Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Plant Extracts and their Secondary Metabolites as Modulators of Kinases

Author(s): Muhammad Shoaib Ali Gill, Hammad Saleem and Nafees Ahemad*

Volume 20, Issue 12, 2020

Page: [1093 - 1104] Pages: 12

DOI: 10.2174/1568026620666200224100219

Price: $65

Abstract

Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.

Keywords: Medicinal plants, Secondary metabolites, Crude extracts, Natural products, Kinases, Phytocompounds.

Graphical Abstract

[1]
Victor, T.P.; Nestor, A.T.L. Ethnobotanical uses, secondary metabolites and biological activities of Mashua (Tropaeolum tuberosum Ruíz & Pavón). J. Ethnopharmacol., 2019, 247 112152
[2]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[3]
Patridge, E.; Gareiss, P.; Kinch, M.S.; Hoyer, D. An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discov. Today, 2016, 21(2), 204-207.
[http://dx.doi.org/10.1016/j.drudis.2015.01.009] [PMID: 25617672]
[4]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[5]
Shen, B. A new golden age of natural products drug discovery. Cell, 2015, 163(6), 1297-1300.
[http://dx.doi.org/10.1016/j.cell.2015.11.031] [PMID: 26638061]
[6]
Georgiev, M.I. From plants to pharmacy shelf: natural products revival; Springer: Berlin, 2016.
[7]
Butler, M.S. The role of natural product chemistry in drug discovery. J. Nat. Prod., 2004, 67(12), 2141-2153.
[http://dx.doi.org/10.1021/np040106y] [PMID: 15620274]
[8]
Liu, J.; Hu, Y.; Waller, D.L.; Wang, J.; Liu, Q. Natural products as kinase inhibitors. Nat. Prod. Rep., 2012, 29(3), 392-403.
[http://dx.doi.org/10.1039/c2np00097k] [PMID: 22231144]
[9]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[10]
Burnett, G.; Kennedy, E.P. The enzymatic phosphorylation of proteins. J. Biol. Chem., 1954, 211(2), 969-980.
[PMID: 13221602]
[11]
Hunter, T.; Sefton, B.M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA, 1980, 77(3), 1311-1315.
[http://dx.doi.org/10.1073/pnas.77.3.1311] [PMID: 6246487]
[12]
Sefton, B.M.; Hunter, T.; Beemon, K.; Eckhart, W. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell, 1980, 20(3), 807-816.
[http://dx.doi.org/10.1016/0092-8674(80)90327-X] [PMID: 6251974]
[13]
Levitzki, A. Protein kinase inhibitors as a therapeutic modality. Acc. Chem. Res., 2003, 36(6), 462-469.
[http://dx.doi.org/10.1021/ar0201207] [PMID: 12809533]
[14]
Guerra, B.; Issinger, O-G. Natural compounds and derivatives as Ser/Thr protein kinase modulators and inhibitors. Pharmaceuticals (Basel), 2019, 12(1), 4.
[http://dx.doi.org/10.3390/ph12010004] [PMID: 30609679]
[15]
Choy, K.W.; Murugan, D.; Leong, X-F.; Abas, R.; Alias, A.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signalling in cardiovascular diseases: A mini review. Front. Pharmacol., 2019, 10, 1295.
[http://dx.doi.org/10.3389/fphar.2019.01295] [PMID: 31749703]
[16]
Bisol, Â.; de Campos, P.S.; Lamers, M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res., 2019. [ePub Ahead of print]
[http://dx.doi.org/10.1002/ptr.6551] [PMID: 31752046]
[17]
Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients, 2019, 11(10), 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[18]
Lin, X.; Zhang, N. Berberine: Pathways to protect neurons. Phytother. Res., 2018, 32(8), 1501-1510.
[http://dx.doi.org/10.1002/ptr.6107] [PMID: 29732634]
[19]
Imenshahidi, M.; Hosseinzadeh, H. Berberine and barberry (Berberis vulgaris): A clinical review. Phytother. Res., 2019, 33(3), 504-523.
[http://dx.doi.org/10.1002/ptr.6252] [PMID: 30637820]
[20]
Huang, Y.T.; Hwang, J.J.; Lee, P.P.; Ke, F.C.; Huang, J.H.; Huang, C.J.; Kandaswami, C.; Middleton, E., Jr; Lee, M.T. Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptor. Br. J. Pharmacol., 1999, 128(5), 999-1010.
[http://dx.doi.org/10.1038/sj.bjp.0702879] [PMID: 10556937]
[21]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[22]
Akiyama, T.; Ishida, J.; Nakagawa, S.; Ogawara, H.; Watanabe, S.; Itoh, N.; Shibuya, M.; Fukami, Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem., 1987, 262(12), 5592-5595.
[PMID: 3106339]
[23]
Kawser Hossain, M.; Abdal Dayem, A.; Han, J.; Yin, Y.; Kim, K.; Kumar Saha, S.; Yang, G-M.; Choi, H.Y.; Cho, S-G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci., 2016, 17(4), 569.
[http://dx.doi.org/10.3390/ijms17040569] [PMID: 27092490]
[24]
GRAZIANI, Y.; ERIKSON, E.; ERIKSON, R.L. The effect of quercetin on the phosphorylatio activity of the Rous sarcoma virus transforming gene product in vitro and in vivo. Eur. J. Biochem., 1983, 135(3), 583-589.
[http://dx.doi.org/10.1111/j.1432-1033.1983.tb07692.x] [PMID: 6311542]
[25]
Cochet, C.; Feige, J.J.; Pirollet, F.; Keramidas, M.; Chambaz, E.M. Selective inhibition of a cyclic nucleotide independent protein kinase (G type casein kinase) by quercetin and related polyphenols. Biochem. Pharmacol., 1982, 31(7), 1357-1361.
[http://dx.doi.org/10.1016/0006-2952(82)90028-4] [PMID: 6284174]
[26]
Matter, W.F.; Brown, R.F.; Vlahos, C.J. The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochem. Biophys. Res. Commun., 1992, 186(2), 624-631.
[http://dx.doi.org/10.1016/0006-291X(92)90792-J] [PMID: 1323287]
[27]
Castagna, M.; Takai, Y.; Kaibuchi, K.; Sano, K.; Kikkawa, U.; Nishizuka, Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem., 1982, 257(13), 7847-7851.
[PMID: 7085651]
[28]
Niedel, J.E.; Kuhn, L.J.; Vandenbark, G.R. Phorbol diester receptor copurifies with protein kinase C. Proc. Natl. Acad. Sci. USA, 1983, 80(1), 36-40.
[http://dx.doi.org/10.1073/pnas.80.1.36] [PMID: 6296873]
[29]
Wang, T-Y.; Li, Q.; Bi, K-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci, 2018, 13(1), 12-23.
[30]
Tong, X.; Pelling, J.C. Targeting the PI3K/Akt/mTOR axis by apigenin for cancer prevention. Anticancer. Agents Med. Chem., 2013, 13(7), 971-978.
[http://dx.doi.org/10.2174/18715206113139990119] [PMID: 23272913]
[31]
Shukla, S.; Bhaskaran, N.; Babcook, M.A.; Fu, P.; Maclennan, G.T.; Gupta, S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis, 2014, 35(2), 452-460.
[http://dx.doi.org/10.1093/carcin/bgt316] [PMID: 24067903]
[32]
Shukla, S.; Kanwal, R.; Shankar, E.; Datt, M.; Chance, M.R.; Fu, P.; MacLennan, G.T.; Gupta, S. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget, 2015, 6(31), 31216-31232.
[http://dx.doi.org/10.18632/oncotarget.5157] [PMID: 26435478]
[33]
Shao, J.; Wang, C.; Li, L.; Liang, H.; Dai, J.; Ling, X.; Tang, H. Luteoloside inhibits proliferation and promotes intrinsic and extrinsic pathway-mediated apoptosis involving MAPK and mTOR signaling pathways in human cervical cancer cells. Int. J. Mol. Sci., 2018, 19(6), 1664.
