Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Tau转基因小鼠抗胆碱酯酶干扰Tau聚集抑制剂活性的机制

卷 17, 期 3, 2020

页: [285 - 296] 页: 12

弟呕挨: 10.2174/1567205017666200224120926

open access plus

摘要

背景:使用胆碱酯酶抑制剂和/或美金刚对症治疗阿尔茨海默氏病(AD)相对无效,因此需要针对AD潜在病理学的新疗法。在大多数失败的疾病缓解试验中,假定患者不损害疗效,则允许他们继续以稳定剂量接受对症治疗。在最近完成的测试tau聚集抑制剂无色-甲硫基双(氢甲基磺酸盐)(LMTM)的3期试验中,我们发现根据患者是否将LMTM作为单一疗法还是对症治疗的补充,治疗反应存在显着差异。 方法:我们在LMTM治疗表达构成AD缠结丝的短tau片段的tau转基因小鼠之前,已经研究了单独使用LMTM或慢性卡巴拉汀的作用。我们测量了乙酰胆碱水平,突触体谷氨酸释放,突触蛋白,线粒体复合物IV活性,tau病理学和胆碱乙酰基转移酶(ChAT)免疫反应性。 结果:单独给予LMTM可增加海马乙酰胆碱(ACh)水平,突触体制剂中的谷氨酸释放,多个脑区的突触素水平和线粒体复合体IV活性,tau病理学降低,基底前脑中的ChAT免疫反应性部分恢复以及空间学习的逆转。除减少tau聚集病理外,发现用卡巴拉汀进行慢性预处理几乎可以减少或消除所有这些影响。在野生型小鼠中,LMTM对海马ACh和突触素水平的影响也降低了。 结论:胆碱酯酶抑制剂对LMTM药理活性的干扰可以在tau转基因小鼠模型中复制,而在较小程度上,可以在野生型小鼠中复制。对症药物的长期预处理会在多种脑功能水平上,跨越不同的递质系统和细胞隔室,改变对LMTM的多种大脑反应。因此,没有任何一个消极相互作用的场所。相反,通过降低胆碱酯酶功能诱导的慢性神经元活化在多个神经元系统中产生代偿性稳态下调。这降低了对LMTM的广泛治疗反应,从而降低了tau聚集病理。由于干扰是由对先前对症治疗的稳态反应所决定的,因此,与现有对症治疗的附加药物一样,对其他测试药物的干扰也可能类似,而与预期的治疗靶点或作用方式无关。目前的发现概述了关键结果,这些结果现在提供了一个工作模型来解释对症治疗的干扰。

关键词: Tau聚集抑制剂,氢甲基硫氨酸,小鼠模型,阿尔茨海默氏病,tauopathy,乙酰胆碱酯酶抑制剂(AChEI),药物相互作用,突触蛋白。

[1]
Sarter M, Lustig C, Blakely RD, Koshy Cherian A. Cholinergic genetics of visual attention: Human and mouse choline transporter capacity variants influence distractibility. J Physiol Paris 2016; 110(1-2): 10-8.
[http://dx.doi.org/10.1016/j.jphysparis.2016.07.001] [PMID: 27404793]
[2]
Botly LC, De Rosa E. Cholinergic influences on feature binding. Behav Neurosci 2007; 121(2): 264-76.
[http://dx.doi.org/10.1037/0735-7044.121.2.264] [PMID: 17469916]
[3]
Botly LC, De Rosa E. A cross-species investigation of acetylcholine, attention, and feature binding. Psychol Sci 2008; 19(11): 1185-93.
[http://dx.doi.org/10.1111/j.1467-9280.2008.02221.x] [PMID: 19076492]
[4]
Robinson L, Platt B, Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 2011; 221(2): 443-65.
[http://dx.doi.org/10.1016/j.bbr.2011.01.055] [PMID: 21315109]
[5]
Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34(8): 1307-50.
[http://dx.doi.org/10.1016/j.neubiorev.2010.04.001] [PMID: 20398692]
[6]
Ding Z, Brown JW, Rueter LE, Mohler EG. Profiling attention and cognition enhancing drugs in a rat touchscreen-based continuous performance test. Psychopharmacology (Berl) 2018; 235(4): 1093-105.
[http://dx.doi.org/10.1007/s00213-017-4827-y] [PMID: 29332255]
[7]
Gastambide F, Cotel MC, Gilmour G, O’Neill MJ, Robbins TW, Tricklebank MD. Selective remediation of reversal learning deficits in the neurodevelopmental MAM model of schizophrenia by a novel mGlu5 positive allosteric modulator. Neuropsychopharmacology 2012; 37(4): 1057-66.
[http://dx.doi.org/10.1038/npp.2011.298] [PMID: 22129780]
[8]
Courtney C, Farrell D, Gray R, et al. AD2000 Collaborative Group.Long-term donepezil treatment in 565 patients with Alzheimer’s disease (AD2000): randomised double-blind trial. Lancet 2004; 363(9427): 2105-15.
[http://dx.doi.org/10.1016/S0140-6736(04)16499-4] [PMID: 15220031]
[9]
Singh G, Thomas SK, Arcona S, Lingala V, Mithal A. Treatment persistency with rivastigmine and donepezil in a large state medicaid program. J Am Geriatr Soc 2005; 53(7): 1269-70.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53384_9.x] [PMID: 16108961]
[10]
Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med 2008; 148(5): 379-97.
[http://dx.doi.org/10.7326/0003-4819-148-5-200803040-00009] [PMID: 18316756]
[11]
Mauskopf JA, Paramore C, Lee WC, Snyder EH. Drug persistency patterns for patients treated with rivastigmine or donepezil in usual care settings. J Manag Care Pharm 2005; 11(3): 231-51.
[http://dx.doi.org/10.18553/jmcp.2005.11.3.231] [PMID: 15804207]
[12]
Koller D, Hua T, Bynum JPW. Treatment patterns with antidementia drugs in the United States Medicare Cohort Study. J Am Geriatr Soc 2016; 64(8): 1540-8.
[http://dx.doi.org/10.1111/jgs.14226] [PMID: 27341454]
[13]
Martinez C, Jones RW, Rietbrock S. Trends in the prevalence of antipsychotic drug use among patients with Alzheimer’s disease and other dementias including those treated with antidementia drugs in the community in the UK: a cohort study. BMJ Open 2013; 3(1)e002080
[http://dx.doi.org/10.1136/bmjopen-2012-002080] [PMID: 23299113]
[14]
Krolak-Salmon P, Dubois B, Sellal F, et al. France will no more reimburse available symptomatic drugs against Alzheimer’s disease. J Alzheimers Dis 2018; 66(2): 425-7.
[http://dx.doi.org/10.3233/JAD-180843] [PMID: 30282371]
[15]
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 2016; 15(5): 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[16]
Lanctôt KL, Rajaram RD, Herrmann N. Therapy for Alzheimer’s disease: how effective are current treatments? Ther Adv Neurol Disorder 2009; 2(3): 163-80.
[http://dx.doi.org/10.1177/1756285609102724] [PMID: 21179526]
[17]
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014; 6(4): 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[18]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[19]
Wischik CM, Schelter BO, Wischik DJ, Storey JMD, Harrington CR. Modeling prion-like processing of tau protein in Alzheimer’s disease for pharmaceutical development. J Alzheimers Dis 2018; 62(3): 1287-303.
[http://dx.doi.org/10.3233/JAD-170727] [PMID: 29226873]
[20]
Harrington CR, Storey JMD, Clunas S, et al. Cellular models of aggregation-dependent template-directed proteolysis to characterize tau aggregation inhibitors for treatment of Alzheimer’s disease. J Biol Chem 2015; 290(17): 10862-75.
[http://dx.doi.org/10.1074/jbc.M114.616029] [PMID: 25759392]
[21]
Baddeley TC, McCaffrey J, Storey JMD, et al. Complex disposition of methylthioninium redox forms determines efficacy in tau aggregation inhibitor therapy for Alzheimer’s disease. J Pharmacol Exp Ther 2015; 352(1): 110-8.
[http://dx.doi.org/10.1124/jpet.114.219352] [PMID: 25320049]
[22]
Al-Hilaly YK, Pollack SJ, Rickard JE, et al. Cysteine-independent inhibition of Alzheimer’s disease-like paired helical filament assembly by leuco-methylthioninium (LMT). J Mol Biol 2018; 430(21): 4119-31.
[http://dx.doi.org/10.1016/j.jmb.2018.08.010] [PMID: 30121297]
[23]
Melis V, Magbagbeolu M, Rickard JE, et al. Effects of oxidized and reduced forms of methylthioninium in two transgenic mouse tauopathy models. Behav Pharmacol 2015; 26(4): 353-68.
[http://dx.doi.org/10.1097/FBP.0000000000000133] [PMID: 25769090]
[24]
Wischik CM, Edwards PC, Lai RYK, Roth M, Harrington CR. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 1996; 93(20): 11213-8.
[http://dx.doi.org/10.1073/pnas.93.20.11213] [PMID: 8855335]
[25]
Atamna H, Mackey J, Dhahbi JM. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 2012; 38(2): 158-66.
[http://dx.doi.org/10.1002/biof.197] [PMID: 22419586]
[26]
Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways. FASEB J 2008; 22(3): 703-12.
[http://dx.doi.org/10.1096/fj.07-9610com] [PMID: 17928358]
[27]
Gureev AP, Shaforostova EA, Popov VN, Starkov AA. Methylene blue does not bypass Complex III antimycin block in mouse brain mitochondria. FEBS Lett 2019; 593(5): 499-503.
[http://dx.doi.org/10.1002/1873-3468.13332] [PMID: 30734287]
[28]
Stack C, Jainuddin S, Elipenahli C, et al. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum Mol Genet 2014; 23(14): 3716-32.
[http://dx.doi.org/10.1093/hmg/ddu080] [PMID: 24556215]
[29]
Zhao M, Liang F, Xu H, Yan W, Zhang J. Methylene blue exerts a neuroprotective effect against traumatic brain injury by promoting autophagy and inhibiting microglial activation. Mol Med Rep 2016; 13(1): 13-20.
[http://dx.doi.org/10.3892/mmr.2015.4551] [PMID: 26572258]
[30]
Congdon EE, Wu JW, Myeku N, et al. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 2012; 8(4): 609-22.
[http://dx.doi.org/10.4161/auto.19048] [PMID: 22361619]
[31]
Schirmer RH, Adler H, Pickhardt M, Mandelkow E. “Lest we forget you--methylene blue...”. Neurobiol Aging 2011; 32(2325): e7-e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.012]
[32]
Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer’s disease. Biochem Pharmacol 2009; 78(8): 927-32.
[http://dx.doi.org/10.1016/j.bcp.2009.04.034] [PMID: 19433072]
[33]
Wilcock GK, Gauthier S, Frisoni GB, et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase 3 clinical trial. J Alzheimers Dis 2018; 61(1): 435-57.
[http://dx.doi.org/10.3233/JAD-170560] [PMID: 29154277]
[34]
Gauthier S, Feldman HH, Schneider LS, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 2016; 388(10062): 2873-84.
[http://dx.doi.org/10.1016/S0140-6736(16)31275-2] [PMID: 27863809]
[35]
Schelter BO, Shiells H, Baddeley TC, et al. Concentration-dependent activity of hydromethylthionine on cognitive decline and brain atrophy in mild to moderate Alzheimer’s disease. J Alzheimers Dis 2019; 72(3): 931-46.
[http://dx.doi.org/10.3233/JAD-190772] [PMID: 31658058]
[36]
Melis V, Zabke C, Stamer K, et al. Different pathways of molecular pathophysiology underlie cognitive and motor tauopathy phenotypes in transgenic models for Alzheimer’s disease and frontotemporal lobar degeneration. Cell Mol Life Sci 2015; 72(11): 2199-222.
[http://dx.doi.org/10.1007/s00018-014-1804-z] [PMID: 25523019]
[37]
Wischik CM, Novak M, Thøgersen HC, et al. Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 1988; 85(12): 4506-10.
[http://dx.doi.org/10.1073/pnas.85.12.4506] [PMID: 3132715]
[38]
Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 1988; 85(13): 4884-8.
[http://dx.doi.org/10.1073/pnas.85.13.4884] [PMID: 2455299]
[39]
Fitzpatrick AWP, Falcon B, He S, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 2017; 547(7662): 185-90.
[http://dx.doi.org/10.1038/nature23002] [PMID: 28678775]
[40]
Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates. New York: Academic Press 2012.
[41]
Niewiadomska G, Komorowski S, Baksalerska-Pazera M. Amelioration of cholinergic neurons dysfunction in aged rats depends on the continuous supply of NGF. Neurobiol Aging 2002; 23(4): 601-13.
[http://dx.doi.org/10.1016/S0197-4580(01)00345-1] [PMID: 12009509]
[42]
Schwab K, Frahm S, Horsley D, et al. A protein aggregation inhibitor, leuco-methylthioninium bis(hydromethanesulfonate), decreases α-synuclein inclusions in a transgenic mouse model of synucleinopathy. Front Mol Neurosci 2018; 10: 447.
[http://dx.doi.org/10.3389/fnmol.2017.00447] [PMID: 29375308]
[43]
Abercrombie M. Estimation of nuclear population from microtome sections. Anat Rec 1946; 94: 239-47.
[http://dx.doi.org/10.1002/ar.1090940210] [PMID: 21015608]
[44]
König M, Berlin B, Schwab K, et al. Increased cholinergic response in α-synuclein transgenic mice (h-α-synL62). ACS Chem Neurosci 2019; 10(4): 1915-22.
[http://dx.doi.org/10.1021/acschemneuro.8b00274] [PMID: 30253092]
[45]
Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J Comp Neurol 2013; 521(18): 4124-44.
[http://dx.doi.org/10.1002/cne.23415] [PMID: 23852922]
[46]
Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res 2017; 1670: 173-84.
[http://dx.doi.org/10.1016/j.brainres.2017.06.023] [PMID: 28652219]
[47]
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 2013; 38(1): 6-23.
[http://dx.doi.org/10.1503/jpn.110190] [PMID: 22894822]
[48]
Schneider LS, Insel PS, Weiner MW. Alzheimer’s Disease Neuroimaging Initiative.Treatment with cholinesterase inhibitors and memantine of patients in the Alzheimer’s Disease Neuroimaging Initiative. Arch Neurol 2011; 68(1): 58-66.
[http://dx.doi.org/10.1001/archneurol.2010.343] [PMID: 21220675]
[49]
Deiana S, Harrington CR, Wischik CM, Riedel G. Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine. Psychopharmacology (Berl) 2009; 202(1-3): 53-65.
[http://dx.doi.org/10.1007/s00213-008-1394-2] [PMID: 19005644]
[50]
Pfaffendorf M, Bruning TA, Batnik HD, van Zwieten PA. The interaction between methylene blue and the cholinergic system. Br J Pharmacol 1997; 122(1): 95-8.
[http://dx.doi.org/10.1038/sj.bjp.0701355] [PMID: 9298533]
[51]
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018; 19(2): 63-80.
[http://dx.doi.org/10.1038/nrn.2017.170] [PMID: 29348666]
[52]
Cieri D, Vicario M, Vallese F, et al. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca2+ handling. Biochim Biophys Acta Mol Basis Dis 2018; 1864(10): 3247-56.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.011] [PMID: 30006151]
[53]
Wischik CM, Lai RYK, Harrington CR. Modelling prion-like processing of tau protein in Alzheimer’s disease for pharmaceutical development Brain Microtubule Associated Proteins: Modifications in Disease. Amsterdam: Harwood Academic Publishers 1997; pp. 185-241.
[54]
Marsh J, Alifragis P. Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res 2018; 13(4): 616-23.
[http://dx.doi.org/10.4103/1673-5374.230276] [PMID: 29722304]

© 2024 Bentham Science Publishers | Privacy Policy