Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Use of Natural Materials in Film Coating for Controlled Oral Drug Release

Author(s): Phuong Ha-Lien Tran and Thao Truong-Dinh Tran*

Volume 28, Issue 9, 2021

Published on: 12 March, 2020

Page: [1829 - 1840] Pages: 12

DOI: 10.2174/0929867327666200312113547

Price: $65

Abstract

Background: Although synthetic materials have been used in film coating processes for drug delivery for many years, substantial studies on natural materials have also been conducted because of their biodegradable and unique properties.

Methods: Because of the ability to form and modify films for controlled oral drug delivery, increasing attention has been shown to these materials in the design of film coating systems in recent research.

Results: This review aims to provide an overview of natural materials focusing on film coating for oral delivery, specifically in terms of their classification and their combinations in film coating formulations for adjusting the desired properties for controlled drug delivery.

Conclusions: Discussing natural materials and their potential applications in film coating would benefit the optimization of processes and strategies for future utilization.

Keywords: Controlled drug delivery, oral drug delivery, film coating formulation, natural coating materials, film formation, drug administration.

[1]
Javanbakht, S.; Shaabani, A. Carboxymethyl cellulose-based oral delivery systems. Int. J. Biol. Macromol., 2019, 133, 21-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.04.079] [PMID: 30986470]
[2]
Betker, J.L.; Angle, B.M.; Graner, M.W.; Anchordoquy, T.J. The potential of exosomes from cow milk for oral delivery. J. Pharm. Sci., 2019, 108(4), 1496-1505.
[http://dx.doi.org/10.1016/j.xphs.2018.11.022] [PMID: 30468828]
[3]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Drug stabilization in the gastrointestinal tract and potential applications in the colonic delivery of oral zein-based formulations. Int. J. Pharm., 2019, 569, 118614.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118614] [PMID: 31415877]
[4]
Banerjee, A.; Chen, R.; Arafin, S.; Mitragotri, S. Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. J. Control. Release, 2019, 297, 71-78.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.037] [PMID: 30707901]
[5]
Lupo, N.; Tkadlečková, V.N.; Jelkmann, M.; Laffleur, F.; Hetényi, G.; Kubová, K.; Bernkop-Schnürch, A. Self-emulsifying drug delivery systems: in vivo evaluation of their potential for oral vaccination. Acta Biomater., 2019, 94, 425-434.
[http://dx.doi.org/10.1016/j.actbio.2019.06.026] [PMID: 31228632]
[6]
Tran, T.T.D.; Tran, P.H.L. Nanoconjugation and encapsulation strategies for improving drug delivery and therapeutic efficacy of poorly water-soluble drugs. Pharmaceutics, 2019, 11(7), 325.
[http://dx.doi.org/10.3390/pharmaceutics11070325] [PMID: 31295947]
[7]
Tran, P.H.L.; Duan, W.; Lee, B-J.; Tran, T.T.D. The use of zein in the controlled release of poorly water-soluble drugs. Int. J. Pharm., 2019, 566, 557-564.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.018] [PMID: 31181306]
[8]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Current designs of polymer blends in solid dispersions for improving drug bioavailability. Curr. Drug Metab., 2018, 19(13), 1111-1118.
[http://dx.doi.org/10.2174/1389200219666180628171100] [PMID: 29956619]
[9]
Boyd, B.J.; Bergström, C.A.S.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandl, M.; Bernkop-Schnürch, A.; Shrestha, N.; Préat, V.; Müllertz, A.; Bauer-Brandl, A.; Jannin, V. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur. J. Pharm. Sci., 2019, 137, 104967.
[http://dx.doi.org/10.1016/j.ejps.2019.104967] [PMID: 31252052]
[10]
Júlio, A.; Costa Lima, S.A.; Reis, S.; Santos de Almeida, T.; Fonte, P. Development of ionic liquid-polymer nanoparticle hybrid systems for delivery of poorly soluble drugs. J. Drug Deliv. Sci. Technol., 2019, 56(B), 100915.
[http://dx.doi.org/10.1016/j.jddst.2019.01.030]
[11]
Niederquell, A.; Dujovny, G.; Probst, S.E.; Kuentz, M. A relative permittivity approach for fast drug solubility screening of solvents and excipients in lipid-based delivery. J. Pharm. Sci., 2019, 108(10), 3457-3460.
[http://dx.doi.org/10.1016/j.xphs.2019.06.014] [PMID: 31255684]
[12]
Kumar, R.; Singh, A.; Garg, N. Acoustic cavitation assisted hot melt mixing technique for solid lipid nanoparticles formulation, characterization and controlled delivery of poorly water soluble drugs. J. Drug Deliv. Sci. Technol., 2019, 54, 101277.
[http://dx.doi.org/10.1016/j.jddst.2019.101277]
[13]
Wang, J.; Huang, N.; Peng, Q.; Cheng, X.; Li, W. Temperature/pH dual-responsive and luminescent drug carrier based on PNIPAM-MAA/lanthanide-polyoxometalates for controlled drug delivery and imaging in HeLa cells. Mater. Chem. Phys., 2020, 239, 121994.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121994]
[14]
Peralta, M.E.; Jadhav, S.A.; Magnacca, G.; Scalarone, D.; Mártire, D.O.; Parolo, M.E.; Carlos, L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interface Sci., 2019, 544, 198-205.
[http://dx.doi.org/10.1016/j.jcis.2019.02.086] [PMID: 30844568]
[15]
Boehler, C.; Oberueber, F.; Asplund, M. Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules. J. Control. Release, 2019, 304, 173-180.
[http://dx.doi.org/10.1016/j.jconrel.2019.05.017] [PMID: 31096016]
[16]
Xian, C.; Yuan, Q.; Bao, Z.; Liu, G.; Wu, J. Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery. Chin. Chem. Lett., 2019, 31(1), 19-27.
[http://dx.doi.org/10.1016/j.cclet.2019.03.052]
[17]
Wang, G.; Zhou, F.; Li, X.; Li, J.; Ma, Y.; Mu, J.; Zhang, Z.; Che, H.; Zhang, X. Controlled synthesis of L-cysteine coated cobalt ferrite nanoparticles for drug delivery. Ceram. Int., 2018, 44(12), 13588-13594.
[http://dx.doi.org/10.1016/j.ceramint.2018.04.193]
[18]
Kröger, A.P.P.; Paulusse, J.M.J. Single-chain polymer nanoparticles in controlled drug delivery and targeted imaging. J. Control. Release, 2018, 286, 326-347.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.041] [PMID: 30077737]
[19]
Ngo, H.V.; Tran, P.H.L.; Lee, B.J.; Tran, T.T.D. The roles of a surfactant in zein-HPMC blend solid dispersions for improving drug delivery. Int. J. Pharm., 2019, 563, 169-173.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.009] [PMID: 30954672]
[20]
Dinh, H.T.T.; Tran, P.H.L.; Duan, W.; Lee, B-J.; Tran, T.T.D. Nano-sized solid dispersions based on hydrophobic-hydrophilic conjugates for dissolution enhancement of poorly water-soluble drugs. Int. J. Pharm., 2017, 533(1), 93-98.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.065] [PMID: 28951346]
[21]
Tran, P.H.L.; Choe, J.S.; Tran, T.T.D.; Park, Y.M.; Lee, B.J. Design and mechanism of on-off pulsed drug release using nonenteric polymeric systems via pH modulation. AAPS PharmSciTech, 2011, 12(1), 46-55.
[http://dx.doi.org/10.1208/s12249-010-9562-1] [PMID: 21161457]
[22]
Penhasi, A.; Gomberg, M. Design and development of an innovative water insoluble film-coating combination for oral pulsatile drug delivery. J. Drug Deliv. Sci. Technol., 2018, 43, 274-282.
[http://dx.doi.org/10.1016/j.jddst.2017.10.019]
[23]
Christodoulou, C.; Mazzei, L.; Garcia-Muñoz, S.; Sorensen, E. Modeling of spreading and drying of aqueous polymer coatings on pharmaceutical tablets during film coating.In Computer Aided Chemical Engineering; Eden, M.R.; Ierapetritou, M.G.; Towler, G.P., Eds.; Elsevier, 2018, 44, pp. 2095-2100.
[24]
Wang, J.; Hemenway, J.; Chen, W.; Desai, D.; Early, W.; Paruchuri, S.; Chang, S-Y.; Stamato, H.; Varia, S. An evaluation of process parameters to improve coating efficiency of an active tablet film-coating process. Int. J. Pharm., 2012, 427(2), 163-169.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.033] [PMID: 22301427]
[25]
Haaser, M.; Naelapää, K.; Gordon, K.C.; Pepper, M.; Rantanen, J.; Strachan, C.J.; Taday, P.F.; Zeitler, J.A.; Rades, T. Evaluating the effect of coating equipment on tablet film quality using terahertz pulsed imaging. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt B)(3, Pt B), 1095-1102.
[http://dx.doi.org/10.1016/j.ejpb.2013.03.019] [PMID: 23563103]
[26]
Prpich, A. am Ende, M.T.; Katzschner, T.; Lubczyk, V.; Weyhers, H.; Bernhard, G. Drug product modeling predictions for scale-up of tablet film coating—A quality by design approach. Comput. Chem. Eng., 2010, 34(7), 1092-1097.
[http://dx.doi.org/10.1016/j.compchemeng.2010.03.006]
[27]
Yamada, H.; Terada, K.; Suryanarayanan, R. Non-destructive determination of the coating film thickness by X-ray powder diffractometry and correlation with the dissolution behavior of film-coated tablets. J. Pharm. Biomed. Anal., 2010, 51(4), 952-957.
[http://dx.doi.org/10.1016/j.jpba.2009.10.003] [PMID: 19945243]
[28]
Ketterhagen, W.R. Modeling the motion and orientation of various pharmaceutical tablet shapes in a film coating pan using DEM. Int. J. Pharm., 2011, 409(1-2), 137-149.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.045] [PMID: 21356296]
[29]
Niwa, M.; Hiraishi, Y. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging. Int. J. Pharm., 2014, 461(1-2), 342-350.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.051] [PMID: 24300215]
[30]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[31]
Demircan, D.; Zhang, B. Facile synthesis of novel soluble cellulose-grafted hyperbranched polymers as potential natural antimicrobial materials. Carbohydr. Polym., 2017, 157, 1913-1921.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.076] [PMID: 27987911]
[32]
Sah, M.K.; Rath, S.N. Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. Mater. Sci. Eng. C, 2016, 67, 807-821.
[http://dx.doi.org/10.1016/j.msec.2016.05.005] [PMID: 27287179]
[33]
Luo, L.; Wu, Y.; Liu, C.; Huang, L.; Zou, Y.; Shen, Y.; Lin, Q. Designing soluble soybean polysaccharides-based nanoparticles to improve sustained antimicrobial activity of nisin. Carbohydr. Polym., 2019., 225115251.
[http://dx.doi.org/10.1016/j.carbpol.2019.115251] [PMID: 31521298]
[34]
Khurana, R.; Singh, K.; Sapra, B.; Tiwary, A.K.; Rana, V. Tamarindus indica pectin blend film composition for coating tablets with enhanced adhesive force strength. Carbohydr. Polym., 2014, 102, 55-65.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.005] [PMID: 24507255]
[35]
Milojevic, S.; Newton, J.M.; Cummings, J.H.; Gibson, G.R.; Louise Botham, R.; Ring, S.G.; Stockham, M.; Allwood, M.C. Amylose as a coating for drug delivery to the colon: Preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J. Control. Release, 1996, 38(1), 75-84.
[http://dx.doi.org/10.1016/0168-3659(95)00112-3]
[36]
Palviainen, P.; Heinämäki, J.; Myllärinen, P.; Lahtinen, R.; Yliruusi, J.; Forssell, P. Corn starches as film formers in aqueous-based film coating. Pharm. Dev. Technol., 2001, 6(3), 353-361.
[http://dx.doi.org/10.1081/PDT-100002617] [PMID: 11485177]
[37]
Krogars, K.; Antikainen, O.; Heinämäki, J.; Laitinen, N.; Yliruusi, J. Tablet film-coating with amylose-rich maize starch. Eur. J. Pharm. Sci., 2002, 17(1-2), 23-30.
[http://dx.doi.org/10.1016/S0928-0987(02)00134-3] [PMID: 12356417]
[38]
Siew, L.F.; Basit, A.W.; Newton, J.M. The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific drug delivery systems. AAPS PharmSciTech, 2000, 1(3), E22.
[http://dx.doi.org/10.1208/pt010322] [PMID: 14727908]
[39]
Liu, H.; Adhikari, R.; Guo, Q.; Adhikari, B. Preparation and characterization of glycerol plasticized (high-amylose) starch–chitosan films. J. Food Eng., 2013, 116(2), 588-597.
[http://dx.doi.org/10.1016/j.jfoodeng.2012.12.037]
[40]
Bourtoom, T.; Chinnan, M.S. Preparation and properties of rice starch–chitosan blend biodegradable film. Lebensm. Wiss. Technol., 2008, 41(9), 1633-1641.
[http://dx.doi.org/10.1016/j.lwt.2007.10.014]
[41]
Prezotti, F.G.; Meneguin, A.B.; Evangelista, R.C.; Cury, B.S. Preparation and characterization of free films of high amylose/pectin mixtures cross-linked with sodium trimetaphosphate. Drug Dev. Ind. Pharm., 2012, 38(11), 1354-1359.
[http://dx.doi.org/10.3109/03639045.2011.650863] [PMID: 22251099]
[42]
Nunthanid, J.; Wanchana, S.; Sriamornsak, P.; Limmatavapirat, S.; Luangtana-anan, M.; Puttipipatkhachorn, S. Effect of heat on characteristics of chitosan film coated on theophylline tablets. Drug Dev. Ind. Pharm., 2002, 28(8), 919-930.
[http://dx.doi.org/10.1081/DDC-120006424] [PMID: 12378961]
[43]
Aiedeh, K.M.; Taha, M.O.; Al-Khatib, H. Evaluation of chitosan succinate and chitosan phthalate as enteric coating polymers for diclofenac sodium tablets. J. Drug Deliv. Sci. Technol., 2005, 15(3), 207-211.
[http://dx.doi.org/10.1016/S1773-2247(05)50033-9]
[44]
Aiedeh, K.; Taha, M.O. Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered, colon-specific drug delivery systems. Arch. Pharm. (Weinheim), 1999, 332(3), 103-107.
[http://dx.doi.org/10.1002/(SICI)1521-4184(19993)332:3<103::AID-ARDP103>3.0.CO;2-U] [PMID: 10228455]
[45]
Fan, L.F.; He, W.; Chang, Y.Z.; Xiang, B.; Du, Q.; Wang, F.; Qin, M.; Cao, D.Y. Studies of chitosan/Kollicoat SR 30D film-coated tablets for colonic drug delivery. Int. J. Pharm., 2009, 375(1-2), 8-15.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.023] [PMID: 19457627]
[46]
Shimono, N.; Takatori, T.; Ueda, M.; Mori, M.; Higashi, Y.; Nakamura, Y. Chitosan dispersed system for colon-specific drug delivery. Int. J. Pharm., 2002, 245(1-2), 45-54.
[http://dx.doi.org/10.1016/S0378-5173(02)00344-7] [PMID: 12270241]
[47]
Drechsler, M.; Garbacz, G.; Thomann, R.; Schubert, R. Development and evaluation of chitosan and chitosan/Kollicoat® Smartseal 30 D film-coated tablets for colon targeting. Eur. J. Pharm. Biopharm., 2014, 88(3), 807-815.
[http://dx.doi.org/10.1016/j.ejpb.2014.09.006] [PMID: 25301294]
[48]
Beck, M.I.; Tomka, I.; Waysek, E. Physico-chemical characterization of zein as a film coating polymer: A direct comparison with ethyl cellulose. Int. J. Pharm., 1996, 141(1), 137-150.
[http://dx.doi.org/10.1016/0378-5173(96)04630-3]
[49]
Li, X.N.; Guo, H.X.; Heinamaki, J. Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug. J. Colloid Interface Sci., 2010, 345(1), 46-53.
[http://dx.doi.org/10.1016/j.jcis.2010.01.029] [PMID: 20129615]
[50]
Guo, H.X.; Shi, Y.P. A novel zein-based dry coating tablet design for zero-order release. Int. J. Pharm., 2009, 370(1-2), 81-86.
[http://dx.doi.org/10.1016/j.ijpharm.2008.11.026] [PMID: 19100825]
[51]
Nguyen, M.N.U.; Tran, P.H.L.; Tran, T.T.D. A single-layer film coating for colon-targeted oral delivery. Int. J. Pharm., 2019, 559, 402-409.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.066] [PMID: 30738130]
[52]
Abu Diak, O.; Bani-Jaber, A.; Amro, B.; Jones, D.; Andrews, G.P. The Manufacture and Characterization of Casein Films as Novel Tablet Coatings. Food Bioprod. Process., 2007, 85(3), 284-290.
[http://dx.doi.org/10.1205/fbp07030]
[53]
Kajthunyakarn, W.; Sakloetsakun, D.; Pongjanyakul, T. Sodium caseinate-magnesium aluminum silicate nanocomposite films for modified-release tablets. Mater. Sci. Eng. C, 2018, 92, 827-839.
[http://dx.doi.org/10.1016/j.msec.2018.07.040] [PMID: 30184812]
[54]
Liu, G.; Gu, Z.; Hong, Y.; Cheng, L.; Li, C. Electrospun starch nanofibers: Recent advances, challenges and strategies for potential pharmaceutical applications. J. Control. Release, 2017, 252, 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.016] [PMID: 28284833]
[55]
Oladzadabbasabadi, N.; Ebadi, S.; Mohammadi Nafchi, A.; Karim, A.A.; Kiahosseini, S.R. Functional properties of dually modified sago starch/κ-carrageenan films: An alternative to gelatin in pharmaceutical capsules. Carbohydr. Polym., 2017, 160, 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.042] [PMID: 28115099]
[56]
Daudt, R.M.; Külkamp-Guerreiro, I.C.; Cladera-Olivera, F.; Thys, R.C.S.; Marczak, L.D.F. Determination of properties of pinhão starch: Analysis of its applicability as pharmaceutical excipient. Ind. Crops Prod., 2014, 52, 420-429.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.052]
[57]
Singh, A.V.; Singh, A.; Nath, L.K.; Pani, N.R. Evaluation of Trapa bispinosa Roxb. starch as pharmaceutical binder in solid dosage form. Asian Pac. J. Trop. Biomed., 2011, 1(1)(Suppl.), S86-S89.
[http://dx.doi.org/10.1016/S2221-1691(11)60131-7] [PMID: 23569728]
[58]
Lefnaoui, S.; Moulai-Mostefa, N. Synthesis and evaluation of the structural and physicochemical properties of carboxymethyl pregelatinized starch as a pharmaceutical excipient. Saudi Pharm. J., 2015, 23(6), 698-711.
[http://dx.doi.org/10.1016/j.jsps.2015.01.021] [PMID: 26702266]
[59]
Shibata, N.; Nishumura, A.; Naruhashi, K.; Nakao, Y.; Miura, R. Preparation and pharmaceutical evaluation of new sustained-release capsule including starch-sponge matrix (SSM). Biomed. Pharmacother., 2010, 64(5), 352-358.
[http://dx.doi.org/10.1016/j.biopha.2009.09.019] [PMID: 20006463]
[60]
Ngo, V.D.; Luu, T.D.; Van Vo, T.; Tran, V.T.; Duan, W.; Tran, P.H.L.; Tran, T.T.D. An investigation of effects of modification processes on physical properties and mechanism of drug release for sustaining drug release from modified rice. Mater. Sci. Eng. C, 2016, 67, 1-7.
[http://dx.doi.org/10.1016/j.msec.2016.04.098] [PMID: 27287092]
[61]
Wolff, I.A.; Davis, H.A.; Cluskey, J.E.; Gundrum, L.J.; Rist, C.E. Preparation of films from amylose. Ind. Eng. Chem., 1951, 43(4), 915-919.
[http://dx.doi.org/10.1021/ie50496a039]
[62]
Rindlav-Westling, A.; Stading, M.; Hermansson, A-M.; Gatenholm, P. Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydr. Polym., 1998, 36(2), 217-224.
[http://dx.doi.org/10.1016/S0144-8617(98)00025-3]
[63]
Guo, H.X.; Heinämäki, J.; Yliruusi, J. Amylopectin as a subcoating material improves the acidic resistance of enteric-coated pellets containing a freely soluble drug. Int. J. Pharm., 2002, 235(1-2), 79-86.
[http://dx.doi.org/10.1016/S0378-5173(01)00978-4] [PMID: 11879742]
[64]
Bae, H.J.; Cha, D.S.; Whiteside, W.S.; Park, H.J. Film and pharmaceutical hard capsule formation properties of mungbean, waterchestnut and sweet potato starches. Food Chem., 2008, 106(1), 96-105.
[http://dx.doi.org/10.1016/j.foodchem.2007.05.070] [PMID: 26050171]
[65]
Milojevic, S.; Newton, J.M.; Cummings, J.H.; Gibson, G.R.; Louise Botham, R.; Ring, S.G.; Stockham, M.; Allwood, M.C. Amylose as a coating for drug delivery to the colon: Preparation and in vitro evaluation using glucose pellets. J. Control. Release, 1996, 38(1), 85-94.
[http://dx.doi.org/10.1016/0168-3659(95)00113-1]
[66]
Pelissari, F.M.; Yamashita, F.; Garcia, M.A.; Martino, M.N.; Zaritzky, N.E.; Grossmann, M.V.E. Constrained mixture design applied to the development of cassava starch–chitosan blown films. J. Food Eng., 2012, 108(2), 262-267.
[http://dx.doi.org/10.1016/j.jfoodeng.2011.09.004]
[67]
Chillo, S.; Flores, S.; Mastromatteo, M.; Conte, A.; Gerschenson, L.; Del Nobile, M.A. Influence of glycerol and chitosan on tapioca starch-based edible film properties. J. Food Eng., 2008, 88(2), 159-168.
[http://dx.doi.org/10.1016/j.jfoodeng.2008.02.002]
[68]
Singh, J.; Kaur, L.; McCarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocoll., 2007, 21(1), 1-22.
[http://dx.doi.org/10.1016/j.foodhyd.2006.02.006]
[69]
Vandamme, T.F.; Lenourry, A.; Charrueau, C.; Chaumeil, J.C. The use of polysaccharides to target drugs to the colon. Carbohydr. Polym., 2002, 48(3), 219-231.
[http://dx.doi.org/10.1016/S0144-8617(01)00263-6]
[70]
Sinha, V.R.; Kumria, R. Colonic drug delivery: prodrug approach. Pharm. Res., 2001, 18(5), 557-564.
[http://dx.doi.org/10.1023/A:1011033121528] [PMID: 11465408]
[71]
Tran, T.T.D.; Tran, P.H.L. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics, 2019, 11(6), 290.
[http://dx.doi.org/10.3390/pharmaceutics11060290] [PMID: 31226748]
[72]
Abou-Aiad, T.H.M.; Abd-El-Nour, K.N.; Hakim, I.K.; Elsabee, M.Z. Dielectric and interaction behavior of chitosan/polyvinyl alcohol and chitosan/polyvinyl pyrrolidone blends with some antimicrobial activities. Polymer (Guildf.), 2006, 47(1), 379-389.
[http://dx.doi.org/10.1016/j.polymer.2005.02.122]
[73]
Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym., 2006, 63(3), 367-374.
[http://dx.doi.org/10.1016/j.carbpol.2005.09.023]
[74]
Kumar, M.N.V.R.; Muzzarelli, R.A.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 2004, 104(12), 6017-6084.
[http://dx.doi.org/10.1021/cr030441b] [PMID: 15584695]
[75]
Khunawattanakul, W.; Puttipipatkhachorn, S.; Rades, T.; Pongjanyakul, T. Novel chitosan-magnesium aluminum silicate nanocomposite film coatings for modified-release tablets. Int. J. Pharm., 2011, 407(1-2), 132-141.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.049] [PMID: 21291977]
[76]
Tran, P.H.L.; Duan, W.; Lee, B.J.; Tran, T.T.D. Nanogels for skin cancer therapy via transdermal delivery: current designs. Curr. Drug Metab., 2019, 20(7), 575-582.
[http://dx.doi.org/10.2174/1389200220666190618100030] [PMID: 31237201]
[77]
Winters, E.P.; Deardorff, D.L. A note on zein as a film-type coating for medicinal tablets. J Am Pharm Assoc Am Pharm Assoc, 1956, 45(2 Part 1), 125.
[http://dx.doi.org/10.1002/jps.3030450217] [PMID: 13295121]
[78]
Winters, E.P.; Deardorff, D.L. Zein as a film-type coating for medicinal tablets. J. Am. Pharm. Assoc. Am. Pharm. Assoc., 1958, 47(8), 608-612.
[http://dx.doi.org/10.1002/jps.3030470823] [PMID: 13563285]
[79]
Kanig, J.L.; Goodman, H. Evaluative procedures for filmforming materials used in pharmaceutical applications. J. Pharm. Sci., 1962, 51(1), 77-83.
[http://dx.doi.org/10.1002/jps.2600510115] [PMID: 14453623]
[80]
O’Donnell, P.B.; Wu, C.; Wang, J.; Wang, L.; Oshlack, B.; Chasin, M.; Bodmeier, R.; McGinity, J.W. Aqueous pseudolatex of zein for film coating of solid dosage forms. Eur. J. Pharm. Biopharm., 1997, 43(1), 83-89.
[http://dx.doi.org/10.1016/S0939-6411(96)00013-6 ]
[81]
Guo, H.X.; Heinämäki, J.; Yliruusi, J. Stable aqueous film coating dispersion of zein. J. Colloid Interface Sci., 2008, 322(2), 478-484.
[http://dx.doi.org/10.1016/j.jcis.2007.11.058] [PMID: 18420217]
[82]
Paliwal, R.; Palakurthi, S. Zein in controlled drug delivery and tissue engineering. J. Control. Release, 2014, 189, 108-122.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.036] [PMID: 24993426]
[83]
Raza, A.; Shen, N.; Li, J.; Chen, Y.; Wang, J-Y. Formulation of zein based compression coated floating tablets for enhanced gastric retention and tunable drug release. Eur. J. Pharm. Sci., 2019, 132, 163-173.
[http://dx.doi.org/10.1016/j.ejps.2019.01.025] [PMID: 30695689]
[84]
Motoki, M.; Aso, H.; Seguro, K.; Nio, N. αs1-casein film prepared using transglutaminase. Agric. Biol. Chem., 1987, 51(4), 993-996.
[http://dx.doi.org/10.1271/bbb1961.51.993]
[85]
Elzoghby, A.O.; El-Fotoh, W.S.; Elgindy, N.A. Casein-based formulations as promising controlled release drug delivery systems. J. Control. Release, 2011, 153(3), 206-216.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.010] [PMID: 21338636]
[86]
Holt, C.; Carver, J.A.; Ecroyd, H.; Thorn, D.C. Invited review: caseins and the casein micelle: their biological functions, structures and behavior in foods. J. Dairy Sci., 2013, 96(10), 6127-6146.
[http://dx.doi.org/10.3168/jds.2013-6831] [PMID: 23958008]
[87]
Ranadheera, C.S.; Liyanaarachchi, W.S.; Chandrapala, J.; Dissanayake, M.; Vasiljevic, T. Utilizing unique properties of caseins and the casein micelle for delivery of sensitive food ingredients and bioactives. Trends Food Sci. Technol., 2016, 57, 178-187.
[http://dx.doi.org/10.1016/j.tifs.2016.10.005]
[88]
Li, Q.; Zhao, Z. Acid and rennet-induced coagulation behavior of casein micelles with modified structure. Food Chem., 2019, 291, 231-238.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.028] [PMID: 31006464]
[89]
Corredig, M.; Nair, P.K.; Li, Y.; Eshpari, H.; Zhao, Z. Invited review: understanding the behavior of caseins in milk concentrates. J. Dairy Sci., 2019, 102(6), 4772-4782.
[http://dx.doi.org/10.3168/jds.2018-15943] [PMID: 30981474]
[90]
Rehan, F.; Ahemad, N.; Gupta, M. Casein nanomicelle as an emerging biomaterial-A comprehensive review. Colloids Surf. B Biointerfaces, 2019, 179, 280-292.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.051] [PMID: 30981063]
[91]
Bayomi, M.A.; al-Suwayeh, S.A.; el-Helw, A.M.; Mesnad, A.F. Preparation of casein-chitosan microspheres containing diltiazem hydrochloride by an aqueous coacervation technique. Pharm. Acta Helv., 1998, 73(4), 187-192.
[http://dx.doi.org/10.1016/S0031-6865(98)00020-X] [PMID: 9861867]
[92]
Picchio, M.L.; Passeggi, M.C.G.; Barandiaran, M.J.; Gugliotta, L.M.; Minari, R.J. Acrylic/casein latexes with controlled degree of grafting and improved coating performance. Prog. Org. Coat., 2016, 101, 587-596.
[http://dx.doi.org/10.1016/j.porgcoat.2016.10.002]
[93]
Picchio, M.L.; Minari, R.J.; Gugliotta, L.M. Enhancing the coating properties of acrylic/casein latexes with high protein content. J. Coat. Technol. Res., 2017, 14(3), 543-553.
[http://dx.doi.org/10.1007/s11998-016-9877-2]
[94]
Picchio, M.L.; Paredes, A.J.; Palma, S.D.; Passeggi, M.C.G.; Gugliotta, L.M.; Minari, R.J.; Igarzabal, C.I.A. pH-responsive casein-based films and their application as functional coatings in solid dosage formulations. Colloids Surf. A Physicochem. Eng. Asp., 2018, 541, 1-9.
[http://dx.doi.org/10.1016/j.colsurfa.2018.01.012]
[95]
Millar, F.C.; Corrigan, O.I. Influence of sodium caseinate on the dissolution rate of hydrochlorothiazide and chlorothiazide. Drug Dev. Ind. Pharm., 1991, 17(12), 1593-1607.
[http://dx.doi.org/10.3109/03639049109057310]
[96]
Millar, F.C.; Corrigan, O.I. Dissolution mechanism of ibuprofen-casein compacts. Int. J. Pharm., 1993, 92(1), 97-104.
[http://dx.doi.org/10.1016/0378-5173(93)90268-K]
[97]
Khunawattanakul, W.; Puttipipatkhachorn, S.; Rades, T.; Pongjanyakul, T. Chitosan-magnesium aluminum silicate nanocomposite films: physicochemical characterization and drug permeability. Int. J. Pharm., 2010, 393(1-2), 219-229.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.007] [PMID: 20398744]
[98]
Kulkarni, A.; Rs, Y.; Dehghan, M.H.G. Application of neem gum for aqueous film coating of ciprofloxacin tablets. Int. J. Appl. Res. Nat. Prod., 2013, 6, 11-19.
[99]
Rane, S.; Kale, V. Evaluation of modified guar gum as film coating material. Int. J. Chemtech Res., 2009, 1(2), 180-182.
[100]
Heinämäki, J.; Halenius, A.; Paavo, M.; Alakurtti, S.; Pitkänen, P.; Pirttimaa, M.; Paaver, U.; Kirsimäe, K.; Kogermann, K.; Yliruusi, J. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings. Int. J. Pharm., 2015, 489(1-2), 91-99.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.066] [PMID: 25936623]
[101]
Garcia, H.; Ferreira, R.; Martins, C.; Sousa, A.F.; Freire, C.S.; Silvestre, A.J.; Kunz, W.; Rebelo, L.P.N.; Silva Pereira, C. Ex situ reconstitution of the plant biopolyester suberin as a film. Biomacromolecules, 2014, 15(5), 1806-1813.
[http://dx.doi.org/10.1021/bm500201s] [PMID: 24670155]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy