Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cold Atmospheric Plasma as a Novel Therapeutic Tool for the Treatment of Brain Cancer

Author(s): Manish Adhikari*, Bhawana Adhikari, Anupriya Adhikari, Dayun Yan, Vikas Soni, Jonathan Sherman and Michael Keidar*

Volume 26, Issue 19, 2020

Page: [2195 - 2206] Pages: 12

DOI: 10.2174/1381612826666200302105715

Price: $65

Abstract

Background: Studies from the past few years revealed the importance of Cold Atmospheric Plasma (CAP) on various kinds of diseases, including brain cancers or glioblastoma (GBM), and hence coined a new term ‘Plasma Medicine’ in the modern world for promising therapeutic approaches. Here, we focus on the efficacy of CAP and its liquid derivatives on direct interactions or with specific nanoparticles to show pivotal roles in brain cancer treatment.

Method: In the present review study, the authors studied several articles over the past decades published on the types of CAP and its effects on different brain cancers and therapy.

Results: A growing body of evidence indicates that CAP and its derivatives like Plasma Activated Media/ Water (PAM/PAW) are introduced in different kinds of GBM. Recent studies proposed that CAP plays a remarkable role in GBM treatment. To increase the efficacy of CAP, various nanoparticles of different origins got specific attention in recent times. In this review, different strategies to treat brain cancers, including nanoparticles, are discussed as enhancers of CAP induced targeted nanotherapeutic approach.

Conclusion: CAP treatment and its synergistic effects with different nanoparticles hold great promise for clinical applications in early diagnosis and treatment of GBM treatment. However, results obtained from previous studies were still in the preliminary phase, and there must be a concern over the use of optimal methods for a dosage of CAP and nanoparticles for complete cure of GBM.

Keywords: Cold Atmospheric Plasma (CAP), glioblastoma, nanoparticles, free radicals, plasma medicine, Plasma Activated Media/ Water (PAM/PAW).

[1]
Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 2014; 370(8): 699-708.
[http://dx.doi.org/10.1056/NEJMoa1308573] [PMID: 24552317]
[2]
Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370(8): 709-22.
[http://dx.doi.org/10.1056/NEJMoa1308345] [PMID: 24552318]
[3]
Thakkar JP, Dolecek TA, Horbinski C, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidem Biomarkers 2014; 23(10): 1985-96.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0275] [PMID: 25053711]
[4]
Smith MA, Reaman GH. Remaining challenges in childhood cancer and newer targeted therapeutics. Pediatr Clin N Am 2015; 62(1): 301-12.
[http://dx.doi.org/10.1016/j.pcl.2014.09.018] [PMID: 25435124]
[5]
Brinkman TM, Krasin MJ, Liu W, et al. Long-Term Neurocognitive Functioning and Social Attainment in Adult Survivors of Pediatric CNS Tumors: Results From the St Jude Lifetime Cohort Study. J Clin Oncol 2016; 34(12): 1358-67.
[http://dx.doi.org/10.1200/JCO.2015.62.2589] [PMID: 26834063]
[6]
Chemaitilly W, Armstrong GT, Gajjar A, Hudson MM. Hypothalamic-Pituitary Axis Dysfunction in Survivors of Childhood CNS Tumors: Importance of Systematic Follow-Up and Early Endocrine Consultation. J Clin Oncol 2016; 34(36): 4315-9.
[http://dx.doi.org/10.1200/JCO.2016.70.1847] [PMID: 27998231]
[7]
Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell 2016; 29(4): 508-22.
[http://dx.doi.org/10.1016/j.ccell.2016.03.002] [PMID: 27050100]
[8]
Gerstner ER, Fine RL. Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J Clin Oncol 2007; 25(16): 2306-12.
[http://dx.doi.org/10.1200/JCO.2006.10.0677] [PMID: 17538177]
[9]
Specht HM, Combs SE. Stereotactic radiosurgery of brain metastases. J Neurosurg Sci 2016; 60(3): 357-66.
[PMID: 27071010]
[10]
Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006; 9(3): 157-73.
[http://dx.doi.org/10.1016/j.ccr.2006.02.019] [PMID: 16530701]
[11]
Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321(5897): 1807-12.
[http://dx.doi.org/10.1126/science.1164382] [PMID: 18772396]
[12]
Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 2012; 149(1): 36-47.
[http://dx.doi.org/10.1016/j.cell.2012.03.009] [PMID: 22464322]
[13]
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152: 63-82.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.005] [PMID: 25944528]
[14]
Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5: 64.
[http://dx.doi.org/10.4103/2152-7806.132138] [PMID: 24991467]
[15]
Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med 2015; 3(9): 121.
[PMID: 26207249]
[16]
Magill ST, Young JS, Chae R, Aghi MK, Theodosopoulos PV, McDermott MW. Relationship between tumor location, size, and WHO grade in meningioma. Neurosurg Focus 2018; 44(4)E4
[http://dx.doi.org/10.3171/2018.1.FOCUS17752] [PMID: 29606048]
[17]
Rogers L, Barani I, Chamberlain M, et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 2015; 122(1): 4-23.
[http://dx.doi.org/10.3171/2014.7.JNS131644] [PMID: 25343186]
[18]
Chung LK, Mathur I, Lagman C, et al. Stereotactic radiosurgery versus fractionated stereotactic radiotherapy in benign meningioma. J Clin Neurosci 2017; 36: 1-5.
[http://dx.doi.org/10.1016/j.jocn.2016.10.009] [PMID: 27815026]
[19]
Huson SM. Theœ neurofibromatoses. London: Chapman & Hall Med 1994.
[20]
Le T, Bhushan V. First aid for the USMLE step 2 CKNew York; Chicago; San Francisco; Athens; London; Madrid; Mexico City. Milan; New Delhi; Singapore; Sydney; Toronto: McGraw-Hill Education. McGraw-Hill Education 2019.
[21]
Hu J, Western S, Kesari S. Brainstem Glioma in Adults. Front Oncol 2016; 6: 180.
[http://dx.doi.org/10.3389/fonc.2016.00180] [PMID: 27556016]
[22]
Zhao S, Wu J, Wang C, et al. Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS One 2013; 8(5)e63682
[http://dx.doi.org/10.1371/journal.pone.0063682] [PMID: 23723993]
[23]
Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev 2014; 2014(1)CD009685
[http://dx.doi.org/10.1002/14651858.CD009685.pub2] [PMID: 24474579]
[24]
Ellor SV, Pagano-Young TA, Avgeropoulos NG. Glioblastoma: background, standard treatment paradigms, and supportive care considerations. J Law Med Ethics 2014; 42(2): 171-82.
[http://dx.doi.org/10.1111/jlme.12133] [PMID: 25040381]
[25]
Walid MS. Prognostic factors for long-term survival after glioblastoma. Perm J 2008; 12(4): 45-8.
[http://dx.doi.org/10.7812/TPP/08-027] [PMID: 21339920]
[26]
Stupp R, Mason WP, van den Bent MJ, et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials. Group.Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10): 987-96.
[http://dx.doi.org/10.1056/NEJMoa043330] [PMID: 15758009]
[27]
Wind JJ, Young R, Saini A, Sherman JH. The role of adjuvant radiation therapy in the management of high-grade gliomas. Neurosurg Clin N Am 2012; 23(2): 247-258,viii..
[http://dx.doi.org/10.1016/j.nec.2012.01.001] [PMID: 22440868]
[28]
Barani IJ, Larson DA. Radiation therapy of glioblastoma. Cancer Treat Res 2015; 163: 49-73.
[http://dx.doi.org/10.1007/978-3-319-12048-5_4] [PMID: 25468225]
[29]
Jin U-H, Karki K, Cheng Y, Michelhaugh SK, Mittal S, Safe S. The aryl hydrocarbon receptor is a tumor suppressor-like gene in glioblastoma. J Biol Chem 2019; 294(29): 11342-53.
[http://dx.doi.org/10.1074/jbc.RA119.008882] [PMID: 31171720]
[30]
Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019; 25(3): 477-86.
[http://dx.doi.org/10.1038/s41591-018-0337-7] [PMID: 30742122]
[31]
Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 2019; 565(7741): 654-8.
[http://dx.doi.org/10.1038/s41586-019-0882-3] [PMID: 30675060]
[32]
Seano G, Nia HT, Emblem KE, et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat Biomed Eng 2019; 3(3): 230-45.
[http://dx.doi.org/10.1038/s41551-018-0334-7] [PMID: 30948807]
[33]
Bell EH, Zhang P, Fisher BJ, et al. Association of MGMT Promoter Methylation Status With Survival Outcomes in Patients With High-Risk Glioma Treated With Radiotherapy and Temozolomide: An Analysis From the NRG Oncology/RTOG 0424 Trial. JAMA Oncol 2018; 4(10): 1405-9.
[http://dx.doi.org/10.1001/jamaoncol.2018.1977] [PMID: 29955793]
[34]
Metelmann H-R, Nedrelow DS, Seebauer C, Schuster M, von Woedtke T, Weltmann K-D, et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med 2015; 3: 17-23.
[http://dx.doi.org/10.1016/j.cpme.2015.02.001]
[35]
Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One 2014; 9(5)e98652
[http://dx.doi.org/10.1371/journal.pone.0098652] [PMID: 24878760]
[36]
Kaushik NK, Ghimire B, Li Y, et al. Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 2018; 400(1): 39-62.
[http://dx.doi.org/10.1515/hsz-2018-0226] [PMID: 30044757]
[37]
Laroussi M, Lu X, Keidar M. Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine. J Appl Phys 2017; 122: 20901.
[http://dx.doi.org/10.1063/1.4993710]
[38]
Akishev Y, Grushin M, Karalnik V, Kochetov I, Napartovich A, Trushkin N. Generation of atmospheric pressure non-thermal plasma by diffusive and constricted discharges in air and nitrogen at the rest and flow. J Phys D 2010; 257012014
[http://dx.doi.org/10.1088/1742-6596/257/1/012014]
[39]
Hoffmann C, Berganza C, Zhang J. Cold Atmospheric Plasma: methods of production and application in dentistry and oncology. Med Gas Res 2013; 3(1): 21.
[http://dx.doi.org/10.1186/2045-9912-3-21] [PMID: 24083477]
[40]
Xu D, Liu D, Wang B, et al. In Situ OH Generation from O2- and H2O2 Plays a Critical Role in Plasma-Induced Cell Death. PLoS One 2015; 10(6)e0128205
[http://dx.doi.org/10.1371/journal.pone.0128205] [PMID: 26046915]
[41]
Saadati F, Mahdikia H, Abbaszadeh H-A, Abdollahifar M-A, Khoramgah MS, Shokri B. Comparison of Direct and Indirect cold atmospheric-pressure plasma methods in the B16F10 melanoma cancer cells treatment. Sci Rep 2018; 8(1): 7689.
[http://dx.doi.org/10.1038/s41598-018-25990-9] [PMID: 29769707]
[42]
Gjika E, Pekker M, Shashurin A, Shneider M, Zhuang T, Canady J, et al. The cutting mechanism of the electrosurgical scalpel. J Appl Phys 2017; 50: 25401.
[http://dx.doi.org/10.1088/1361-6463/50/2/025401]
[43]
Ly L, Jones S, Shashurin A, Zhuang T, Rowe W, Cheng X, et al. A New Cold Plasma Jet: Performance Evaluation of Cold Plasma, Hybrid Plasma and Argon Plasma Coagulation. Plasma 2018; 1: 189-200.
[http://dx.doi.org/10.3390/plasma1010017]
[44]
Keidar M. A prospectus on innovations in the plasma treatment of cancer. Phys Plasmas 2018; 25: 83504.
[http://dx.doi.org/10.1063/1.5034355]
[45]
Xia J, Zeng W, Xia Y, Wang B, Xu D, Liu D, et al. Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2‐mediated nitric oxide synthase signaling. J Biophotonics 2019; 12:e201800046-n/a.
[http://dx.doi.org/10.1002/jbio.201800046] [PMID: 29931745]
[46]
Yokoyama M, Johkura K, Sato T. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow. Biochem Biophys Res Commun 2014; 450(4): 1266-71.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.116] [PMID: 24996177]
[47]
Schneider C, Arndt S, Zimmermann JL, Li Y, Karrer S, Bosserhoff AK. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells. Biol Chem 2018; 400(1): 111-22.
[http://dx.doi.org/10.1515/hsz-2018-0193] [PMID: 29908123]
[48]
Yang H, Lu R, Xian Y, Gan L, Lu X, Yang X. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line. Phys Plasmas 2015; 22122006
[http://dx.doi.org/10.1063/1.4933405]
[49]
Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One 2013; 8(9)e73741
[http://dx.doi.org/10.1371/journal.pone.0073741] [PMID: 24040051]
[50]
Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Utsumi F, Kajiyama H, et al. Cell survival and proliferation signaling pathways are downregulated by plasma-activated medium in glioblastoma brain tumor cells. Plasma Med 2012; 2: 207-20.
[http://dx.doi.org/10.1615/PlasmaMed.2013008267]
[51]
Kaushik NK, Kaushik N, Park D, Choi EH. Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment. PLoS One 2014; 9(7)e103349
[http://dx.doi.org/10.1371/journal.pone.0103349] [PMID: 25068311]
[52]
Keidar M. Cold plasma cancer therapy. San Rafael California(40 Oak Drive, San Rafael, CA, 94903, USA): Morgan & Claypool Publishers 2019.
[http://dx.doi.org/10.1088/2053-2571/aafb9c]
[53]
Yan D, Xu W, Yao X, Lin L, Sherman JH, Keidar M. The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment. Sci Rep 2018; 8(1): 15418-0.
[http://dx.doi.org/10.1038/s41598-018-33914-w] [PMID: 30337623]
[54]
Fridman G, Shereshevsky A, Jost M, Brooks A, Fridman A, Gutsol A, et al. Floating Electrode Dielectric Barrier Discharge Plasma in Air Promoting Apoptotic Behavior in Melanoma Skin Cancer Cell Lines. Plasma Chem Plasma P 2007; 27: 163-76.
[http://dx.doi.org/10.1007/s11090-007-9048-4]
[55]
Tanaka H, Mizuno M, Ishikawa K, Nakamura K, Kajiyama H, Kano H, et al. Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase. Plasma Med 2011; 1: 265-77.
[http://dx.doi.org/10.1615/PlasmaMed.2012006275]
[56]
Chernets N, Kurpad DS, Alexeev V, Rodrigues DB, Freeman TA. Reaction Chemistry Generated by Nanosecond Pulsed Dielectric Barrier Discharge Treatment is Responsible for the Tumor Eradication in the B16 Melanoma Mouse Model. Plasma Process Polym 2015; 12(12): 1400-9.
[http://dx.doi.org/10.1002/ppap.201500140] [PMID: 29104522]
[57]
Chen Z, Krasik YE, Cousens S, Ambujakshan AT, Corr C, Dai XJ. Generation of underwater discharges inside gas bubbles using a 30-needles-to-plate electrode. J Appl Phys 2017; 122153303
[http://dx.doi.org/10.1063/1.4993497]
[58]
Chen Z, Lin L, Cheng X, Gjika E, Keidar M. Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Process Polym 2016; 13: 1151-6.
[http://dx.doi.org/10.1002/ppap.201600086]
[59]
Ahn HJ, Kim KI, Hoan NN, et al. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma. PLoS One 2014; 9(1)e86173
[http://dx.doi.org/10.1371/journal.pone.0086173] [PMID: 24465942]
[60]
Bekeschus S, Kolata J, Winterbourn C, et al. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res 2014; 48(5): 542-9.
[http://dx.doi.org/10.3109/10715762.2014.892937] [PMID: 24528134]
[61]
Yan D, Nourmohammadi N, Bian K, Murad F, Sherman JH, Keidar M. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition. Sci Rep 2016; 6: 26016.
[http://dx.doi.org/10.1038/srep26016] [PMID: 27172875]
[62]
Bauer G. The synergistic effect between hydrogen peroxide and nitrite, two long-lived molecular species from cold atmospheric plasma, triggers tumor cells to induce their own cell death. Redox Biol 2019; 26101291
[http://dx.doi.org/10.1016/j.redox.2019.101291] [PMID: 31421409]
[63]
Kurake N, Tanaka H, Ishikawa K, et al. Cell survival of glioblastoma grown in medium containing hydrogen peroxide and/or nitrite, or in plasma-activated medium. Arch Biochem Biophys 2016; 605: 102-8.
[http://dx.doi.org/10.1016/j.abb.2016.01.011] [PMID: 26820218]
[64]
Girard P-M, Arbabian A, Fleury M, et al. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma. Sci Rep 2016; 6: 29098.
[http://dx.doi.org/10.1038/srep29098] [PMID: 27364563]
[65]
Bauer G. The Antitumor Effect of Singlet Oxygen. Anticancer Res 2016; 36(11): 5649-63.
[http://dx.doi.org/10.21873/anticanres.11148] [PMID: 27793886]
[66]
Bekeschus S, Wende K, Hefny MM, et al. Oxygen atoms are critical in rendering THP-1 leukaemia cells susceptible to cold physical plasma-induced apoptosis. Sci Rep 2017; 7(1): 2791-12.
[http://dx.doi.org/10.1038/s41598-017-03131-y] [PMID: 28584285]
[67]
Liu Z, Xu D, Liu D, Cui Q, Cai H, Li Q, et al. Production of simplex RNS and ROS by nanosecond pulse N2/O2plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis. J Phys D 2017; 50195204
[http://dx.doi.org/10.1088/1361-6463/aa66f0]
[68]
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers (Basel) 2019; 11(7): 1030.
[http://dx.doi.org/10.3390/cancers11071030] [PMID: 31336648]
[69]
Yan D, Xiao H, Zhu W, Nourmohammadi N, Zhang LG, Bian K, et al. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D 2017; 50: 55401.
[http://dx.doi.org/10.1088/1361-6463/aa53d6]
[70]
Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 2004; 43(33): 4278-90.
[http://dx.doi.org/10.1002/anie.200460804] [PMID: 15368374]
[71]
Wu B, Beitz E. Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci 2007; 64(18): 2413-21.
[http://dx.doi.org/10.1007/s00018-007-7163-2] [PMID: 17571212]
[72]
Verkman AS, Hara-Chikuma M, Papadopoulos MC. Aquaporins--new players in cancer biology. J Mol Med (Berl) 2008; 86(5): 523-9.
[http://dx.doi.org/10.1007/s00109-008-0303-9] [PMID: 18311471]
[73]
Chen R, Shi Y, Amiduo R, Tuokan T, Suzuk L. Expression and prognostic value of aquaporin 1, 3 in cervical carcinoma in women of Uygur ethnicity from Xinjiang, China. PLoS One 2014; 9(2)e98576
[http://dx.doi.org/10.1371/journal.pone.0098576] [PMID: 24918928]
[74]
Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 2010; 107(36): 15681-6.
[http://dx.doi.org/10.1073/pnas.1005776107] [PMID: 20724658]
[75]
Almasalmeh A, Krenc D, Wu B, Beitz E. Structural determinants of the hydrogen peroxide permeability of aquaporins. FEBS J 2014; 281(3): 647-56.
[http://dx.doi.org/10.1111/febs.12653] [PMID: 24286224]
[76]
Kawasaki T, Kusumegi S, Kudo A, Sakanoshita T, Tsurumaru T, Sato A, et al. Effects of irradiation distance on supply of reactive oxygen species to the bottom of a Petri dish filled with liquid by an atmospheric O2/He plasma jet. J Appl Phys 2016; 119173301
[http://dx.doi.org/10.1063/1.4948430]
[77]
Herrera M, Hong NJ, Garvin JL. Aquaporin-1 transports NO across cell membranes. Hypertension 2006; 48(1): 157-64.
[http://dx.doi.org/10.1161/01.HYP.0000223652.29338.77] [PMID: 16682607]
[78]
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging 2018; 13: 757-72.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[79]
Ishaq M, Kumar S, Varinli H, et al. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell 2014; 25(9): 1523-31.
[http://dx.doi.org/10.1091/mbc.e13-10-0590] [PMID: 24574456]
[80]
Zhao S, Xiong Z, Mao X, et al. Atmospheric pressure room temperature plasma jets facilitate oxidative and nitrative stress and lead to endoplasmic reticulum stress dependent apoptosis in HepG2 cells. PLoS One 2013; 8(8)e73665
[http://dx.doi.org/10.1371/journal.pone.0073665] [PMID: 24013954]
[81]
Nguyen NH, Park HJ, Yang SS, Choi KS, Lee J-S. Anti-cancer efficacy of nonthermal plasma dissolved in a liquid, liquid plasma in heterogeneous cancer cells. Sci Rep 2016; 6: 29020.
[http://dx.doi.org/10.1038/srep29020] [PMID: 27364630]
[82]
Kim SJ, Chung TH. Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells. Sci Rep 2016; 6: 20332.
[http://dx.doi.org/10.1038/srep20332] [PMID: 26838306]
[83]
Kastan MB. DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture. Mol Cancer Res 2008; 6(4): 517-24.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0020] [PMID: 18403632]
[84]
Kim GJ, Kim W, Kim KT, Lee JK. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl Phys Lett 2010; 96: 21502.
[http://dx.doi.org/10.1063/1.3292206]
[85]
Chang JW, Kang SU, Shin YS, et al. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway. Arch Biochem Biophys 2014; 545: 133-40.
[http://dx.doi.org/10.1016/j.abb.2014.01.022] [PMID: 24486404]
[86]
Arndt S, Wacker E, Li YF, et al. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol 2013; 22(4): 284-9.
[http://dx.doi.org/10.1111/exd.12127] [PMID: 23528215]
[87]
Turrini E, Laurita R, Stancampiano A, et al. Cold Atmospheric Plasma Induces Apoptosis and Oxidative Stress Pathway Regulation in T-Lymphoblastoid Leukemia Cells. Oxid Med Cell Longev 2017; 2017: 4271065-13.
[http://dx.doi.org/10.1155/2017/4271065] [PMID: 28947928]
[88]
Liedtke KR, Diedrich S, Pati O, et al. Cold Physical Plasma Selectively Elicits Apoptosis in Murine Pancreatic Cancer Cells In Vitro and In Ovo. Anticancer Res 2018; 38(10): 5655-63.
[http://dx.doi.org/10.21873/anticanres.12901] [PMID: 30275184]
[89]
Volotskova O, Hawley TS, Stepp MA, Keidar M. Targeting the cancer cell cycle by cold atmospheric plasma. Sci Rep 2012; 2: 636.
[http://dx.doi.org/10.1038/srep00636] [PMID: 22957140]
[90]
Kirson ED, Dbalý V, Tovaryš F, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci USA 2007; 104(24): 10152-7.
[http://dx.doi.org/10.1073/pnas.0702916104] [PMID: 17551011]
[91]
Keidar M, Shashurin A, Volotskova O, Ann Stepp M, Srinivasan P, Sandler A, et al. Cold atmospheric plasma in cancer therapy 2013; 20 57101.
[http://dx.doi.org/10.1063/1.4801516]
[92]
Shashurin A, Keidar M, Bronnikov S, Jurjus R, Stepp M. Living tissue under treatment of cold plasma atmospheric jet. Appl Phys Lett 2008; 93: 181501-181501–3.
[http://dx.doi.org/10.1063/1.3020223]
[93]
Kikkawa F, Kondo H, Nakamura K, Iseki S, Kajiyama H, Kano H, et al. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett 2012; 100: 113702-113702–4.
[http://dx.doi.org/10.1063/1.3694928]
[94]
Gweon B, Kim M, Kim DB, Kim D, Kim H, Jung H, et al. Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett 2011; 99: 063701-063701–3.
[http://dx.doi.org/10.1063/1.3622631]
[95]
Zucker SN, Zirnheld J, Bagati A, et al. Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol Ther 2012; 13(13): 1299-306.
[http://dx.doi.org/10.4161/cbt.21787] [PMID: 22895073]
[96]
Thomas AA, Brennan CW, DeAngelis LM, Omuro AM. Emerging therapies for glioblastoma. JAMA Neurol 2014; 71(11): 1437-44.
[http://dx.doi.org/10.1001/jamaneurol.2014.1701] [PMID: 25244650]
[97]
Tan Q, Saggar JK, Yu M, Wang M, Tannock IF. Mechanisms of Drug Resistance Related to the Microenvironment of Solid Tumors and Possible Strategies to Inhibit Them. Cancer J 2015; 21(4): 254-62.
[http://dx.doi.org/10.1097/PPO.0000000000000131] [PMID: 26222076]
[98]
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255): 539-45.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[99]
Nakano O, Sato M, Naito Y, et al. Proliferative activity of intratumoral CD8(+) T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res 2001; 61(13): 5132-6.
[PMID: 11431351]
[100]
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008; 27(45): 5904-12.
[http://dx.doi.org/10.1038/onc.2008.271] [PMID: 18836471]
[101]
Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999; 100(1-2): 216-32.
[http://dx.doi.org/10.1016/S0165-5728(99)00203-9] [PMID: 10695732]
[102]
Lekkou A, Karakantza M, Mouzaki A, Kalfarentzos F, Gogos CA. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. Clin Diagn Lab Immunol 2004; 11(1): 161-7.
[PMID: 14715564]
[103]
Cheadle WG, Hershman MJ, Wellhausen SR, Polk HC Jr. HLA-DR antigen expression on peripheral blood monocytes correlates with surgical infection. Am J Surg 1991; 161(6): 639-45.
[http://dx.doi.org/10.1016/0002-9610(91)91247-G] [PMID: 1862821]
[104]
Bernd H-W, Ziepert M, Thorns C, et al. German High Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Loss of HLA-DR expression and immunoblastic morphology predict adverse outcome in diffuse large B-cell lymphoma - analyses of cases from two prospective randomized clinical trials. Haematologica 2009; 94(11): 1569-80.
[http://dx.doi.org/10.3324/haematol.2009.008862] [PMID: 19880780]
[105]
Hudson AL, Parker NR, Khong P, et al. Glioblastoma Recurrence Correlates With Increased APE1 and Polarization Toward an Immuno-Suppressive Microenvironment. Front Oncol 2018; 8: 314.
[http://dx.doi.org/10.3389/fonc.2018.00314] [PMID: 30151353]
[106]
Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139(5): 891-906.
[http://dx.doi.org/10.1016/j.cell.2009.10.027] [PMID: 19931152]
[107]
Waziri A. Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 2010; 21(1): 31-42.
[http://dx.doi.org/10.1016/j.nec.2009.08.005] [PMID: 19944964]
[108]
Cuoco JA, Benko MJ, Busch CM, Rogers CM, Prickett JT, Marvin EA. Vaccine-Based Immunotherapeutics for the Treatment of Glioblastoma: Advances, Challenges, and Future Perspectives. World Neurosurg 2018; 120: 302-15.
[http://dx.doi.org/10.1016/j.wneu.2018.08.202] [PMID: 30196171]
[109]
Rahman M, Kresak J, Yang C, et al. Analysis of immunobiologic markers in primary and recurrent glioblastoma. J Neurooncol 2018; 137(2): 249-57.
[http://dx.doi.org/10.1007/s11060-017-2732-1] [PMID: 29302887]
[110]
Sayegh ET, Oh T, Fakurnejad S, Bloch O, Parsa AT. Vaccine therapies for patients with glioblastoma. J Neurooncol 2014; 119(3): 531-46.
[http://dx.doi.org/10.1007/s11060-014-1502-6] [PMID: 25163836]
[111]
Tamura R, Ohara K, Sasaki H, et al. Difference in Immunosuppressive Cells Between Peritumoral Area and Tumor Core in Glioblastoma. World Neurosurg 2018; 120: e601-10.
[http://dx.doi.org/10.1016/j.wneu.2018.08.133] [PMID: 30165233]
[112]
Lee JC, Lee KM, Kim DW, Heo DS. Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 2004; 172(12): 7335-40.
[http://dx.doi.org/10.4049/jimmunol.172.12.7335] [PMID: 15187109]
[113]
Park J, Min J-S, Kim B, et al. Mitochondrial ROS govern the LPS-induced pro-inflammatory response in microglia cells by regulating MAPK and NF-κB pathways. Neurosci Lett 2015; 584: 191-6.
[http://dx.doi.org/10.1016/j.neulet.2014.10.016] [PMID: 25459294]
[114]
Tseng C-Y, Chang J-F, Wang J-S, Chang Y-J, Gordon MK, Chao M-W. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes. PLoS One 2015; 10(7)e0131911
[http://dx.doi.org/10.1371/journal.pone.0131911] [PMID: 26148005]
[115]
Zhou Y, Que KT, Zhang Z, et al. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med 2018; 7(8): 4012-22.
[http://dx.doi.org/10.1002/cam4.1670] [PMID: 29989329]
[116]
Wang HC, Choudhary S. Reactive oxygen species-mediated therapeutic control of bladder cancer. Nat Rev Urol 2011; 8(11): 608-16.
[http://dx.doi.org/10.1038/nrurol.2011.135] [PMID: 21971316]
[117]
Xu D, Luo X, Xu Y, et al. The effects of cold atmospheric plasma on cell adhesion, differentiation, migration, apoptosis and drug sensitivity of multiple myeloma. Biochem Biophys Res Commun 2016; 473(4): 1125-32.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.027] [PMID: 27067049]
[118]
Wang C, Li P, Liu L, et al. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 2016; 79: 88-100.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.040] [PMID: 26702587]
[119]
Lin A, Truong B, Pappas A, Kirifides L, Oubarri A, Chen S, et al. Uniform Nanosecond Pulsed Dielectric Barrier Discharge Plasma Enhances Anti‐Tumor Effects by Induction of Immunogenic Cell Death in Tumors and Stimulation of Macrophages. Plasma Process Polym 2015; 12: 1392-9.
[http://dx.doi.org/10.1002/ppap.201500139]
[120]
Lin A, Truong B, Patel S, et al. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress. Int J Mol Sci 2017; 18(5): 966.
[http://dx.doi.org/10.3390/ijms18050966] [PMID: 28467380]
[121]
Bundscherer L, Wende K, Ottmüller K, et al. Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines. Immunobiology 2013; 218(10): 1248-55.
[http://dx.doi.org/10.1016/j.imbio.2013.04.015] [PMID: 23735483]
[122]
Parker Kerrigan BC, Shimizu Y, Andreeff M, Lang FF. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas. Cytotherapy 2017; 19(4): 445-57.
[http://dx.doi.org/10.1016/j.jcyt.2017.02.002] [PMID: 28233640]
[123]
Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 2008; 68(11): 4331-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0943] [PMID: 18519693]
[124]
Lang FM, Hossain A, Gumin J, et al. Mesenchymal stem cells as natural biofactories for exosomes carrying miR-124a in the treatment of gliomas. Neuro-oncol 2018; 20(3): 380-90.
[http://dx.doi.org/10.1093/neuonc/nox152] [PMID: 29016843]
[125]
Conway GE, He Z, Hutanu AL, et al. Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Sci Rep 2019; 9(1): 12891.
[http://dx.doi.org/10.1038/s41598-019-49013-3] [PMID: 31501494]
[126]
Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 2018; 201: 37-44.
[http://dx.doi.org/10.1016/j.lfs.2018.03.044] [PMID: 29577880]
[127]
Cheng X, Rajjoub K, Sherman J, Canady J, Recek N, Yan D, et al. Cold Plasma Accelerates the Uptake of Gold Nanoparticles Into Glioblastoma Cells. Plasma Process Polym 2015; 12: 1364-9.
[http://dx.doi.org/10.1002/ppap.201500093]
[128]
He Z, Liu K, Manaloto E, et al. Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Sci Rep 2018; 8(1): 5298-11.
[http://dx.doi.org/10.1038/s41598-018-23262-0] [PMID: 29593309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy