Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

New Insights on KCa3.1 Channel Modulation

Author(s): Giuseppe Manfroni, Francesco Ragonese , Lorenzo Monarca, Andrea Astolfi, Loretta Mancinelli, Rossana G. Iannitti, Federica Bastioli, Maria L. Barreca, Violetta Cecchetti * and Bernard Fioretti*

Volume 26, Issue 18, 2020

Page: [2096 - 2101] Pages: 6

DOI: 10.2174/1381612826666200316152645

Price: $65

Abstract

The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.

Keywords: Intermediate conductance calcium activated potassium channel, KCa3.1, gating model, drug discovery, benzoimidazolones, 1-4 benzothiazine-3-one.

[1]
Logsdon NJ, Kang J, Togo JA, Christian EP, Aiyar J. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 1997; 272(52): 32723-6.
[http://dx.doi.org/10.1074/jbc.272.52.32723] [PMID: 9407042]
[2]
Ishii TM, Silvia C, Hirschberg B, Bond CT, Adelman JP, Maylie J. A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 1997; 94(21): 11651-6.
[http://dx.doi.org/10.1073/pnas.94.21.11651] [PMID: 9326665]
[3]
Joiner WJ, Wang LY, Tang MD, Kaczmarek LK. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 1997; 3094(20): 11013-8.
[4]
Lee CH, MacKinnon R. Activation mechanism of a human SK-calmodulin channel complex elucidated by cryo-EM structures. Science 2018; 4360(6388): 508-13.
[5]
Ghanshani S, Wulff H, Miller MJ, et al. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 2000; 275(47): 37137-49.
[http://dx.doi.org/10.1074/jbc.M003941200] [PMID: 10961988]
[6]
Cheong A, Bingham AJ, Li J, et al. Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol Cell 2005; 720(1): 45-52.
[http://dx.doi.org/10.1016/j.molcel.2005.08.030]
[7]
Ohya S, Kanatsuka S, Hatano N, et al. Downregulation of the Ca(2+)-activated K(+) channel KC a3.1 by histone deacetylase inhibition in human breast cancer cells. Pharmacol Res Perspect 2016; 174(2): e00228
[8]
Blomster LV, Strøbaek D, Hougaard C, et al. Quantification of the functional expression of the Ca2+ -activated K+ channel KCa 3.1 on microglia from adult human neocortical tissue. Glia 2016; 64(12): 2065-78.
[http://dx.doi.org/10.1002/glia.23040] [PMID: 27470924]
[9]
Catacuzzeno L, Fioretti B, Franciolini F. Expression and role of the intermediate-conductance calcium-activated potassium channel KCa3.1 in Glioblastoma. J Signal Transduct 2012; 2012; 421564
[http://dx.doi.org/10.1155/2012/421564] [PMID: 22675627]
[10]
Brown BM, Shim H, Christophersen P, Wulff H. Pharmacology of small- and intermediate-conductance calcium-activated potassium channels. Annu Rev Pharmacol Toxicol 2019; 60: 219-40.
[PMID: 31337271]
[11]
Heitzmann D, Warth R. Physiology and pathophysiology of potassium channels in gastrointestinal epithelia. Physiol Rev 2008; 88(3): 1119-82.
[http://dx.doi.org/10.1152/physrev.00020.2007] [PMID: 18626068]
[12]
Joiner WJ, Basavappa S, Vidyasagar S, et al. Active K+ secretion through multiple KCa-type channels and regulation by IKCa channels in rat proximal colon. Am J Physiol Gastrointest Liver Physiol 2003; 285(1): G185-96.
[http://dx.doi.org/10.1152/ajpgi.00337.2002] [PMID: 12606302]
[13]
McNicholas CM, Fraser G, Sandle GI. Properties and regulation of basolateral K+ channels in rat duodenal crypts. J Physiol 1994; 15 477(Pt 3): 381-92.
[14]
Furness JB, Robbins HL, Selmer IS, et al. Expression of intermediate conductance potassium channel immunoreactivity in neurons and epithelial cells of the rat gastrointestinal tract. Cell Tissue Res 2003; 314(2): 179-89.
[http://dx.doi.org/10.1007/s00441-003-0808-z] [PMID: 14513356]
[15]
Hamilton KL, Meads L, Butt AG. 1-EBIO stimulates Cl- secretion by activating a basolateral K+ channel in the mouse jejunum. Pflugers Arch 1999; 439(1-2): 158-66.
[http://dx.doi.org/10.1007/s004240051140] [PMID: 10651013]
[16]
Hamilton KL, Kiessling M. DCEBIO stimulates Cl- secretion in the mouse jejunum. Am J Physiol Cell Physiol 2006; 290(1): C152-64.
[http://dx.doi.org/10.1152/ajpcell.00187.2005] [PMID: 16135545]
[17]
Bridges RJ. Mechanisms of bicarbonate secretion: lessons from the airways. Cold Spring Harb Perspect Med 2012; 12(8): a015016
[http://dx.doi.org/10.1101/cshperspect.a015016]
[18]
Thompson J, Begenisich T. Membrane-delimited inhibition of maxi-K channel activity by the intermediate conductance Ca2+-activated K channel. J Gen Physiol 2006; 127(2): 159-69.
[http://dx.doi.org/10.1085/jgp.200509457] [PMID: 16418402]
[19]
Feske S, Wulff H, Skolnik EY. Ion channels in innate and adaptive immunity. Annu Rev Immunol 2015; 33: 291-353.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112212] [PMID: 25861976]
[20]
Jones HM, Bailey MA, Baty CJ, et al. An NH2-terminal multi-basic RKR motif is required for the ATP-dependent regulation of hIK1. Channels (Austin) 2007; 1(2): 80-91.
[http://dx.doi.org/10.4161/chan.3999] [PMID: 18690018]
[21]
Morales P, Garneau L, Klein H, Lavoie MF, Parent L, Sauvé R. Contribution of the KCa3.1 channel-calmodulin interactions to the regulation of the KCa3.1 gating process. J Gen Physiol 2013; 142(1): 37-60.
[http://dx.doi.org/10.1085/jgp.201210933] [PMID: 23797421]
[22]
Fioretti B, Pietrangelo T, Catacuzzeno L, Franciolini F. Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. Am J Physiol Cell Physiol 2005; 289(1): C89-96.
[http://dx.doi.org/10.1152/ajpcell.00369.2004] [PMID: 15743891]
[23]
Draheim HJ, Repp H, Dreyer F. Src-transformation of mouse fibroblasts induces a Ca(2+)-activated K+, current without changing the T-type Ca2+ current. Biochim Biophys Acta 1995; 191269(1): 57-63.
[24]
Lu X, Fein A, Feinstein MB, O’Rourke FA. Antisense knock out of the inositol 1,3,4,5-tetrakisphosphate receptor GAP1(IP4BP) in the human erythroleukemia cell line leads to the appearance of intermediate conductance K(Ca) channels that hyperpolarize the membrane and enhance calcium influx. J Gen Physiol 1999; 113(1): 81-96.
[http://dx.doi.org/10.1085/jgp.113.1.81] [PMID: 9874690]
[25]
Srivastava S, Choudhury P, Li Z, et al. Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1. Mol Biol Cell 2006; 17(1): 146-54.
[http://dx.doi.org/10.1091/mbc.e05-08-0763] [PMID: 16251351]
[26]
Srivastava S, Li Z, Lin L, et al. The phosphatidylinositol 3-phosphate phosphatase myotubularin- related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1. Mol Cell Biol 2005; 25(9): 3630-8.
[http://dx.doi.org/10.1128/MCB.25.9.3630-3638.2005] [PMID: 15831468]
[27]
Srivastava S, Li Z, Ko K, et al. Histidine phosphorylation of the potassium channel KCa3.1 by nucleoside diphosphate kinase B is required for activation of KCa3.1 and CD4 T cells. Mol Cell 2006; 824(5): 665-75.
[28]
Srivastava S, Panda S, Li Z, et al. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1. eLife 2016; 5: 5.
[http://dx.doi.org/10.7554/eLife.16093] [PMID: 27542194]
[29]
Garneau L, Klein H, Banderali U, Longpré-Lauzon A, Parent L, Sauvé R. Hydrophobic interactions as key determinants to the KCa3.1 channel closed configuration. An analysis of KCa3.1 mutants constitutively active in zero Ca2+. J Biol Chem 2009; 2284(1): 389-403.
[30]
Ji T, Corbalán-García S, Hubbard SR. Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1. PLoS One 2018; 2813(6): e0199942
[31]
Srivastava S, Di L, Zhdanova O, et al. The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-cells. Mol Biol Cell 2009; 20(17): 3783-91.
[http://dx.doi.org/10.1091/mbc.e09-05-0390] [PMID: 19587117]
[32]
Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr Med Chem 2007; 14(13): 1437-57.
[http://dx.doi.org/10.2174/092986707780831186] [PMID: 17584055]
[33]
Christophersen P, Wulff H. Pharmacological gating modulation of small- and intermediate-conductance Ca(2+)-activated K(+) channels (KCa2.x and KCa3.1). Channels (Austin) 2015; 9(6): 336-43.
[http://dx.doi.org/10.1080/19336950.2015.1071748] [PMID: 26217968]
[34]
Jørgensen S, Dyhring T, Brown DT, Strøbæk D, Christophersen P, Demnitz J. A high-throughput screening campaign for detection of ca(2+)-activated k(+) channel activators and inhibitors using a fluorometric imaging plate reader-based tl(+)-influx assay. Assay Drug Dev Technol 2013; 11(3): 163-72.
[http://dx.doi.org/10.1089/adt.2012.479] [PMID: 23198866]
[35]
Roxburgh CJ, Ganellin CR, Athmani S, et al. Synthesis and structure-activity relationships of cetiedil analogues as blockers of the Ca(2+)-activated K+ permeability of erythrocytes. J Med Chem 2001; 2744(20): 3244-53.
[36]
Alvarez J, Montero M, Garcia-Sancho J. High affinity inhibition of Ca(2+)-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 1992; 15267(17): 11789-93.
[37]
Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA 2000; 97(14): 8151-6.
[http://dx.doi.org/10.1073/pnas.97.14.8151] [PMID: 10884437]
[38]
Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 2003; 15101(6): 2412-8.
[39]
Urbahns K, Goldmann S, Krüger J, et al. IKCa-channel blockers. Bioorg Med Chem Lett 2005; 1715(2): 401-4.
[40]
Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl- secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol 1996; 271(5 Pt 1): L775-84.
[PMID: 8944721]
[41]
Singh S, Syme CA, Singh AK, Devor DC, Bridges RJ. Benzimidazolone activators of chloride secretion: potential therapeutics for cystic fibrosis and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2001; 296(2): 600-11.
[PMID: 11160649]
[42]
Strøbaek D, Teuber L, Jørgensen TD, et al. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim Biophys Acta 2004; 111665(1-2): 1-5.
[43]
Coleman N, Brown BM, Oliván-Viguera A, et al. New positive Ca2+-activated K+ channel gating modulators with selectivity for KCa3.1. Mol Pharmacol 2014; 86(3): 342-57.
[http://dx.doi.org/10.1124/mol.114.093286] [PMID: 24958817]
[44]
Syme CA, Gerlach AC, Singh AK, Devor DC. Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am J Physiol Cell Physiol 2000; 278(3): C570-81.
[http://dx.doi.org/10.1152/ajpcell.2000.278.3.C570] [PMID: 10712246]
[45]
Strøbæk D, Brown DT, Jenkins DP, et al. NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 2013; 168(2): 432-44.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02143.x] [PMID: 22891655]
[46]
Carosati E, Lemoine H, Spogli R, et al. Binding studies and GRIND/ALMOND-based 3D QSAR analysis of benzothiazine type KATP-channel openers. Bioorg Med Chem 2005; 13(19): 5581-91.
[47]
Calderone V, Spogli R, Martelli A, et al. Novel 1,4-benzothiazine derivatives as large conductance Ca2+-activated potassium channel openers. J Med Chem 2008; 2851(16): 5085-92.
[48]
Martelli A, Manfroni G, Sabbatini P, et al. 1,4-Benzothiazine ATP-sensitive potassium channel openers: modifications at the C-2 and C-6 positions. J Med Chem 2013; 1356(11): 4718-28.
[49]
Fioretti B, Castigli E, Calzuola I, Harper AA, Franciolini F, Catacuzzeno L. NPPB block of the intermediate-conductance Ca2+-activated K+ channel. Eur J Pharmacol 2004; 497(1): 1-6.
[http://dx.doi.org/10.1016/j.ejphar.2004.06.034] [PMID: 15321728]
[50]
Milletti F, Storchi L, Sforna G, Cruciani G. New and original pKa prediction method using grid molecular interaction fields. J Chem Inf Model 2007; 47(6): 2172-81.
[http://dx.doi.org/10.1021/ci700018y] [PMID: 17910431]
[51]
Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca(2+)-dependent K+ channels by novel benzimidazolone. Eur J Pharmacol 1994; 4251(1): 53-9.
[52]
Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 2010; 3(3): 385-96.
[http://dx.doi.org/10.1586/ecp.10.11] [PMID: 22111618]
[53]
Fioretti B, Castigli E, Micheli MR, et al. Expression and modulation of the intermediate- conductance Ca2+-activated K+ channel in glioblastoma GL-15 cells. Cell Physiol Biochem 2006; 18(1-3): 47-56.
[http://dx.doi.org/10.1159/000095135] [PMID: 16914889]
[54]
Klumpp L, Sezgin EC, Skardelly M, Eckert F, Huber SM. KCa3.1 channels and glioblastoma: in vitro studies. Curr Neuropharmacol 2018; 16(5): 627-35.
[http://dx.doi.org/10.2174/1570159X15666170808115821] [PMID: 28786347]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy