Generic placeholder image

Recent Patents on Drug Delivery & Formulation

Editor-in-Chief

ISSN (Print): 1872-2113
ISSN (Online): 2212-4039

General Research Article

Effect of Ultrasound Intensity and Mode on Piroxicam Transport Across Three-Dimensional Skin Equivalent Epiderm™

Author(s): Mohammed A. Alarjah*

Volume 14, Issue 1, 2020

Page: [75 - 83] Pages: 9

DOI: 10.2174/1872211314666200227115014

Price: $65

Abstract

Background: Transdermal drug delivery has many advantages compared to other routes. However, the barrier function of the stratum corneum limits the use of the skin as an administrative route for medications. Different methods were investigated to alter the barrier function of the stratum corneum and it was found that applying different ultrasound waves could enhance the skin's permeability.

Objective: The aim of this work is to study the effect of ultrasonic waves on the alteration of skin natural barrier function, to improve the permeability of the skin to Piroxicam using three-dimension skin (EpiDermTM) as a skin model for the investigation.

Method: The effect of ultrasound at 1 MHz and 20 kHz on the permeation of Piroxicam across the three-dimensional skin equivalent using a Franz diffusion cell, was evaluated and the concentration of Piroxicam in the receiving compartment was determined using liquid chromatography method.

Results: The permeation of Piroxicam enhanced by 199% when therapeutic ultrasound at 1 MHz frequency was used. Significant permeation enhancement was also found upon utilizing low frequency sonophoresis at 20 kHz (427%) with no apparent damage to the membrane.

Conclusion: Sonophoresis has a positive effect on enhancing skin permeability. The enhancement level was largely dependent on the sonication factors; frequency, intensity and length of treatment. Multiple mechanisms of action might be involved in permeation improvement of the piroxicam molecule. Those mechanisms are largely dependent on the ultrasonic conditions.

Keywords: Sonophoresis, skin permeability, piroxicam, drug delivery, ultrasound mechanisms, cavitation.

Graphical Abstract

[1]
Cardoso VS, de Carvalho Filgueiras M, Dutra YM, et al. Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition. Mater Sci Eng C 2017; 74: 382-8.
[http://dx.doi.org/10.1016/j.msec.2016.12.025] [PMID: 28254308]
[2]
Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 2018; 57(6): 646-60.
[http://dx.doi.org/10.1111/ijd.13902] [PMID: 29430629]
[3]
Cheng HL, Liu MR, Du XY, et al. Recent progress of micro-needle formulations: Fabrication strategies and delivery applications. J Drug Deliv Sci Technol 2019; 50: 18-26.
[http://dx.doi.org/10.1016/j.jddst.2019.01.002]
[4]
Rzhevskiy AS, Singh TRR, Donnelly RF, Anissimov YG. Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018; 270: 184-202.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.048] [PMID: 29203415]
[5]
Waghule T, Singhvi G, Dubey SK, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother 2019; 109: 1249-58.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[6]
Park J, Lee H, Lim GS, Kim N, Kim D, Kim YC. Enhanced transdermal drug delivery by sonophoresis and simultaneous application of sonophoresis and iontophoresis. AAPS PharmSciTech 2019; 20(3): 96.
[http://dx.doi.org/10.1208/s12249-019-1309-z] [PMID: 30694397]
[7]
Polat BE, Hart D, Langer R, Blankschtein D. Ultrasound-mediated transdermal drug delivery: mechanisms, scope, and emerging trends. J Control Release 2011; 152(3): 330-48.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.006] [PMID: 21238514]
[8]
Hu Y, Yang M, Huang H, Shen Y, Liu H, Chen X. Controlled ultrasound erosion for transdermal delivery and hepatitis B immunization. Ultrasound Med Biol 2019; 45(5): 1208-20.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.01.012] [PMID: 30803825]
[9]
Ita K. Recent progress in transdermal sonophoresis. Pharm Dev Technol 2017; 22(4): 458-66.
[http://dx.doi.org/10.3109/10837450.2015.1116566] [PMID: 26608060]
[10]
Wang LY, Zheng SS. Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy. J Zhejiang Univ Sci B 2019; 20(4): 291-9.
[http://dx.doi.org/10.1631/jzus.B1800508] [PMID: 30932374]
[11]
Petrilli R, Lopez RFV. Physical methods for topical skin drug delivery: Concepts and applications. Braz J Pharm Sci 2018; 54e01008
[http://dx.doi.org/10.1590/s2175-97902018000001008]
[12]
Phenix CP, Togtema M, Pichardo S, Zehbe I, Curiel L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 2014; 17(1): 136-53.
[http://dx.doi.org/10.18433/J3ZP5F] [PMID: 24735765]
[13]
Seah BCQ, Teo BM. Recent advances in ultrasound-based transdermal drug delivery. Int J Nanomed 2018; 13: 7749-63.
[http://dx.doi.org/10.2147/IJN.S174759] [PMID: 30538456]
[14]
Aldwaikat M, Alarjah M. Investigating the sonophoresis effect on the permeation of diclofenac sodium using 3D skin equivalent. Ultrason Sonochem 2015; 22: 580-7.
[http://dx.doi.org/10.1016/j.ultsonch.2014.02.017] [PMID: 24916997]
[15]
Malan SF, Chetty DJ, du Plessis J. Physicochemical properties of drugs and membrane permeability. S Afr J Sci 2002; 98(7-8): 385-91.
[16]
Schnetz E, Fartasch M. Microdialysis for the evaluation of penetration through the human skin barrier - a promising tool for future research? Eur J Pharm Sci 2001; 12(3): 165-74.
[http://dx.doi.org/10.1016/S0928-0987(00)00155-X] [PMID: 11113635]
[17]
Daftardar S, Neupane R, Boddu Sai HS, Renukuntla J, Tiwari AK. Advances in ultrasound mediated transdermal drug delivery. Curr Pharm Des 2019; 25(4): 413-23.
[http://dx.doi.org/10.2174/1381612825666190211163948] [PMID: 30747058]
[18]
Meshali MM, Abdel-Aleem HM, Sakr FM, Nazzal S, El-Malah Y. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes. Pharmazie 2008; 63(1): 49-53.
[PMID: 18271303]
[19]
Park D, Song G, Jo Y, et al. Sonophoresis using ultrasound contrast agents: Dependence on concentration. PLoS One 2016; 11(6)e0157707
[http://dx.doi.org/10.1371/journal.pone.0157707] [PMID: 27322539]
[20]
Aldwaikat M, Alarjah M, Willis J, Mason T. Sonophoresis effect on the permeation of metronidazole using 3D skin equivalent. Int J Pharm Sci Res 2013; 4(1): 205.
[21]
Bader KB, Vlaisavljevich E, Maxwell AD. For whom the bubble grows: physical principles of bubble nucleation and dynamics in histotripsy ultrasound therapy. Ultrasound Med Biol 2019; 45(5): 1056-80.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.10.035] [PMID: 30922619]
[22]
Miano AC, Pereira JDC, Castanha N, Júnior MDDM, Augusto PED. Enhancing mung bean hydration using the ultrasound technology: description of mechanisms and impact on its germination and main components. Sci Rep 2016; 6: 38996.
[http://dx.doi.org/10.1038/srep38996] [PMID: 27991545]
[23]
Zarchi AAK, Amini SM, Farsangi ZJ, Mohammadi E, Moosavi Z, Harati PG. A study on the possibility of drug delivery approach through ultrasonic sensitive nanocarriers. Nanomed J 2018; 5(3): 127-37.
[24]
Rao R, Nanda S. Sonophoresis: recent advancements and future trends. J Pharm Pharmacol 2009; 61(6): 689-705.
[http://dx.doi.org/10.1211/jpp.61.06.0001] [PMID: 19505359]
[25]
Bulliard-Sauret O, Berindei J, Ferrouillat S, et al. Heat transfer intensification by low or high frequency ultrasound: Thermal and hydrodynamic phenomenological analysis. Exp Therm Fluid Sci 2019; 104: 258-71.
[http://dx.doi.org/10.1016/j.expthermflusci.2019.03.003]
[26]
Saalbach KA, Twiefel J, Wallaschek J. Self-sensing cavitation detection in ultrasound-induced acoustic cavitation. Ultrasonics 2019; 94: 401-10.
[http://dx.doi.org/10.1016/j.ultras.2018.06.016] [PMID: 30001851]
[27]
Lafond M, Aptel F, Mestas JL, Lafon C. Ultrasound-mediated ocular delivery of therapeutic agents: A review. Expert Opin Drug Deliv 2017; 14(4): 539-50.
[http://dx.doi.org/10.1080/17425247.2016.1198766] [PMID: 27310925]
[28]
O’Brien WD Jr. Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 2007; 93(1-3): 212-55.
[http://dx.doi.org/10.1016/j.pbiomolbio.2006.07.010] [PMID: 16934858]
[29]
Ebrahimi S, Abbasnia K, Motealleh A, Kooroshfard N, Kamali F, Ghaffarinezhad F. Effect of lidocaine phonophoresis on sensory blockade: pulsed or continuous mode of therapeutic ultrasound? Physiotherapy 2012; 98(1): 57-63.
[http://dx.doi.org/10.1016/j.physio.2011.01.009] [PMID: 22265386]
[30]
Marques L, Tassinary JA, Schmidtt B, Bianchetti P, Stulp S. Effect of therapeutic ultrasound in the release and permeation of caffeine liposomes in vertical diffusion systems. Periód Tchê Quím 2019; 16(31): 274-80.
[31]
Mitragotri S, Blankschtein D, Langer R. Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 1996; 13(3): 411-20.
[http://dx.doi.org/10.1023/A:1016096626810] [PMID: 8692734]
[32]
Tang H, Wang CCJ, Blankschtein D, Langer R. An investigation of the role of cavitation in low-frequency ultrasound-mediated transdermal drug transport. Pharm Res 2002; 19(8): 1160-9.
[http://dx.doi.org/10.1023/A:1019898109793] [PMID: 12240942]
[33]
Tezel A, Mitragotri S. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys J 2003; 85(6): 3502-12.
[http://dx.doi.org/10.1016/S0006-3495(03)74770-5] [PMID: 14645045]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy