Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Biological Activities of Saussurea lappa Antioxidants Recovered by Solid–liquid, Ultrasound and Ired-Irrad®

Author(s): Hiba N. Rajha, Gisèle El Khoury, Nada El Darra*, Karim Raafat, Espérance Debs, Richard G. Maroun and Nicolas Louka

Volume 17, Issue 1, 2021

Published on: 27 February, 2020

Page: [85 - 97] Pages: 13

DOI: 10.2174/1573407216666200227094059

Price: $65

Abstract

Background: Saussurea lappa is a traditionally well-known plant appreciated for its biological activities and medicinal uses.

Objective: In the present study, the recovery of antioxidants from Saussurea lappa was optimized using Response Surface Methodology (RSM). The efficiency of a newly-patented Infrared (IR) technology, Ired-Irrad®, was compared to that of the emerging ultrasound method (US) and the conventional solid liquid Water Bath (WB) extraction.

Methods: The effects of time (t) and Temperature (T), mostly known to affect the extraction process, were tested on maximizing the Total Phenolic compounds Concentration (TPC) and the radical scavenging activity (AA). Response surface methodology was used for the optimization process.

Results: A multiple response optimization of both time (t) and Temperature (T) was conducted, showing the best extraction conditions to be for WB: t= 43.86 min, T=33.79°C, for US: t= 65.47 min, T= 57.97°C and for IR: t= 42.5 min, T=34.19°C. The quantity of the optimally extracted polyphenols by WB, US and IR; as well as many of their bioactivities were compared. IR extraction gave the highest yield of TPC (15.3 mg GAE/g DM) followed by US (14.8 mg GAE/g DM) and lastly WB (13.9 mg GAE/g DM). The highest antioxidant and antiradical activities were also obtained by the IR treatment. The optimal IR extract inhibited the growth of Staphylococcus aureus and Escherichia coli up to 65 and 35%, respectively. Moreover, all Saussurea lappa extracts (WB, US and IR) inhibited up to 96% the production of Aflatoxin B1 (AFB1) by Aspergillus flavus.

Conclusion: Our findings on the extraction of antioxidants from Saussurea lappa demonstrated that IR technology is an efficient novel method that can be used to extract the maximum yield of polyphenols, with the highest antioxidant, antiradical and antibacterial activities.

Keywords: Infrared extraction, Saussurea lappa, response surface methodology, ultrasounds, antibacterial, antifungal.

Graphical Abstract

[1]
Rao Vadaparthi, P.R.; Kumar, K.; Sarma, V.U.M.; Hussain, Q.A.; Babu, K.S. Estimation of costunolide and dehydrocostus lactone in saussurea lappa and its polyherbal formulations followed by their stability studies using HPLC-DAD. Pharmacogn. Mag., 2015, 11(41), 180-190.
[http://dx.doi.org/10.4103/0973-1296.149736] [PMID: 25709231]
[2]
Zahara, K.; Tabassum, S.; Sabir, S.; Arshad, M.; Qureshi, R.; Amjad, M.S.; Chaudhari, S.K. A review of therapeutic potential of Saussurea lappa-An endangered plant from Himalaya. Asian Pac. J. Trop. Med., 2014, 7S1, S60-S69.
[http://dx.doi.org/10.1016/S1995-7645(14)60204-2] [PMID: 25312191]
[3]
Chang, K-M.; Choi, S-I.; Kim, G-H. Anti-oxidant activity of Saussurea lappa C.B. clarke roots. Prev. Nutr. Food Sci., 2012, 17(4), 306-309.
[http://dx.doi.org/10.3746/pnf.2012.17.4.306] [PMID: 24471101]
[4]
Boizot, N.; Charpentier, J-P. Méthode Rapide D’évaluation Du Contenu En Composés Phénoliques Des Organes D’un Arbre Forestier. In: Le Cahier des Techniques de l’INRA, In: Numéro spécial; , 2006; pp. 79-82.
[5]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3, 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[6]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[7]
Labraoui, S.; Ladjal, L.; Kachbi, A. Determination of polyphenols. sage, tea and thyme extracts using spectroscopic techniques and chemometric methods; Abderrahmane Mira University: Béjaïa 2017.
[8]
Barek, S. Rahmoun, M.N.; Aissaoui, M.; Bensouici, C.; Haci, I. A. El; Ridha, H.; Choukchou-Braham, N. Chemicals constituents of the Algerian Glycyrrhiza glabra L. root extracts and their antioxidant, antibacterial and anticholinesterase activities. Curr. Bioact. Compd., 2020, 16(8), 1215-1224.
[http://dx.doi.org/10.2174/1573407216666200127125123]
[9]
Adaeze, B-C.A.; Amadi, P.U. Evaluation of bioactive component, free radical scavenging potentials and protein qualities of Gomphrena celosoides and Zea mays leaves. Curr. Bioact. Compd., 2020, 16(7), 1108-1115.
[http://dx.doi.org/10.2174/1573407215666191125105900]
[10]
Iqbal, M.J.; Butt, M.S.; Sohail, M.; Suleria, H.A.R. The antioxidant potential of black cumin ( Nigella sativa L.) extracts through different extraction methods. Curr. Bioact. Compd., 2019, 15(6), 623-630.
[http://dx.doi.org/10.2174/1573407214666180821124454]
[11]
Torma, P. C. M.R.; Monteiro, P. L.; Carvalho, A.V; Flôres, S.H.; Rios, P.R.A. Characterization, bioactive compounds and antioxidant potential of Açaí (Euterpe oleracea) genotypes. Curr. Bioact. Compd., 2019, 15(6), 637-647.
[http://dx.doi.org/10.2174/1573407214666180926124149]
[12]
Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr., 2000, 71(6)(Suppl.), 1698S-1702S.
[http://dx.doi.org/10.1093/ajcn/71.6.1698S] [PMID: 10837321]
[13]
Keypour, S.; Farimani, F.M.; Antioxidant Activity, M.M. Total flavonoid and phenolic contents of three different extracts of hyrcanian reishi. Curr. Bioact. Compd., 2019, 15(1), 109-113.
[http://dx.doi.org/10.2174/1573407213666171107151007]
[14]
Rao, K.S.; Babu, G.V.; Ramnareddy, Y.V. Acylated flavone glycosides from the roots of Saussurea lappa and their antifungal activity. Molecules, 2007, 12(3), 328-344.
[http://dx.doi.org/10.3390/12030328] [PMID: 17851392]
[15]
Chaturvedi, P.; Shukla, S.; Tripathi, P.; Chaurasia, S.; Singh, S.K.; Tripathi, Y.B. Comparative study of Inula Racemosa and Saussurea Lappa on the glucose level in Albino rats. Anc. Sci. Life, 1995, 15(1), 62-70.
[16]
Lin, X.; Peng, Z.; Su, C. Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int. J. Mol. Sci., 2015, 16(5), 10888-10906.
[http://dx.doi.org/10.3390/ijms160510888] [PMID: 25984608]
[17]
Khalid, A.; Rehman, U.; Sethi, A.; Khilji, S.; Fatima, U.; Khan, M.I.; Waqas, M.K.; Saqib, Q.N.; Farzana, K.; Asad, M. Antimicrobial activity analysis of extracts of acacia modesta, artimisia absinthium, nigella sativa and saussurea lappa against gram positive and gram negative microorganisms. Afr. J. Biotechnol., 2011, 10(22), 4574-4580.
[18]
Yaeesh, S.; Jamal, Q.; Shah, A.J.; Gilani, A.H. Antihepatotoxic activity of Saussurea lappa extract on D-galactosamine and lipopolysaccharide-induced hepatitis in mice. Phytother. Res., 2010, 24(S2 Suppl. 2), S229-S232.
[http://dx.doi.org/10.1002/ptr.3089] [PMID: 20041433]
[19]
Rajha, H.N.; Debs, E.; Maroun, R.G.; Louka, N. Système D’extraction, de Séparation Ou de Prétraitement Assisté Par Rayonnement Infrarouge. Adéquation Entre Les Caractéristiques Du Rayonnement et Celles de La Matière traitée"29 November., Lebanese Patent 11296. 2017.
[20]
Escobedo, R.; Miranda, R.; Martínez, J. Infrared irradiation: Toward green chemistry, a Review. Int. J. Mol. Sci., 2016, 17(4), 453.
[http://dx.doi.org/10.3390/ijms17040453] [PMID: 27023535]
[21]
Rajha, H.N.; Mhanna, T.; El Kantar, S.; El Khoury, A.; Louka, N.; Maroun, R.G. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. Lwt, 2019, 111, 138-146.
[http://dx.doi.org/10.1016/j.lwt.2019.05.004]
[22]
Raafat, K.; El-Darra, N.; Saleh, F.A.; Rajha, H.N.; Maroun, R.G.; Louka, N. Infrared-assisted extraction and HPLC-analysis of prunus armeniaca l. pomace and detoxified-kernel and their antidiabetic effects. Phytochem. Anal., 2018, 29(2), 156-167.
[http://dx.doi.org/10.1002/pca.2723] [PMID: 28895235]
[23]
Cheaib, D.; El Darra, N.; Rajha, H.N.; Ghazzawi, I.E.; Maroun, R.G.; Louka, N. Biological activity of apricot byproducts polyphenols using solid-liquid and infrared-assisted technology. J. Food Biochem., 2018, 42(5), e12552.
[http://dx.doi.org/10.1111/jfbc.12552]
[24]
Abi-Khattar, A-M.; Rajha, H.N.; Abdel-Massih, R.M.; Maroun, R.G.; Louka, N.; Debs, E. Intensification of polyphenol extraction from olive leaves using ired-irrad®, an environmentally-friendly innovative technology. Antioxidants, 2019, 8(7), 227.
[http://dx.doi.org/10.3390/antiox8070227] [PMID: 31323872]
[25]
Wang, S.; Zhang, L.; Yang, P.; Chen, G. Infrared-assisted tryptic proteolysis for peptide mapping. Proteomics, 2008, 8(13), 2579-2582.
[http://dx.doi.org/10.1002/pmic.200800086] [PMID: 18546161]
[26]
Crupi, P.; Dipalmo, T.; Clodoveo, M.L.; Toci, A.T.; Coletta, A. Seedless table grape residues as a source of polyphenols: Comparison and optimization of non-conventional extraction techniques. Eur. Food Res. Technol., 2018, 244(6), 1091-1100.
[http://dx.doi.org/10.1007/s00217-017-3030-z]
[27]
Gao, H.; Cheng, N.; Zhou, J.; Wang, B.; Deng, J.; Cao, W. Antioxidant activities and phenolic compounds of date plum persimmon (Diospyros lotus L.) fruits. J. Food Sci. Technol., 2014, 51(5), 950-956.
[http://dx.doi.org/10.1007/s13197-011-0591-x] [PMID: 24803703]
[28]
Slinkard, K.; Singleton, V.L. Total phenol analysis: automation and comparison with manual methods. Am. J. Enol. Vitic., 1977, 28(1), 49-55.
[29]
Naseer, F.; Ahmad, S.; Atta-ur-Rehman; Ahmed, T.; Perveen, N. Mahrukh K.; Zia-ur-Rehman, F.; Zeeshan Ashraf, M.Z. Antioxidant potential of leaves of Opuntia monacantha ethanol extract and various fractions: An in vitro study. Glob. J. Pharmacol., 2015, 9(2), 144-149.
[30]
Gyamfi, M.A.; Yonamine, M.; Aniya, Y. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol., 1999, 32(6), 661-667.
[http://dx.doi.org/10.1016/S0306-3623(98)00238-9] [PMID: 10401991]
[31]
El Khoury, A.; Atoui, A.; Rizk, T.; Lteif, R.; Kallassy, M.; Lebrihi, A. Differentiation between Aspergillus flavus and Aspergillus parasiticus from pure culture and aflatoxin-contaminated grapes using PCR-RFLP analysis of aflR-aflJ intergenic spacer. J. Food Sci., 2011, 76(4), M247-M253.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02153.x] [PMID: 22417364]
[32]
Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods, 2010, 81(2), 121-126.
[http://dx.doi.org/10.1016/j.mimet.2010.02.004] [PMID: 20171250]
[33]
Raafat, K.; El-Darra, N.; Saleh, F.A.; Rajha, H.N.; Louka, N. Optimization of infrared-assisted extraction of bioactive lactones from saussurea lappa l. and their effects against gestational diabetes. Pharmacogn. Mag., 2019, 15(61), 208.
[http://dx.doi.org/10.4103/pm.pm_380_18]
[34]
Rajha, H.N.; Abi-Khattar, A-M.; El Kantar, S.; Boussetta, N.; Lebovka, N.; Maroun, R.G.; Louka, N.; Vorobiev, E. Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innov. Food Sci. Emerg. Technol., 2019, 58, 58102212.
[http://dx.doi.org/10.1016/j.ifset.2019.102212]
[35]
Cai, Y.; Yu, Y.; Duan, G.; Li, Y. Study on infrared-assisted extraction coupled with High Performance Liquid Chromatography (HPLC) for Determination of catechin, epicatechin, and procyanidin B2 in grape seeds. Food Chem., 2011, 127(4), 1872-1877.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.026]
[36]
Rajha, H.N.; Boussetta, N.; Louka, N.; Maroun, R.G.; Vorobiev, E. A Comparative study of physical pretreatments for the extraction of polyphenols and proteins from vine shoots. Food Res. Int., 2014, 65, 462-468.
[http://dx.doi.org/10.1016/j.foodres.2014.04.024]
[37]
Da Porto, C.; Porretto, E.; Decorti, D. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem., 2013, 20(4), 1076-1080.
[http://dx.doi.org/10.1016/j.ultsonch.2012.12.002] [PMID: 23305938]
[38]
Dent, M.; Dragović-Uzelac, V.; Elez Garofulić, I.; Bosiljkov, T.; Ježek, D.; Brnčić, M. Comparison of Conventional and ultrasound-assisted extraction techniques on mass fraction of phenolic Compounds from Sage (Salvia officinalis L.). Chem. Biochem. Eng. Q., 2015, 29(3), 475-484.
[http://dx.doi.org/10.15255/CABEQ.2015.2168]
[39]
Naz, S.; Ahmad, S.; Ajaz Rasool, S.; Asad Sayeed, S.; Siddiqi, R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol. Res., 2006, 161(1), 43-48.
[http://dx.doi.org/10.1016/j.micres.2005.05.001] [PMID: 16338589]
[40]
Jayashree, T.; Subramanyam, C. Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic. Biol. Med., 2000, 29(10), 981-985.
[http://dx.doi.org/10.1016/S0891-5849(00)00398-1] [PMID: 11084286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy