Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Lithium-Protein Interactions: Analysis of Lithium-Containing Protein Crystal Structures Deposited in the Protein Data Bank

Author(s): Oliviero Carugo*

Volume 27, Issue 8, 2020

Page: [763 - 769] Pages: 7

DOI: 10.2174/0929866527666200305144447

Price: $65

Abstract

Background: Despite the fact that lithium is not a biologically essential metallic element, its pharmacological properties are well known and human exposure to lithium is increasingly possible because of its used in aerospace industry and in batteries.

Objective: Lithium-protein interactions are therefore interesting and the surveys of the structures of lithium-protein complexes is described in this paper.

Methods: A high quality non-redundant set of lithium containing protein crystal structures was extracted from the Protein Data Bank and the stereochemistry of the lithium first coordination sphere was examined in detail.

Results: Four main observations were reported: (i) lithium interacts preferably with oxygen atoms; (ii) preferably with side-chain atoms; (iii) preferably with Asp or Glu carboxylates; (iv) the coordination number tends to be four with stereochemical parameters similar to those observed in small molecules containing lithium.

Conclusion: Although structural information on lithium-protein, available from the Protein Data Bank, is relatively scarce, these trends appears to be so clear that one may suppose that they will be confirmed by further data that will join the Protein Data Bank in the future.

Keywords: Coordination compounds, lithium cation, lithium toxicity, protein crystal structure, protein data bank, stereochemistry.

Graphical Abstract

[1]
Kamienski, C.W.; McDonald, D.P.; Stark, M.W.; Papcun, J.R. Lithium and lithium compounds. In: Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, 2004.
[http://dx.doi.org/10.1002/0471238961.1209200811011309.a01.pub 2]
[2]
Schwochau, K. Extraction of metals from sea water. Top. Curr. Chem., 1984, 124, 91-133.
[http://dx.doi.org/10.1007/3-540-13534-0_3]
[3]
Maret, W. Metallomics; Imperial College Press: London, 2016.
[http://dx.doi.org/10.1142/p1044]
[4]
Crichton, R.R. Biological Inorganic Chemistry; Amsterdam, 2012.
[5]
Dudev, T.; Lim, C. Competition between Li+ and Mg2+ in metalloproteins. Implications for lithium therapy. J. Am. Chem. Soc., 2011, 133(24), 9506-9515.
[http://dx.doi.org/10.1021/ja201985s] [PMID: 21595457]
[6]
Haimovich, A.; Eliav, U.; Goldbourt, A. Determination of the lithium binding site in inositol monophosphatase, the putative target for lithium therapy, by magic-angle-spinning solid-state NMR. J. Am. Chem. Soc., 2012, 134(12), 5647-5651.
[http://dx.doi.org/10.1021/ja211794x] [PMID: 22384802]
[7]
Mann, L.; Heldman, E.; Bersudsky, Y.; Vatner, S.F.; Ishikawa, Y.; Almog, O.; Belmaker, R.H.; Agam, G. Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disord., 2009, 11(8), 885-896.
[http://dx.doi.org/10.1111/j.1399-5618.2009.00762.x] [PMID: 19922557]
[8]
Figueroa, L.; Barton, S.; Schull, W.; Razmilic, B.; Zumaeta, O.; Young, A.; Kamiya, Y.; Hoskins, J.; Ilgren, E. Environmental lithium exposure in the North of Chile--I. Natural water sources. Biol. Trace Elem. Res., 2012, 149(2), 280-290.
[http://dx.doi.org/10.1007/s12011-012-9417-6] [PMID: 22576983]
[9]
Aral, H.; Vecchio-Sadus, A. Toxicity of lithium to humans and the environment--a literature review. Ecotoxicol. Environ. Saf., 2008, 70(3), 349-356.
[http://dx.doi.org/10.1016/j.ecoenv.2008.02.026] [PMID: 18456327]
[10]
Barrera, M.; Ardo, S.; Crivelli, I.; Loeb, B.; Meyer, G.J. The role of lithium cations on the photochemistry of ruthenium complexes in dye-sensitized solar cells: A TDDFT study with the BCL model. J. Photochem. Photobiol. Chem., 2018, 364, 510-515.
[http://dx.doi.org/10.1016/j.jphotochem.2018.06.036]
[11]
Grzechulska, J.; Hamerski, M.; Morawski, A.W. Incorporation of lithium into TiO2 host and its application in photocatalysis. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2000, 341(2), 243-248.
[http://dx.doi.org/10.1080/10587250008026147]
[12]
(a)Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.J. Jr.; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol., 1977, 112(3), 535-542.
[http://dx.doi.org/10.1016/S0022-2836(77)80200-3] [PMID: 875032]
(b)Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[13]
Olsher, U.; Izatt, R.M.; Bradshaw, J.S.; Dalley, N.K. Coordination chemistry of lithium ion: A crystal and molecular structure review. Chem. Rev., 1991, 91, 137-164.
[http://dx.doi.org/10.1021/cr00002a003]
[14]
(a)Schmidbaur, H.; Bach, I.; Wilkinson, D.L.; Mueller, G. Metal ion binding by amino acids. Preparation and crystal structures of lithium hydrogen L‐aspartate hydrate and potassium hydrogen L‐aspartate dihydrate. Chem. Ber., 1989, 122, 1427-1431.
[http://dx.doi.org/10.1002/cber.19891220808]
(b)Krumberger, O.; Riede, J.; Schmidbaur, H. Metal binding by amino acids: Preparation and crystal structures of lithium, sodium, and potassium hydrogen bis-L-pyroglutamate. Chem. Ber., 1992, 125, 1829-1834.
[http://dx.doi.org/10.1002/cber.19921250808]
(c)Wiesbrock, F.; Schmidbaur, H. Lithium salicylate monohydrate: A layer structure with carboxylate-bridged Δ- and Λ-[(H2O)Li+]∞ helices. Cryst. Eng. Comm., 2003, 5, 503-505.
[http://dx.doi.org/10.1039/B312892J]
(d)Wiesbrock, F.; Schmidbaur, H. Interactions of a β-dipeptide with monovalent metal cations: crystal structures of (anthranoyl)anthranilic acid and its lithium, sodium and thallium salts. J. Inorg. Biochem., 2004, 98(3), 473-484.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.12.017] [PMID: 14987848]
(e)Schmidbaur, H.; Classen, H.G.; Helbig, J. Aspartic and glutamic acid as ligands to alkali and alkaline‐earth metals: Structural chemistry as related to magnesium therapy. Angew. Chem. Int. Ed., 1990, 29, 1090-1103.
[http://dx.doi.org/10.1002/anie.199010901]
[15]
O’Dell, W.B.; Bodenheimer, A.M.; Meilleur, F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch. Biochem. Biophys., 2016, 602, 48-60.
[http://dx.doi.org/10.1016/j.abb.2015.11.033] [PMID: 26592456]
[16]
Kupriyanov, V.V.; Xiang, B.; Yang, L.; Deslauriers, R. Lithium ion as a probe of Na+ channel activity in isolated rat hearts: A multinuclear NMR study. NMR Biomed., 1997, 10(6), 271-276.
[http://dx.doi.org/10.1002/(SICI)1099-1492(199709)10:6<271:AID-NBM473>3.0.CO;2-L] [PMID: 9449130]
[17]
(a)Carugo, O. Silver and gold in the Protein Data Bank. J. Inorg. Biochem., 2017, 175, 244-247.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.07.031] [PMID: 28802223]
(b)Djinovic-Carugo, K.; Carugo, O. Structural biology of the lanthanides-mining rare earths in the Protein Data Bank. J. Inorg. Biochem., 2015, 143, 69-76.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.12.005] [PMID: 25528480]
(c)Carugo, O. Structural features of uranium-protein complexes. J. Inorg. Biochem., 2018, 189(1-6), 1-6.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.08.014] [PMID: 30149122]
(d)Djinovic-Carugo, K.; Carugo, O. Naked metal cations swimming in protein crystals. Crystals (Basel), 2019, 9, 581.
[http://dx.doi.org/10.3390/cryst9110581]
[18]
Loeffler, H.H.; Rode, B.M. The hydration structure of the lithium ion. J. Chem. Phys., 2001, 117, 110-117.
[http://dx.doi.org/10.1063/1.1480875]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy