; Fallarero, A.; Yli-Kaulhaluoma, J.; Vuorela, P.; Vahermo, M. Abietane-Type Diterpenoids. WO Patent 2016/051013A1. 2016.
[72]
Lin, Z.; Zhang, S.; Zhou, A. Dehydroabietylamine derivative and its medical application as antibacterial and antitumor agent. CN Patent 101,580,477A,. 2009.
[73]
Abdissa, N.; Frese, M.; Sewald, N. Antimicrobial abietane-type diterpenoids from Plectranthus punctatus. Molecules, 2017, 22(11)
[http://dx.doi.org/10.3390/molecules22111919]
[74]
Alegre-Gómez, S.; Sainz, P.; Simões, M.F.; Rijo, P.; Moiteiro, C.; González-Coloma, A.; Martínez-Díaz, R.A. Antiparasitic activity of diterpenoids against Trypanosoma cruzi.Planta Med., 2017, 83(3-04), 306-311.,
[PMID: 27599261]
[75]
Baldin, V.P.; Scodro, R.B.L.; Lopes-Ortiz, M.A.; de Almeida, A.L.; Gazim, Z.C.; Ferarrese, L.; Faiões, V.D.S.; Torres-Santos, E.C.; Pires, C.T.A.; Caleffi-Ferracioli, K.R.; Siqueira, V.L.D.; Cortez, D.A.G.; Cardoso, R.F. Anti-Mycobacterium tuberculosis activity of essential oil and 6,7-dehydroroyleanone isolated from leaves of Tetradenia riparia (Hochst.) Codd (Lamiaceae). Phytomedicine, 2018, 47, 34-39.
[http://dx.doi.org/10.1016/j.phymed.2018.04.043 ] [PMID: 30166106]
[76]
Helfenstein, A.; Vahermo, M.; Nawrot, D.A.; Demirci, F.; İşcan, G.; Krogerus, S.; Yli-Kauhaluoma, J.; Moreira, V.M.; Tammela, P. Antibacterial profiling of abietane-type diterpenoids. Bioorg. Med. Chem., 2017, 25(1), 132-137.
[http://dx.doi.org/10.1016/j.bmc.2016.10.019 ] [PMID: 27793449]
[77]
Mothana, R.A.; Khaled, J.M.; El-Gamal, A.A.; Noman, O.M.; Kumar, A.; Alajmi, M.F.; Al-Rehaily, A.J.; Al-Said, M.S. Comparative evaluation of cytotoxic, antimicrobial and antioxidant activities of the crude extracts of three Plectranthus species grown in Saudi Arabia. Saudi Pharm. J., 2019, 27(2), 162-170.
[http://dx.doi.org/10.1016/j.jsps.2018.09.010 ] [PMID: 30766425]
[78]
Pu, D-B.; Wang, T.; Zhang, X-J.; Gao, J-B.; Zhang, R-H.; Li, X-N.; Wang, Y-M.; Li, X-L.; Wang, H-Y.; Xiao, W-L. Isolation, identification and bioactivities of abietane diterpenoids from Premna szemaoensis. RSC Advances, 2018, 8(12), 6425-6435.
[http://dx.doi.org/10.1039/C7RA13309J]
[79]
Tabefam, M.; Farimani, M.M.; Danton, O.; Ramseyer, J.; Kaiser, M.; Ebrahimi, S.N.; Salehi, P.; Batooli, H.; Potterat, O.; Hamburger, M. Antiprotozoal diterpenes from Perovskia abrotanoides. Planta Med., 2018, 84(12-13), 913-919.
[PMID: 29698984]
[80]
Gowda, R.; Inamdar, G.S.; Kuzu, O.; Dinavahi, S.S.; Krzeminski, J.; Battu, M.B.; Voleti, S.R.; Amin, S.; Robertson, G.P. Identifying the structure-activity relationship of leelamine necessary for inhibiting intracellular cholesterol transport. Oncotarget, 2017, 8(17), 28260-28277.
[http://dx.doi.org/10.18632/oncotarget.16002 ] [PMID: 28423677]
[81]
Shrestha, R.; Jo, J.J.; Lee, D.; Lee, T.; Lee, S. Characterization of in vitro and in vivo metabolism of leelamine using liquid chromatography- tandem mass spectrometry. Xenobiotica, 2018, 12, 1-7.
[PMID: 29790809]
[82]
Kovaleva, K.S.; Kononova, A.A.; Korobeynikov, V.A.; Cheresiz, S.V.; Zarubaev, V.V.; Shtro, A.A.; Orshanskaya, Y.R.; Yarovaya, O.I.; Pokrovsky, A.G.; Salakhutdinov, N.F. Cytotoxic and antiviral properties of novel dehydroabietylamine salts. Med. Chem., 2016, 6(10)
[http://dx.doi.org/10.4172/2161-0444.1000408]
[83]
Gowda, R.; Madhunapantula, S.V.; Sharma, A.; Kuzu, O.F.; Robertson, G.P. Nanolipolee-007, a novel nanoparticle-based drug containing leelamine for the treatment of melanoma. Mol. Cancer Ther., 2014, 13(10), 2328-2340.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0357 ] [PMID: 25082958]
[84]
Li, F.; He, L.; Song, Z-Q.; Yao, J-C.; Rao, X-P.; Li, H-T. Cytotoxic effects and pro-apoptotic mechanism of TBIDOM, a novel dehydroabietylamine derivative, on human hepatocellular carcinoma SMMC-7721 cells. J. Pharm. Pharmacol., 2008, 60(2), 205-211.
[http://dx.doi.org/10.1211/jpp.60.2.0009 ] [PMID: 18237468]
[85]
Liu, L.; Li, F.; He, L.; Rao, X-P.; Song, Z-Q. Inhibitory effect of dehydroabietylamine-fluorobenzaldehyde on human hepatocellular carcinoma cells. Zhongguo Yaoxue Zazhi (Beijing, China), 2013, 48(4), 269-274.
[86]
Rao, X.; Huang, X.; He, L.; Song, J.; Song, Z.; Shang, S. Antitumor activity and structure-activity relationship of diterpenoids with a dehydroabietyl skeleton. Comb. Chem. High Throughput Screen., 2012, 15(10), 840-844.
[http://dx.doi.org/10.2174/138620712803901199 ] [PMID: 22946842]
[87]
Liu, C-X.; Lin, Z-X.; Yu, X.; Lu, Z.; Zhou, A-M.; Bao, Y-L. A comparative study of antitumor activities and DNA cleavage on a class of dehydroabietylamine derivatives. Pharmazie, 2013, 68(11), 861-865.
[PMID: 24380233]
[88]
Luo, H.; Sui, Y.; Lin, W-H.; Wu, H-Q. Study on the antiproliferative activity of four Schiff bases derived from natural biomass dehydro- abietylamine. Indian J. Chem., 2016, 55B, 248-251.
[89]
Zhang, S.; Lin, Z. Synthesis and antitumor activities of Schiff bases derivatives of dehydroabietylamine. Zhongguo Yiyao Gongye Zazhi, 2010, 41(8).,
[90]
Chen, Y.; Lin, Z-X.; Zhou, A-M. Synthesis and antitumour activities of a novel class of dehydroabietylamine derivatives. Nat. Prod. Res., 2012, 26(23), 2188-2195.
[http://dx.doi.org/10.1080/14786419.2011.648191 ] [PMID: 22235912]
[91]
Lin, L-Y.; Bao, Y-L.; Chen, Y.; Sun, L-G.; Yang, X-G.; Liu, B.; Lin, Z-X.; Zhang, Y-W.; Yu, C-L.; Wu, Y.; Li, Y-X. N-Benzoyl-12-nitrodehydroabietylamine-7-one, a novel dehydroabietylamine derivative, induces apoptosis and inhibits proliferation in HepG2 cells. Chem. Biol. Interact., 2012, 199(2), 63-73.
[http://dx.doi.org/10.1016/j.cbi.2012.06.002 ] [PMID: 22743618]
[92]
Mustufa, M.A. Aslam, A.; Ozen, C.; Ali Hashmi, I.; Naqvi, N.U.H.; Ozturk, M.; Ali, F.I. Phenacyl group containing amide derivative of dehydroabietylamine exhibiting enhanced cytotoxic activity against PLC and MCF7 cancer cell lines. Med. Chem. Res., 2017, 26(7), 1367-1376.
[http://dx.doi.org/10.1007/s00044-017-1859-0]
[93]
Ling, T.; Tran, M.; González, M.A.; Gautam, L.N.; Connelly, M.; Wood, R.K.; Fatima, I.; Miranda-Carboni, G.; Rivas, F. (+)-Dehydroabietylamine derivatives target triple-negative breast cancer. Eur. J. Med. Chem., 2015, 102, 9-13.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.034 ] [PMID: 26241873]
[94]
Zhao, F.; Wang, W.; Lu, W.; Xu, L.; Yang, S.; Cai, X-M.; Zhou, M.; Lei, M.; Ma, M.; Xu, H-J.; Cao, F. High anticancer potency on tumor cells of dehydroabietylamine Schiff-base derivatives and a copper(II) complex. Eur. J. Med. Chem., 2018, 146, 451-459.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.041 ] [PMID: 29407970]
[95]
Wiemann, J.; Fischer, L.; Rohmer, M.; Csuk, R. Syntheses of C-ring modified dehydroabietylamides and their cytotoxic activity. Eur. J. Med. Chem., 2018, 156, 861-870.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.051 ] [PMID: 30056282]
[96]
Rao, X.; Song, Z.; He, L. Synthesis and antitumor activity of novel α-aminophosphonates from diterpenic dehydroabietylamine. Heteroatom Chem., 2008, 19(5), 512-516.
[http://dx.doi.org/10.1002/hc.20471]
[97]
Yang, X.; Qin, X.; Wang, Q.; Huang, Y. Synthesis and antitumor activities of piperazine- and cyclen-conjugated dehydroabietylamine derivatives. Heterocycl. Commun., 2015, 21(4), 233-237.
[http://dx.doi.org/10.1515/hc-2015-0025]
[98]
Mustufa, M.A.; Ozen, C.; Hashmi, I.A.; Aslam, A.; Baig, J.A.; Yildiz, G.; Muhammad, S.; Solangi, I.B.; Ul Hasan Naqvi, N.; Ozturk, M.; Ali, F.I. Synthesis and bio-molecular study of (+)-N-Acetyl-α-amino acid dehydroabietylamine derivative for the selective therapy of hepatocellular carcinoma. BMC Cancer, 2016, 16(1), 883.
[http://dx.doi.org/10.1186/s12885-016-2942-5 ] [PMID: 27842576]
[99]
Horan, T.C.; Zompa, M.A.; Seto, C.T.; Kim, K.K.; Moore, R.G.; Lange, T.S. Description of the cytotoxic effect of a novel drug Abietyl-Isothiocyanate on endometrial cancer cell lines. Invest. New Drugs, 2012, 30(4), 1460-1470.
[http://dx.doi.org/10.1007/s10637-011-9728-z ] [PMID: 21809024]
[100]
Xie, J.; He, L.; Zhang, L.; Rao, X.; Song, Z. Inhibition effect of a novel dehydroabietylamine derivative, DHAA-urea, on glucometabolism in human hepatoma HepG2 cells. Zhongguo Yaoke Daxue Xuebao, 2010, 41(2), 160-165.
[101]
Xie, J-X.; He, L.; Rao, X-P.; Song, Z-Q. DHAA-urea, a novel dehydroabietylamine derivative, inhibits SMMC-7721 cell growth by inducing apoptosis in vitro. Zhongguo Yiyuan Yaoxue Zazhi, 2014, 34(1), 26-28.
[102]
Xing, Y.; Zhang, W.; Song, J.; Zhang, Y.; Jiang, X.; Wang, R. Anticancer effects of a novel class rosin-derivatives with different mechanisms. Bioorg. Med. Chem. Lett., 2013, 23(13), 3868-3872.
[http://dx.doi.org/10.1016/j.bmcl.2013.04.069 ] [PMID: 23707051]
[103]
Wiemann, J.; Fischer Née Heller, L.; Kessler, J.; Ströhl, D.; Csuk, R. Ugi multicomponent-reaction: Syntheses of cytotoxic dehydroabietylamine derivatives. Bioorg. Chem., 2018, 81, 567-576.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.014 ] [PMID: 30248508]
[104]
Wiemann, J.; Heller, L.; Csuk, R. An access to a library of novel triterpene derivatives with a promising pharmacological potential by Ugi and Passerini multicomponent reactions. Eur. J. Med. Chem., 2018, 150, 176-194.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.060 ] [PMID: 29529499]
[105]
Classen-Houben, D.K.P.; Del Ruiz-Ruiz, M.; Amer, H.; Stanetty, C.; Jordis, U.; Beseda, I.; Czollner, L. Ugi reactions of tertiary carboxylic acids: Combinatorial synthesis of glycyrrhetinic acid derivatives. Proceed. 13th Int. Electron. Conf. Synth.Org. Chem., 1 - 30 November . 2009.
[106]
Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U ] [PMID: 11028061]
[107]
Ugi, I. Multikomponentenreaktionen (MCR). I. Perspektiven von Multikomponentenreaktionen und deren Bibliotheken. J. Prakt. Chem., 1997, 339(1), 499-516.
[http://dx.doi.org/10.1002/prac.19973390193]
[108]
Ugi, I. The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed. Engl., 1962, 1(1), 8-21.
[http://dx.doi.org/10.1002/anie.196200081]
[109]
Ugi, I.; Dömling, A.; Ebert, B. Combinatorial chemistry of multicomponent reactions. In: Combinatorial Chemistry; Jung, G., Ed.; 447 WILEY-VCH Verlag GmbH: Weinheim.. 1999.
[http://dx.doi.org/10.1002/9783527613502.ch04]
[110]
Ugi, I.; Werner, B.; Dömling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules, 2003, 8(1), 53-66.
[http://dx.doi.org/10.3390/80100053]
[111]
Kahnt, M.; Wiemann, J.; Fischer, L.; Sommerwerk, S.; Csuk, R. Transformation of asiatic acid into a mitocanic, bimodal-acting rhodamine B conjugate of nanomolar cytotoxicity. Eur. J. Med. Chem., 2018, 159, 143-148.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.066 ] [PMID: 30278332]
[112]
Sommerwerk, S.; Heller, L.; Kerzig, C.; Kramell, A.E.; Csuk, R. Rhodamine B conjugates of triterpenoic acids are cytotoxic mitocans even at nanomolar concentrations. Eur. J. Med. Chem., 2017, 127, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.040 ] [PMID: 28033541]
[113]
Wolfram, R.K.; Fischer, L.; Kluge, R.; Ströhl, D.; Al-Harrasi, A.; Csuk, R. Homopiperazine-rhodamine B adducts of triterpenoic acids are strong mitocans. Eur. J. Med. Chem., 2018, 155, 869-879.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.051 ] [PMID: 29960206]
[114]
Wolfram, R.K.; Heller, L.; Csuk, R. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur. J. Med. Chem., 2018, 152, 21-30.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.031 ] [PMID: 29684707]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy