Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Enantioselective Michael Addition of Malonates to Enones

Author(s): Péter Bakó*, Tamás Nemcsok, Zsolt Rapi and György Keglevich

Volume 24, Issue 7, 2020

Page: [746 - 773] Pages: 28

DOI: 10.2174/1385272824666200316122221

Abstract

Many catalysts were tested in asymmetric Michael additions in order to synthesize enantioenriched products. One of the most common reaction types among the Michael reactions is the conjugated addition of malonates to enones making it possible to investigate the structure–activity relationship of the catalysts. The most commonly used Michael acceptors are chalcone, substituted chalcones, chalcone derivatives, cyclic enones, while typical donors may be dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, di-tert-butyl and dibenzyl malonates. This review summarizes the most important enantioselective catalysts applied in these types of reactions.

Keywords: Michael addition, enantioselectivity, catalysis, malonates, unsaturated ketones, substituted chalcones.

Graphical Abstract

[1]
Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: New York, 1999.
[http://dx.doi.org/10.1007/978-3-642-58571-5]
[2]
Sibi, M.P.; Manyem, S. Enantioselective conjugate additions. Tetrahedron, 2000, 56, 8033-8061.
[http://dx.doi.org/10.1016/S0040-4020(00)00618-9]
[3]
Krause, N.; Röder, A.H. Recent advances in catalytic enantioselective Michael additions. Synthesis, 2001, 2001(2), 171-196.
[http://dx.doi.org/10.1055/s-2001-10803]
[4]
Berkessel, A.; Gröger, H. Asymmetric Organocatalysis; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org//10.1002/3527604677]
[5]
Ballini, R.; Bosica, G.; Fiorini, D.; Palmieri, A.; Petrini, M. Conjugate additions of nitroalkanes to electron-poor alkenes: recent results. Chem. Rev., 2005, 105(3), 933-971.
[http://dx.doi.org/10.1021/cr040602r] [PMID: 15755081]
[6]
Tsogoeva, S.B. Recent advances in asymmetric organocatalytic 1,4-conjugate additions. Eur. J. Org. Chem., 2007, 2007(11), 1701-1716.
[http://dx.doi.org/10.1002/ejoc.200600653]
[7]
Almasi, D.; Alonso, D.A.; Nájera, C. Organocatalytic asymmetric conjugate additions. Tetrahedron Asymmetry, 2007, 18(3), 299-365.
[http://dx.doi.org/10.1016/j.tetasy.2007.01.023]
[8]
Dalko, P. Enantioselective Organocatalysis; Wiley-VCH: Weinheim, 2007.
[http://dx.doi.org/10.1002/9783527610945]
[9]
O’ Donnell, M.I. Catalytic Asymmetric Synthesis, 2nd ed; Ojima, I., Ed.; Wiley-VCH: New York, 2000, pp. 231-280.
[10]
Ooi, T.; Maruoka, K. Recent advances in asymmetric phase-transfer catalysis. Angew. Chem. Int. Ed. Engl., 2007, 46(23), 4222-4266.
[http://dx.doi.org/10.1002/anie.200601737] [PMID: 17525926]
[11]
Hashimoto, T.; Maruoka, K. Recent development and application of chiral phase-transfer catalysts. Chem. Rev., 2007, 107(12), 5656-5682.
[http://dx.doi.org/10.1021/cr068368n] [PMID: 18072806]
[12]
Marouka, K. Asymmetric Phase Transfer Catalysis; John Wiley & Sons: Weinheim, 2008.
[http://dx.doi.org/10.1002/9783527622627]
[13]
Vicario, J.L.; Badia, D.; Carrillo, L.; Reyes, E. Organocatalytic Enantioselective Conjugate Addition Reactions; RSC Publishing: Cambridge, 2010.
[14]
Mahrwald, R. Enantioselective Organocatalyzed Reactions II. Asymmetric C-C Bond Formation Processes; Springer: London, New York, 2011.
[http://dx.doi.org/10.1007/978-90-481-3867-8]
[15]
Waser, M. Progress in the Chemistry of Organic Natural Products. Asymmetric Organocatalysis in Natural Product Syntheses; Springer: New York, 2012.
[http://dx.doi.org/10.1007/978-3-7091-1163-5]
[16]
Shirakawa, S.; Maruoka, K. Recent developments in asymmetric phase-transfer reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(16), 4312-4348.
[http://dx.doi.org/10.1002/anie.201206835] [PMID: 23450630]
[17]
Nayak, S.; Chakroborty, S.; Bhakta, S. Panda1, P.; Mohapatra, S. Recent advances of organocatalytic enantioselective Michael-addition to chalcone. Res. Chem. Intermed., 2015, 42, 2731-2747.
[http://dx.doi.org/10.1007/s11164-015-2193-0]
[18]
Mondal, A.; Bhowmick, S.; Ghosh, A.; Chanda, T.; Bhowmick, K.C. Advances on asymmetric organocatalytic 1,4-conjugate addition reactions in aqueous and semi-aqueous media. Tetrahedron Asymmetry, 2017, 28, 849-875.
[http://dx.doi.org/10.1016/j.tetasy.2017.05.011]
[19]
Pellissier, H. Recent developments in enantioselective organocatalytic Michael reactions in aqueous media. Curr. Org. Chem., 2018, 21, 323-344.
[http://dx.doi.org/10.2174/1385272821666170818160915]
[20]
Ye, Y.; Zheng, C.; Fan, R. Solvent-controlled oxidative cyclization for divergent synthesis of highly functionalized oxetanes and cyclopropanes. Org. Lett., 2009, 11(14), 3156-3159.
[http://dx.doi.org/10.1021/ol9012102] [PMID: 19534509]
[21]
Krapcho, A.P. Synthetic applications of dealkoxycarbonylations of malonate esters, β-keto esters, α-cyano esters and related compounds in dipolar aprotic media - Part I. Synthesis, 1982, 1982(10), 805-823.
[http://dx.doi.org/10.1055/s-1982-29953]
[22]
Krapcho, A.P. Synthetic applications of dealkoxycarbonylations of malonate esters, β-keto esters, α-cyano esters and related compounds in dipolar aprotic media - Part II. Synthesis, 1982, 1982(11), 893-915.
[23]
Jiricek, J.; Blechert, S. Enantioselective synthesis of (--)-gilbertine via a cationic cascade cyclization. J. Am. Chem. Soc., 2004, 126(11), 3534-3538.
[http://dx.doi.org/10.1021/ja0399021] [PMID: 15025481]
[24]
Ohshima, T.; Xu, Y.; Takita, R.; Shimizu, S.; Zhong, D.; Shibasaki, M. Enantioselective total synthesis of (-)-strychnine using the catalytic asymmetric Michael reaction and tandem cyclization. J. Am. Chem. Soc., 2002, 124(49), 14546-14547.
[http://dx.doi.org/10.1021/ja028457r] [PMID: 12465959]
[25]
Ohshima, T.; Xu, Y.; Takita, R.; Shibasaki, M. Enantioselective total synthesis of (−)-strychnine: development of a highly practical catalytic asymmetric carbon-carbon bond formation and domino cyclization. Tetrahedron, 2004, 60, 9569-9588.
[http://dx.doi.org/10.1016/j.tet.2004.06.141]
[26]
Ohshima, T. Enantioselective total syntheses of several bioactive natural products based on the development of practical asymmetric catalysis. Chem. Pharm. Bull. (Tokyo), 2004, 52(9), 1031-1052.
[http://dx.doi.org/10.1248/cpb.52.1031] [PMID: 15340187]
[27]
Shimizu, S.; Ohori, K.; Arai, T.; Sasai, H.; Shibasaki, M. A catalytic asymmetric synthesis of Tubifolidine. J. Org. Chem., 1998, 63(21), 7547-7551.
[http://dx.doi.org/10.1021/jo981069g] [PMID: 11672415]
[28]
Chen, Z.; Li, P.; Hu, D.; Dong, L.; Pan, J.; Luo, L.; Zhang, W.; Xue, W.; Jin, L.; Song, B. Synthesis, antiviral activity, and 3D-QSAR study of novel chalcone derivatives containing malonate and pyridine moieties. Arab. J. Chem., 2019, 12, 2685-2696.
[http://dx.doi.org/10.1016/j.arabjc.2015.05.003]
[29]
Wilhelm, A.; Lopez-Garcia, L.A.; Busschots, K.; Fröhner, W.; Maurer, F.; Boettcher, S.; Zhang, H.; Schulze, J.O.; Biondi, R.M.; Engel, M. 2-(3-Oxo-1,3-diphenylpropyl)malonic acids as potent allosteric ligands of the PIF pocket of phosphoinositide-dependent kinase-1: development and prodrug concept. J. Med. Chem., 2012, 55(22), 9817-9830.
[http://dx.doi.org/10.1021/jm3010477] [PMID: 23106316]
[30]
Saranya, A.V.; Ravi, S.; Venkatachalapathi, S. In vitro antioxidant activity of diethyl malonate adducts of phenothiazine. Res. J. Chem. Sci., 2013, 3(1), 82-85.
[31]
Sasai, H.; Arai, T.; Shibasaki, M. Catalytic asymmetric Michael reactions promoted by a lithium-free lanthanum-BINOL complex. J. Am. Chem. Soc., 1994, 116, 1571-1572.
[http://dx.doi.org/10.1021/ja00083a053]
[32]
Sasai, H.; Arai, T.; Satow, Y.; Houk, K.N.; Shibasaki, M. The first heterobimetallic multifunctional asymmetric catalyst. J. Am. Chem. Soc., 1995, 117, 6194-6198.
[http://dx.doi.org/10.1021/ja00128a005]
[33]
Arai, T.; Sasai, H.; Aoe, K-I.; Okamura, K.; Date, T.; Shibasaki, M. A new multifunctional heterobimetallic asymmetric catalyst for Michael additions and tandem Michael-Aldol reactions. Angew. Chem. Int. Ed. Engl., 1996, 35, 104-106.
[http://dx.doi.org/10.1002/anie.199601041]
[34]
Arai, T.; Yamada, Y.M.A.; Yamamoto, N.; Sasai, H.; Shibasaki, M. Self‐assembly of heterobimetallic complexes and reactive nucleophiles: a general strategy for the activation of asymmetric reactions promoted by heterobimetallic catalysts. Chemistry, 1996, 2, 1368-1372.
[http://dx.doi.org/10.1002/chem.19960021107]
[35]
Kim, Y.S.; Matsunaga, S.; Das, J.; Sekine, A.; Ohshima, T.; Shibasaki, M. Stable, storable and reusable asymmetric catalyst: a novel La-linked-BINOL complex for the catalytic asymmetric Michael reaction. J. Am. Chem. Soc., 2000, 122, 6506-6507.
[http://dx.doi.org/10.1021/ja001036u]
[36]
Takita, R.; Ohshima, T.; Shibasaki, M. Highly enantioselective catalytic Michael reaction of α-substituted malonates using La-linked-BINOL complex in the presence of HFIP (1,1,1,3,3,3-hexafluoroisopropanol). Tetrahedron Lett., 2002, 43, 4661-4665.
[http://dx.doi.org/10.1016/S0040-4039(02)00882-1]
[37]
Xu, Y.; Ohori, K.; Ohshima, T.; Shibasaki, M. A practical large-scale synthesis of enantiomerically pure 3-[bis(methoxycarbonyl)methyl]cy-clohexanone via catalytic asymmetric Michael reaction. Tetrahedron, 2002, 58, 2585-2588.
[http://dx.doi.org/10.1016/S0040-4020(02)00141-2]
[38]
Matsunaga, S.; Ohshima, T.; Shibasaki, M. Immobilization of asymmetric on a multifunctional catalysts insoluble polymer. Tetrahedron Lett., 2000, 41, 8473-8478.
[http://dx.doi.org/10.1016/S0040-4039(00)01486-6]
[39]
Kumaraswamy, G.; Sastry, M.N.V.; Jena, N. Calcium-BINOL: a novel and efficient catalyst for asymmetric Michael reactions. Tetrahedron Lett., 2001, 42, 8515-8517.
[http://dx.doi.org/10.1016/S0040-4039(01)01736-1]
[40]
Annamalai, V.; DiMauro, E.F.; Carroll, P.J.; Kozlowski, M.C. Catalysis of the Michael addition reaction by late transition metal complexes of BINOL-derived salens. J. Org. Chem., 2003, 68(5), 1973-1981.
[http://dx.doi.org/10.1021/jo025993t] [PMID: 12608819]
[41]
Park, S.Y.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. Catalytic asymmetric Michael reactions of dibenzyl malonate to α,β-unsaturated N-acylpyrroles using a La(O-iPr)3/Ph-linked-BINOL complex. Tetrahedron Lett., 2007, 48, 2815-2818.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.112]
[42]
Robinson, J.R.; Fan, X.; Yadav, J.; Carroll, P.J.; Wooten, A.J.; Pericàs, M.A.; Schelter, E.J.; Walsh, P.J. Air- and water-tolerant rare earth guanidinium BINOLate complexes as practical precatalysts in multifunctional asymmetric catalysis. J. Am. Chem. Soc., 2014, 136(22), 8034-8041.
[http://dx.doi.org/10.1021/ja502568g] [PMID: 24796452]
[43]
Samoilichenko, Y.; Kondratenko, V.; Ezernitskaya, M.; Lyssenko, K.; Peregudov, A.; Khrustalev, V.; Maleev, V.; Moskalenko, M.; North, M.; Tsaloev, A.Z.T.; Gugkaevaa, Z.T.; Belokon, Y. A mechanistic study of the Lewis acid–Brønsted base–Brønsted acid catalysed asymmetric Michael addition of diethyl malonate to cyclohexenone. Catal. Sci. Technol., 2017, 7, 90-101.
[http://dx.doi.org/10.1039/C6CY01697A]
[44]
Manickam, G.; Sundararajan, G. A new C2-symmetric heterobimetallic complex as a promoter for asymmetric Michael addition reactions. Tetrahedron Asymmetry, 1997, 8, 2271-2278.
[http://dx.doi.org/10.1016/S0957-4166(97)00234-6]
[45]
Manickam, G.; Sundararajan, G. Lithium bis[(1R,5R)-3-aza-3-benzyl-1,5-diphenyl-pentan-1,5-diolato]-aluminium - a new heterobimetallic catalyst for Michael addition reactions. Tetrahedron, 1999, 55, 2721-2736.
[http://dx.doi.org/10.1016/S0040-4020(99)00044-7]
[46]
Narasimhan, S.; Velmathi, S.; Balakumar, R.; Radhakrishnan, V. Novel enantiomer-switching catalysts for asymmetric reductions and Michael reactions. Tetrahedron Lett., 2001, 42, 719-721.
[http://dx.doi.org/10.1016/S0040-4039(00)01986-9]
[47]
Naka, H.; Kanase, N.; Ueno, M.; Kondo, Y. Chiral bisphosphazides as dual basic enantioselective catalysts. Chemistry, 2008, 14(17), 5267-5274.
[http://dx.doi.org/10.1002/chem.200800230] [PMID: 18431734]
[48]
Kantam, M.L.; Ranganath, V.S. Mahendar, K.; Chakrapani, L.; Choudary, B.M. Asymmetric Michael addition of malonates to enones catalyzed by nanocrystalline MgO. Tetrahedron Lett., 2007, 48, 7646-7649.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.108]
[49]
Lippur, K.; Kaabel, S.; Järving, I.; Rissanen, K.; Kanger, T. CaCl2, Bisoxazoline, and malonate: a protocol for an asymmetric Michael reaction. J. Org. Chem., 2015, 80(12), 6336-6341.
[http://dx.doi.org/10.1021/acs.joc.5b00769] [PMID: 26035234]
[50]
Agostinho, M.; Kobayashi, S. Strontium-catalyzed highly enantioselective Michael additions of malonates to enones. J. Am. Chem. Soc., 2008, 130(8), 2430-2431.
[http://dx.doi.org/10.1021/ja710332h] [PMID: 18247613]
[51]
Ray, S.K.; Singh, P.K.; Singh, V.K. Enantioselective Michael addition of malonates to 2-enoylpyridine N-oxides catalyzed by chiral bisoxazoline-Zn(II) complex. Org. Lett., 2011, 13(21), 5812-5815.
[http://dx.doi.org/10.1021/ol202405v] [PMID: 21970689]
[52]
Chen, C.; Zhu, S.F.; Wu, X.Y.; Zhou, Q.L. Preparation and application of chiral spiro nitrogen-containing ligands for cobalt-catalyzed asymmetric Michael addition. Tetrahedron Asymmetry, 2006, 17, 2761-2767.
[http://dx.doi.org/10.1016/j.tetasy.2006.10.006]
[53]
Tsubo, T.; Yamada, T. Enantioselective Michael addition catalyzed by an optically active 1-chlorovinyl cobalt(III) complex. Synlett, 2015, 26, 1111-1115.
[http://dx.doi.org/10.1055/s-0034-1380265]
[54]
End, N.; Macko, L.; Zehnder, M.; Pfaltz, A. Synthesis of chiral bis(dihydrooxazolyl-phenyl)oxalamides, a new class of tetradentate ligands for asymmetric catalysis. Chemistry, 1998, 4, 818-824.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19980515)4:5<818:AID-CHEM818>3.0.CO;2-#]
[55]
Watanabe, M.; Murata, K.; Ikariya, T. Enantioselective Michael reaction catalyzed by well-defined chiral ru amido complexes: isolation and characterization of the catalyst intermediate, ru malonato complex having a metal-carbon bond. J. Am. Chem. Soc., 2003, 125(25), 7508-7509.
[http://dx.doi.org/10.1021/ja035435b] [PMID: 12812478]
[56]
Chen, D.; Chen, Z.; Xiao, X.; Yang, Z.; Lin, L.; Liu, X.; Feng, X. Highly enantioselective Michael addition of malonate derivatives to enones catalyzed by an N,N′-dioxide-scandium(III) complex. Chemistry, 2009, 15(28), 6807-6810.
[http://dx.doi.org/10.1002/chem.200901157] [PMID: 19517524]
[57]
Wang, Z.; Chen, D.; Yang, Z.; Bai, S.; Liu, X.; Lin, L.; Feng, X. Highly enantioselective synthesis of α-stereogenic esters through catalytic asymmetric michael addition of 4-oxo-4-arylbutenoates. Chemistry, 2010, 16(33), 10130-10136.
[http://dx.doi.org/10.1002/chem.201001129] [PMID: 20645351]
[58]
Qian, Q.; Zhu, W.; Lu, C.; Zhao, B.; Yao, Y. Asymmetric Michael addition of malonates to unsaturated ketones catalyzed by rare earth metal complexes bearing phenoxy functionalized chiral diphenylprolinolate ligands. Tetrahedron Asymmetry, 2016, 27, 911-917.
[http://dx.doi.org/10.1016/j.tetasy.2016.07.014]
[59]
Zhou, L.; Lin, L.; Wang, W.; Ji, J.; Liu, X.; Feng, X. Highly enantioselective Michael addition of malonates to β,γ-unsaturated α-ketoesters catalyzed by chiral N,N′-dioxide-Yttrium(III) complexes with convenient procedure. Chem. Commun. (Camb.), 2010, 46(20), 3601-3603.
[http://dx.doi.org/10.1039/c002208j] [PMID: 20379595]
[60]
Halland, N.; Aburel, P.S.; Jørgensen, K.A. Highly enantioselective organocatalytic conjugate addition of malonates to acyclic α,β-unsaturated enones. Angew. Chem. Int. Ed. Engl., 2003, 42(6), 661-665.
[http://dx.doi.org/10.1002/anie.200390182] [PMID: 12574999]
[61]
Brandau, S.; Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K.A. Organocatalytic conjugate addition of malonates to α,β-unsaturated aldehydes: asymmetric formal synthesis of (-)-paroxetine, chiral lactams, and lactones. Angew. Chem. Int. Ed. Engl., 2006, 45(26), 4305-4309.
[http://dx.doi.org/10.1002/anie.200601025] [PMID: 16646104]
[62]
Palomo, C.; Landa, A.; Mielgo, A.; Oiarbide, M.; Puente, A.; Vera, S. Water-compatible iminium activation: organocatalytic Michael reactions of carbon-centered nucleophiles with enals. Angew. Chem. Int. Ed. Engl., 2007, 46(44), 8431-8435.
[http://dx.doi.org/10.1002/anie.200703261] [PMID: 17902088]
[63]
Ma, A.; Zhu, S.; Ma, D. Enantioselective organocatalytic Michael addition of malonates to α,β-unsaturated aldehydes in water. Tetrahedron Lett., 2008, 49, 3075-3077.
[http://dx.doi.org/10.1016/j.tetlet.2008.03.051]
[64]
Wang, Y.; Li, P.; Liang, X.; Ye, J. Base-base bifunctional catalysis: a practical strategy for asymmetric Michael addition of malonates to α,β‐unsaturated aldehydes. Adv. Synth. Catal., 2008, 350, 1383-1389.
[http://dx.doi.org/10.1002/adsc.200800070]
[65]
Fleischer, I.; Pfaltz, A. Enantioselective Michael addition to α,β-unsaturated aldehydes: combinatorial catalyst preparation and screening, reaction optimization, and mechanistic studies. Chemistry, 2010, 16(1), 95-99.
[http://dx.doi.org/10.1002/chem.200902449] [PMID: 19918823]
[66]
Maltsev, O.V.; Kucherenko, A.S.; Zlotin, S. O-TMS-α,α-diphenyl-(S)-prolinol modified with an ionic liquid moiety: a recoverable organocatalyst for the asymmetric Michael reaction between α,β-enals and dialkyl malonates. Eur. J. Org. Chem., 2009, 30, 5134-5137.
[http://dx.doi.org/10.1002/ejoc.200900807]
[67]
Guryev, A.A.; Anokhin, M.V.; Averin, A.D.; Beletskaya, I.P. Heterogeneous Jørgensen-Hayashi catalyst for asymmetric Michael addition of malonates to α,β-enals. Cooperative effect with Ca(OTf)2. Mendeleev Commun., 2016, 26, 469-470.
[http://dx.doi.org/10.1016/j.mencom.2016.11.002]
[68]
Knudsen, K.R.; Claire, , E.T. Asymmetric organocatalytic conjugate addition of malonates to enones using a proline tetrazole catalyst. Chem. Commun. (Camb.), 2006, (1), 66-68.
[http://dx.doi.org/10.1039/B514636D] [PMID: 16353094]
[69]
Wascholowski, V.; Knudsen, K.R.; Mitchell, C.E.T.; Ley, S.V. A general organocatalytic enantioselective malonate addition to α,β-unsaturated enones. Chemistry, 2008, 14(20), 6155-6165.
[http://dx.doi.org/10.1002/chem.200800673] [PMID: 18512863]
[70]
Mase, N.; Fukasawa, M.; Kitagawa, N.; Shibagaki, F.; Noshiro, N.; Takabe, K. Organocatalytic enantioselective Michael additions of malonates to 2-cyclopentenone. Synlett, 2010, 15, 2340-2344.
[http://dx.doi.org/10.1055/s-0030-1258533]
[71]
Yang, Y.Q.; Zhao, G. Organocatalyzed highly enantioselective Michael additions of malonates to enones by using novel primary-secondary diamine catalysts. Chemistry, 2008, 14(35), 10888-10891.
[http://dx.doi.org/10.1002/chem.200801749] [PMID: 19003833]
[72]
Jiang, Z.; Ye, W.; Yang, Y.; Tan, C.H. Rate Acceleration of triethylamine-mediated guanidine-catalyzed enantioselective Michael reaction. Adv. Synth. Catal., 2008, 350, 2345-2351.
[http://dx.doi.org/10.1002/adsc.200800423]
[73]
Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. Organocatalytic enantioselective conjugate additions to enones. J. Am. Chem. Soc., 2006, 128(39), 12652-12653.
[http://dx.doi.org/10.1021/ja065187u] [PMID: 17002351]
[74]
Li, P.; Wen, S.; Yu, F.; Liu, Q.; Li, W.; Wang, Y.; Liang, X.; Ye, J. Enantioselective organocatalytic michael addition of malonates to α,β-unsaturated ketones. Org. Lett., 2009, 11(3), 753-756.
[http://dx.doi.org/10.1021/ol802892h] [PMID: 19115980]
[75]
Riguet, E. Novel guanidinyl pyrrolidine salt-based bifunctional organocatalysts: application in asymmetric conjugate addition of malonates to enones. Tetrahedron Lett., 2009, 50, 4283-4285.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.011]
[76]
Dudziński, K.; Pakulska, A.M.; Kwiatkowski, P. An efficient organocatalytic method for highly enantioselective Michael addition of malonates to enones catalyzed by readily accessible primary amine-thiourea. Org. Lett., 2012, 14(16), 4222-4225.
[http://dx.doi.org/10.1021/ol3019055] [PMID: 22873407]
[77]
Moritaka, M.; Miyamae, N.; Nakano, K.; Ichikawa, Y. Kotsuki, H. Highly efficient asymmetric Michael addition reaction of malonates to α,β-unsaturated ketones promoted by a chiral thiourea/PPY dual-catalyst system. Synlett, 2012, 23, 2554-2558.
[78]
Miyamae, N.; Watanabe, N.; Moritaka, M.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Asymmetric organocatalytic desymmetrization of 4,4-disubstituted cyclohexadienones at high pressure: a new powerful strategy for the synthesis of highly congested chiral cyclohexenones. Org. Biomol. Chem., 2014, 12(31), 5847-5855.
[http://dx.doi.org/10.1039/C4OB00733F] [PMID: 24887588]
[79]
Luo, C.; Jin, Y.; Du, D-M. Simple chiral sulfonamide primary amine catalysed highly enantioselective Michael addition of malonates to enones. Org. Biomol. Chem., 2012, 10(20), 4116-4123.
[http://dx.doi.org/10.1039/c2ob07191f] [PMID: 22514025]
[80]
Wang, W.; Ye, L.; Shi, Z.; Zhao, Z.; Li, X. Enantioselective Michael addition of malonates to α,β-unsaturated ketones catalyzed by 1,2-diphenylethanediamine. RSC Advances, 2018, 8, 41699-41704.
[http://dx.doi.org/10.1039/C8RA07809B]
[81]
Hirashima, S.; Sakai, T.; Nakashima, K.; Watanabe, N.; Koseki, Y.; Mukai, K.; Kanada, Y.; Tada, N.; Itoh, A.; Miura, T. Solvent-free asymmetric conjugate addition of malonates to enones using a diaminomethylenemalononitrile organocatalyst. Tetrahedron Lett., 2014, 55, 4334-4337.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.100]
[82]
Kamito, Y.; Masuda, A.; Yuasa, H.; Tada, N.; Itoh, A.; Koseki, Y.; Miura, T. Asymmetric conjugate addition of malonates to enones using perfluorobutane-sulfonamide organocatalyst. Chem. Lett., 2013, 42, 1151-1153.
[http://dx.doi.org/10.1246/cl.130575]
[83]
Kamito, Y.; Masuda, A.; Yuasa, H.; Tada, N.; Itoh, A.; Nakashima, K.; Shin-ichi, H.; Koseki, Y.; Miura, T. Asymmetric conjugate addition of malonate to α,β-unsaturated ketones in water using a perfluoroalkanesulfonamide organocatalyst. Tetrahedron Asymmetry, 2014, 25, 974-979.
[http://dx.doi.org/10.1016/j.tetasy.2014.05.009]
[84]
Konda, S.; Zhao, J.C-G. High enantioselective Michael addition of malonates to β,γ-unsaturated α-ketoesters catalyzed by bifunctional thioureas. Tetrahedron Lett., 2014, 55, 5216-5218.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.112]
[85]
Liu, Y.; Wang, X.; Wang, X.; He, W. Highly enantioselective Michael addition of diethyl malonate to chalcones catalyzed by cinchona alkaloidsderivatived bifunctional tertiary amine-thioureas bearing multiple hydrogenbonding donors Org. Biomol. Chem.,, 2014, 12(20), 3163-3166.[REMOVED HYPERLINK FIELD]..
[http://dx.doi.org/10.1039/C4OB00203B] [PMID: 24682148]
[86]
Umeno, T.; Ueda, A.; Doi, M.; Kato, T.; Ob, M.; Tanaka, M. Helical foldamer-catalyzed enantioselective 1,4-addition reaction of dialkyl malonates to cyclic enones. Tetrahedron Lett., 2019, 60(49)151301
[http://dx.doi.org/10.1016/j.tetlet.2019.151301]
[87]
Yamaguchi, M.; Shiraishi, T.; Hirama, M. A catalytic enantioselective Michael addition of a simple malonate to prochiral α,β-unsaturated ketoses and aldehydes. Angew. Chem. Int. Ed. Engl., 1993, 32, 1176-1178.
[http://dx.doi.org/10.1002/anie.199311761]
[88]
Yamaguchi, M.; Shiraishi, T.; Hirama, M. Asymmetric Michael addition of malonate anions to prochiral acceptors catalyzed by l-proline rubidium salt. J. Org. Chem., 1996, 61, 3520-3530.
[http://dx.doi.org/10.1021/jo960216c]
[89]
Kawara, A.; Taguchi, T. An enantioselective Michael addition of soft nucleophiles to prochiral enone catalyzed by (2-pyrrolidyl)alkyl ammonium hydroxide. Tetrahedron Lett., 1994, 35, 8805-8808.
[http://dx.doi.org/10.1016/S0040-4039(00)78503-0]
[90]
Yoshida, M.; Narita, M.; Hirama, K.; Hara, S. Asymmetric Michael addition of malonates to enones catalyzed by a siloxy amino acid lithium salt. Tetrahedron Lett., 2009, 50, 7297-7299.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.033]
[91]
Yoshida, M.; Narita, M.; Hara, S. Asymmetric Michael addition of malonates to enones catalyzed by a primary β-amino acid and its lithium salt. J. Org. Chem., 2011, 76(20), 8513-8517.
[http://dx.doi.org/10.1021/jo201429w] [PMID: 21894973]
[92]
Yoshida, M.; Nagasawa, Y.; Kubara, A.; Hara, S.; Yamanaka, M. Mechanistic study of asymmetric Michael addition of malonates to enones catalyzed by a primary amino acid lithium salt. Tetrahedron, 2013, 69, 10003-10008.
[http://dx.doi.org/10.1016/j.tet.2013.09.066]
[93]
Wang, Z.; Wang, Q.; Zhang, Y.W.; Bao, W. Synthesis of new chiral ionic liquids from natural acids and their applications in enantioselective Michael addition. Tetrahedron Lett., 2005, 46, 4657-4660.
[http://dx.doi.org/10.1016/j.tetlet.2005.04.134]
[94]
Loupy, A.; Sansoulet, J.; Zaparucha, A.; Merienne, C. Solid-liquid phase transfer catalysis without solvent: an improvement for chiral Michael addition of N-acetylaminomalonate to chalcone. Tetrahedron Lett., 1989, 30, 333-336.
[http://dx.doi.org/10.1016/S0040-4039(00)95194-3]
[95]
Loupy, A.; Zaparucha, A. Asymmetric Michael reaction under PTC conditions without solvent Importance of π interactions for the enantioselectivity. Tetrahedron Lett., 1993, 34, 473-476.
[http://dx.doi.org/10.1016/0040-4039(93)85105-6]
[96]
Perrard, T.; Plaquevent, J-C.; Desmurs, J-R.; Hébrault, D. Enantioselective synthesis of both enantiomers of methyl dihydrojasmonate using solid-liquid asymmetric phase-transfer catalysis. Org. Lett., 2000, 2(19), 2959-2962.
[http://dx.doi.org/10.1021/ol006207e] [PMID: 10986082]
[97]
Odanaka, Y.; Kanemitsu, T.; Iwasaki, K.; Mochizuki, Y.; Miyazaki, M.; Nagata, K.; Kato, M.; Itoh, T. Asymmetric Michael addition of malonic diesters to acrylates by phase-transfer catalysis toward the construction of quaternary stereogenic α-carbons. Tetrahedron, 2019, 75, 209-219.
[http://dx.doi.org/10.1016/j.tet.2018.11.037]
[98]
Kim, D.Y.; Huh, S.C.; Kim, S.M. Enantioselective Michael reaction of malonates and chalcones by phase-transfer catalysis using chiral quaternary ammonium salt. Tetrahedron Lett., 2001, 42, 6299-6301.
[http://dx.doi.org/10.1016/S0040-4039(01)01237-0]
[99]
Kim, D.Y.; Kim, S.M.; Koh, K.O.; Mang, J.Y.; Lee, K. Enantioselective Michael reaction of fluoromalonates and chalcones by phase-transfer catalysis using chiral quaternary ammonium salt. Bull. Korean Chem. Soc., 2003, 24(10), 1425-1428.
[http://dx.doi.org/10.5012/bkcs.2003.24.10.1425]
[100]
Cho, M.J.; Cho, M.G.; Huh, S.C.; Kim, S.M.; Lee, K.; Koh, K.O.; Mang, J.Y.; Kim, D.Y. Asymmetric Michael reaction of malonate derivatives with α,β-unsaturated ketones using chiral quaternary ammonium salts. Bull. Korean Chem. Soc., 2006, 27, 857-862.
[http://dx.doi.org/10.5012/bkcs.2006.27.6.857]
[101]
Ooi, T.; Ohara, D.; Fukumoto, K.; Maruoka, K. Importance of chiral phase-transfer catalysts with dual functions in obtaining high enantioselectivity in the Michael reaction of malonates and chalcone derivatives. Org. Lett., 2005, 7(15), 3195-3197.
[http://dx.doi.org/10.1021/ol050902a] [PMID: 16018619]
[102]
Jayaraman, S.; Kumaraguru, D.; Arockiam, J.B.; Paulpandian, S.; Rajendiran, B.; Siva, A. Highly enantioselective asymmetric Michael addition reactions with new chiral multisite phase-transfer catalysts. Synlett, 2014, 25, 1685-1691.
[http://dx.doi.org/10.1055/s-0033-1339124]
[103]
Cao, D.; Fang, G.; Zhang, J.; Wang, H.; Zheng, C.; Zhao, G. Enantioselective Michael addition of malonates to chalcone derivatives catalyzed by dipeptide-derived multifunctional phosphonium salts. J. Org. Chem., 2016, 81(20), 9973-9982.
[http://dx.doi.org/10.1021/acs.joc.6b01752] [PMID: 27660892]
[104]
Bakó, P.; Rapi, Z.; Grün, A.; Nemcsok, T.; Hegedűs, L.; Keglevich, G. Asymmetric Michael addition of malonates to enones catalyzed by an α-D-glucopyranoside-based crown ether. Synlett, 2015, 26, 1847-1851.
[http://dx.doi.org/10.1055/s-0034-1378723]
[105]
Rapi, Z.; Grün, A.; Nemcsok, T.; Hessz, D.; Kállay, M.; Kubinyi, M.; Keglevich, G.; Bakó, P. Crown ether derived from D-glucose as an efficient phase-transfer catalyst for the enantioselective Michael addition of malonates to enones. Tetrahedron Asymmetry, 2016, 27, 960-972.
[http://dx.doi.org/10.1016/j.tetasy.2016.08.010]
[106]
Rapi, Z.; Grün, A.; Keglevich, G.; Stirling, A.; Bakó, P. Synthesis of α-D-galactose-based azacrown ethers and their application as enantioselective catalysts in Michael reactions. New J. Chem., 2016, 40, 7856-7865.
[http://dx.doi.org/10.1039/C6NJ02030E]
[107]
Rapi, Z.; Nemcsok, T.; Pálvölgyi, Á.; Keglevich, G.; Grün, A.; Bakó, P. Synthesis of l-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions. Chirality, 2017, 29(6), 257-272.
[http://dx.doi.org/10.1002/chir.22678] [PMID: 28429401]
[108]
Nemcsok, T.; Rapi, Z.; Keglevich, G.; Grün, A.; Bakó, P. Synthesis of d-mannitol-based crown ethers and their application as catalyst in asymmetric phase transfer reactions. Chirality, 2018, 30(4), 407-419.
[http://dx.doi.org/10.1002/chir.22800] [PMID: 29283193]

© 2024 Bentham Science Publishers | Privacy Policy