[http://dx.doi.org/10.3390/ijms19061664] [PMID: 29874795]
[34]
Liu, H.; Dong, Y.; Gao, Y.; Du, Z.; Wang, Y.; Cheng, P.; Chen, A.; Huang, H. The fascinating effects of baicalein on cancer: a review. Int. J. Mol. Sci., 2016, 17(10), 1681.
[http://dx.doi.org/10.3390/ijms17101681] [PMID: 27735841]
[35]
Chin, H.K.; Horng, C.T.; Liu, Y.S.; Lu, C.C.; Su, C.Y.; Chen, P.S.; Chiu, H.Y.; Tsai, F.J.; Shieh, P.C.; Yang, J.S. Kaempferol inhibits angiogenic ability by targeting VEGF receptor-2 and downregulating the PI3K/AKT, MEK and ERK pathways in VEGF-stimulated human umbilical vein endothelial cells. Oncol. Rep., 2018, 39(5), 2351-2357.
[http://dx.doi.org/10.3892/or.2018.6312] [PMID: 29565448]
[36]
Hung, T-W.; Chen, P-N.; Wu, H-C.; Wu, S-W.; Tsai, P-Y.; Hsieh, Y-S.; Chang, H-R. Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK pathways. Int. J. Med. Sci., 2017, 14(10), 984-993.
[http://dx.doi.org/10.7150/ijms.20336] [PMID: 28924370]
[37]
Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother., 2017, 89, 573-577.
[http://dx.doi.org/10.1016/j.biopha.2017.02.061] [PMID: 28258039]
[38]
Sun, X.; Ma, X.; Li, Q.; Yang, Y.; Xu, X.; Sun, J.; Yu, M.; Cao, K.; Yang, L.; Yang, G.; Zhang, G.; Wang, X. Anti‑cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies. Int. J. Mol. Med., 2018, 42(2), 811-820.
[http://dx.doi.org/10.3892/ijmm.2018.3654] [PMID: 29749427]
[39]
Zhang, X-J.; Jia, S-S. Fisetin inhibits laryngeal carcinoma through regulation of AKT/NF-κB/mTOR and ERK1/2 signaling pathways. Biomed. Pharmacother., 2016, 83, 1164-1174.
[http://dx.doi.org/10.1016/j.biopha.2016.08.035] [PMID: 27551764]
[40]
Kang, K.A.; Piao, M.J.; Madduma Hewage, S.R.; Ryu, Y.S.; Oh, M.C.; Kwon, T.K.; Chae, S.; Hyun, J.W. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway. Tumour Biol., 2016, 37(7), 9615-9624.
[http://dx.doi.org/10.1007/s13277-016-4864-x] [PMID: 26797785]
[41]
Lim, W.; Park, S.; Bazer, F.W.; Song, G. Naringenin‐induced apoptotic cell death in prostate cancer cells is mediated via the PI3K/AKT and MAPK signaling pathways. J. Cell. Biochem., 2017, 118(5), 1118-1131.
[http://dx.doi.org/10.1002/jcb.25729] [PMID: 27606834]
[42]
Zhang, L.; Cheng, X.; Gao, Y.; Zhang, C.; Bao, J.; Guan, H.; Yu, H.; Lu, R.; Xu, Q.; Sun, Y. Curcumin inhibits metastasis in human papillary thyroid carcinoma BCPAP cells via down-regulation of the TGF-β/Smad2/3 signaling pathway. Exp. Cell Res., 2016, 341(2), 157-165.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.006] [PMID: 26826337]
[43]
Zhang, X.; Liu, J.; Zhang, P.; Dai, L.; Wu, Z.; Wang, L.; Cao, M.; Jiang, J. Silibinin induces G1 arrest, apoptosis and JNK/SAPK upregulation in SW1990 human pancreatic cancer cells. Oncol. Lett., 2018, 15(6), 9868-9876.
[http://dx.doi.org/10.3892/ol.2018.8541] [PMID: 29805688]
[44]
Mao, J.; Yang, H.; Cui, T.; Pan, P.; Kabir, N.; Chen, D.; Ma, J.; Chen, X.; Chen, Y.; Yang, Y. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur. J. Pharmacol., 2018, 832, 39-49.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.027] [PMID: 29782854]
[45]
Tanjak, P.; Thiantanawat, A.; Watcharasit, P.; Satayavivad, J. Genistein reduces the activation of AKT and EGFR, and the production of IL6 in cholangiocarcinoma cells involving estrogen and estrogen receptors. Int. J. Oncol., 2018, 53(1), 177-188.
[http://dx.doi.org/10.3892/ijo.2018.4375] [PMID: 29693152]
[46]
Ning, Y.; Xu, M.; Cao, X.; Chen, X.; Luo, X. Inactivation of AKT, ERK and NF-κB by genistein derivative, 7-difluoromethoxyl-5,4′-di-n-octylygenistein, reduces ovarian carcinoma oncogenicity. Oncol. Rep., 2017, 38(2), 949-958.
[http://dx.doi.org/10.3892/or.2017.5709] [PMID: 28627607]
[47]
Cui, S.; Wang, J.; Wu, Q.; Qian, J.; Yang, C.; Bo, P. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Oncotarget, 2017, 8(13), 21674-21691.
[http://dx.doi.org/10.18632/oncotarget.15535] [PMID: 28423510]
[48]
Armstrong, W.P. Logwood: the tree that spawned a nation. Pacific Horticulture, 1992, 53, 38-43.
[49]
Lin, L-G.; Xie, H.; Li, H-L.; Tong, L-J.; Tang, C-P.; Ke, C-Q.; Liu, Q-F.; Lin, L-P.; Geng, M-Y.; Jiang, H.; Zhao, W.M.; Ding, J.; Ye, Y. Naturally occurring homoisoflavonoids function as potent protein tyrosine kinase inhibitors by c-Src-based high-throughput screening. J. Med. Chem., 2008, 51(15), 4419-4429.
[http://dx.doi.org/10.1021/jm701501x] [PMID: 18610999]
[50]
Zhang, H.H.; Zhang, Y.; Cheng, Y.N.; Gong, F.L.; Cao, Z.Q.; Yu, L.G.; Guo, X.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog., 2018, 57(1), 44-56.
[http://dx.doi.org/10.1002/mc.22718] [PMID: 28833603]
[51]
Oi, N.; Chen, H.; Ok Kim, M.; Lubet, R.A.; Bode, A.M.; Dong, Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res. (Phila.), 2012, 5(9), 1103-1114.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0397] [PMID: 22805054]
[52]
Lin, M.; Bi, H.; Yan, Y.; Huang, W.; Zhang, G.; Zhang, G.; Tang, S.; Liu, Y.; Zhang, L.; Ma, J.; Zhang, J. Parthenolide suppresses non-small cell lung cancer GLC-82 cells growth via B-Raf/MAPK/Erk pathway. Oncotarget, 2017, 8(14), 23436-23447.
[http://dx.doi.org/10.18632/oncotarget.15584] [PMID: 28423582]
[53]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J.V. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[54]
Zhou, B-N.; Johnson, R.K.; Mattern, M.R.; Fisher, P.W.; Kingston, D.G. The first naturally occurring Tie2 kinase inhibitor. Org. Lett., 2001, 3(25), 4047-4049.
[http://dx.doi.org/10.1021/ol016775+] [PMID: 11735581]
[55]
Jin, H.Z.; Hwang, B.Y.; Kim, H.S.; Lee, J.H.; Kim, Y.H.; Lee, J.J. Antiinflammatory constituents of Celastrus orbiculatus inhibit the NF-kappaB activation and NO production. J. Nat. Prod., 2002, 65(1), 89-91.
[http://dx.doi.org/10.1021/np010428r] [PMID: 11809076]
[56]
Kim, Y.; Kim, K.; Lee, H.; Han, S.; Lee, Y-S.; Choe, J.; Kim, Y-M.; Hahn, J-H.; Ro, J.Y.; Jeoung, D. Celastrol binds to ERK and inhibits FcepsilonRI signaling to exert an anti-allergic effect. Eur. J. Pharmacol., 2009, 612(1-3), 131-142.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.071] [PMID: 19356729]
[57]
Durazzo, A.; Lucarini, M.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytother. Res., 2019, 33(9), 2221-2243.
[http://dx.doi.org/10.1002/ptr.6419] [PMID: 31359516]
[58]
Qadir, M.I.; Naqvi, S.T.; Muhammad, S.A. Curcumin: a polyphenol with molecular targets for cancer control. Asian Pac. J. Cancer Prev., 2016, 17(6), 2735-2739.
[PMID: 27356682]
[59]
Shanmugam, M.K.; Rane, G.; Kanchi, M.M.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Tan, B.K.; Kumar, A.P.; Sethi, G. The multifaceted role of curcumin in cancer prevention and treatment. Molecules, 2015, 20(2), 2728-2769.
[http://dx.doi.org/10.3390/molecules20022728] [PMID: 25665066]
[60]
Hamzehzadeh, L.; Atkin, S.L.; Majeed, M.; Butler, A.E.; Sahebkar, A. The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J. Cell. Physiol., 2018, 233(10), 6530-6537.
[http://dx.doi.org/10.1002/jcp.26620] [PMID: 29693253]
[61]
Shakeri, A.; Ward, N.; Panahi, Y.; Sahebkar, A. Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Curr. Vasc. Pharmacol., 2019, 17(3), 262-269.
[http://dx.doi.org/10.2174/1570161116666180209113014] [PMID: 29424316]
[62]
Korutla, L.; Kumar, R. Inhibitory effect of curcumin on epidermal growth factor receptor kinase activity in A431 cells. Biochim. Biophys. Acta, 1994, 1224(3), 597-600.
[http://dx.doi.org/10.1016/0167-4889(94)90299-2] [PMID: 7803521]
[63]
Zhao, J-L.; Zhang, T.; Shao, X.; Zhu, J-J.; Guo, M-Z. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis. BMC Complement. Altern. Med., 2019, 19(1), 280.
[http://dx.doi.org/10.1186/s12906-019-2702-6] [PMID: 31647008]
[64]
He, Y.C.; He, L.; Khoshaba, R.; Lu, F.G.; Cai, C.; Zhou, F.L.; Liao, D.F.; Cao, D. Curcumin nicotinate selectively induces cancer cell apoptosis and cycle arrest through a P53-mediated mechanism. Molecules, 2019, 24(22), 4179.
[http://dx.doi.org/10.3390/molecules24224179] [PMID: 31752145]
[65]
Kang, N.J.; Lee, K.W.; Shin, B.J.; Jung, S.K.; Hwang, M.K.; Bode, A.M.; Heo, Y-S.; Lee, H.J.; Dong, Z. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis, 2009, 30(2), 321-330.
[http://dx.doi.org/10.1093/carcin/bgn282] [PMID: 19073879]
[66]
Aslan, E.; Guler, C.; Adem, S. In vitro effects of some flavonoids and phenolic acids on human pyruvate kinase isoenzyme M2. J. Enzyme Inhib. Med. Chem., 2016, 31(2), 314-317.
[http://dx.doi.org/10.3109/14756366.2015.1022173] [PMID: 25798688]
[67]
Lee, Y.S.; Kim, W.S.; Kim, K.H.; Yoon, M.J.; Cho, H.J.; Shen, Y.; Ye, J-M.; Lee, C.H.; Oh, W.K.; Kim, C.T.; Hohnen-Behrens, C.; Gosby, A.; Kraegen, E.W.; James, D.E.; Kim, J.B. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes, 2006, 55(8), 2256-2264.
[http://dx.doi.org/10.2337/db06-0006] [PMID: 16873688]
[68]
Liang, Y.; Fan, C.; Yan, X.; Lu, X.; Jiang, H.; Di, S.; Ma, Z.; Feng, Y.; Zhang, Z.; Feng, P.; Feng, X.; Feng, J.; Jin, F. Berberine ameliorates lipopolysaccharide-induced acute lung injury via the PERK-mediated Nrf2/HO-1 signaling axis. Phytother. Res., 2019, 33(1), 130-148.
[http://dx.doi.org/10.1002/ptr.6206] [PMID: 30346043]
[69]
Pei, C.; Zhang, Y.; Wang, P.; Zhang, B.; Fang, L.; Liu, B.; Meng, S. Berberine alleviates oxidized low-density lipoprotein-induced macrophage activation by downregulating galectin-3 via the NF-κB and AMPK signaling pathways. Phytother. Res., 2019, 33(2), 294-308.
[http://dx.doi.org/10.1002/ptr.6217] [PMID: 30402951]
[70]
Boyd, M.R.; Hallock, Y.F.; Cardellina, J.H., II; Manfredi, K.P.; Blunt, J.W.; McMahon, J.B.; Buckheit, R.W., Jr; Bringmann, G.; Schäffer, M.; Cragg, G.M. Anti-HIV michellamines from Ancistrocladus korupensis. J. Med. Chem., 1994, 37(12), 1740-1745.
[http://dx.doi.org/10.1021/jm00038a003] [PMID: 8021914]
[71]
White, E.L.; Chao, W.R.; Ross, L.J.; Borhani, D.W.; Hobbs, P.D.; Upender, V.; Dawson, M.I. Michellamine alkaloids inhibit protein kinase C. Arch. Biochem. Biophys., 1999, 365(1), 25-30.
[http://dx.doi.org/10.1006/abbi.1999.1145] [PMID: 10222035]
[72]
Hulcová, D.; Breiterová, K.; Siatka, T.; Klímová, K.; Davani, L.; Šafratová, M.; Hošťálková, A.; De Simone, A.; Andrisano, V.; Cahlíková, L. Amaryllidaceae alkaloids as potential glycogen synthase kinase-3β inhibitors. Molecules, 2018, 23(4), 719.
[http://dx.doi.org/10.3390/molecules23040719] [PMID: 29561817]
[73]
Mostafa, E.M.; Musa, A.; Abdelgawad, M.A.; Ragab, E.A. Cytotoxicity, protein kinase inhibitory activity, and docking studies of secondary metabolites isolated from Brownea grandiceps Jacq. Pharmacogn. Mag., 2019, 15(63), 438.
[http://dx.doi.org/10.4103/pm.pm_35_19]
[74]
Takeuchi, H.; Kondo, Y.; Fujiwara, K.; Kanzawa, T.; Aoki, H.; Mills, G.B.; Kondo, S. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res., 2005, 65(8), 3336-3346.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3640] [PMID: 15833867]
[75]
Yang, H-Y.; Lee, H-S.; Ko, J-H.; Yeon, S-W.; Kim, T-Y.; Hwang, B-Y.; Kang, S-S.; Chun, J-S.; Hong, S-K. Identification of 3′-hydroxymelanetin and liquiritigenin as Akt protein kinase inhibitors. J. Microbiol. Biotechnol., 2006, 16(9), 1384-1391.
[76]
Kakeya, H.; Imoto, M.; Tabata, Y.; Iwami, J.; Matsumoto, H.; Nakamura, K.; Koyano, T.; Tadano, K.; Umezawa, K. Isolation of a novel substrate-competitive tyrosine kinase inhibitor, desmal, from the plant Desmos chinensis. FEBS Lett., 1993, 320(2), 169-172.
[http://dx.doi.org/10.1016/0014-5793(93)80085-9] [PMID: 8458434]
[77]
Rochfort, S.J.; Towerzey, L.; Carroll, A.; King, G.; Michael, A.; Pierens, G.; Rali, T.; Redburn, J.; Whitmore, J.; Quinn, R.J. Latifolians A and B, novel JNK3 kinase inhibitors from the Papua New Guinean plant Gnetum latifolium. J. Nat. Prod., 2005, 68(7), 1080-1082.
[http://dx.doi.org/10.1021/np049616i] [PMID: 16038553]
[78]
Hoang, N.T.M.; Phuong, T.T.; Nguyen, T.T.N.; Tran, Y.T.H.; Nguyen, A.T.N.; Nguyen, T.L.; Bui, K.T. In vitro characterization of derrone as an Aurora kinase inhibitor. Biol. Pharm. Bull., 2016, 39(6), 935-945.
[http://dx.doi.org/10.1248/bpb.b15-00835] [PMID: 26983907]
[79]
Sathishkumar, N.; Karpagam, V.; Sathiyamoorthy, S.; Woo, M.J.; Kim, Y-J.; Yang, D-C. Computer-aided identification of EGFR tyrosine kinase inhibitors using ginsenosides from Panax ginseng. Comput. Biol. Med., 2013, 43(6), 786-797.
[http://dx.doi.org/10.1016/j.compbiomed.2013.02.020] [PMID: 23668355]
[80]
Dolečková, I.; Rárová, L.; Grúz, J.; Vondrusová, M.; Strnad, M.; Kryštof, V. Antiproliferative and antiangiogenic effects of flavone eupatorin, an active constituent of chloroform extract of Orthosiphon stamineus leaves. Fitoterapia, 2012, 83(6), 1000-1007.
[http://dx.doi.org/10.1016/j.fitote.2012.06.002] [PMID: 22698713]
[81]
Ju, J.H.; Jeon, M.J.; Yang, W.; Lee, K.M.; Seo, H-S.; Shin, I. Induction of apoptotic cell death by Pharbitis nil extract in HER2-overexpressing MCF-7 cells. J. Ethnopharmacol., 2011, 133(1), 126-131.
[http://dx.doi.org/10.1016/j.jep.2010.09.021] [PMID: 20883766]
[82]
Yang, J.; Ren, X.; Zhang, L.; Li, Y.; Cheng, B.; Xia, J. Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway. Biomed. Pharmacother., 2018, 100, 226-232.
[http://dx.doi.org/10.1016/j.biopha.2018.02.011] [PMID: 29432993]
[83]
Pi, J.; Jiang, J.; Cai, H.; Yang, F.; Jin, H.; Yang, P.; Cai, J.; Chen, Z.W. GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Deliv., 2017, 24(1), 1549-1564.
[http://dx.doi.org/10.1080/10717544.2017.1386729] [PMID: 29019267]
[84]
Wu, Q-X.; Yuan, S-X.; Ren, C-M.; Yu, Y.; Sun, W-J.; He, B-C.; Wu, K. Oridonin upregulates PTEN through activating p38 MAPK and inhibits proliferation in human colon cancer cells. Oncol. Rep., 2016, 35(6), 3341-3348.
[http://dx.doi.org/10.3892/or.2016.4735] [PMID: 27108927]
[85]
Wang, F.; Wang, H. Phyllanthus emblica L. extract activates Nrf2 signalling pathway in HepG2 cells. Biomed. Res. (Aligarh), 2017, 28, 3383-3386.
[86]
Ahmadu, A.A.; Lawal, B.A.; Haruna, A.; Mustapha, L. Tetrahydroxy flavone from Acacia auriculiformis A. Cunn Ex Benth.(Fabaceae) with novel kinase activity. Pharmacogn. J., 2019, 11(3), 559-563.
[http://dx.doi.org/10.5530/pj.2019.11.89]
[87]
Kim, B.R.; Ha, J.; Lee, S.; Park, J.; Cho, S. Anti-cancer effects of ethanol extract of Reynoutria japonica Houtt. radix in human hepatocellular carcinoma cells via inhibition of MAPK and PI3K/Akt signaling pathways. J. Ethnopharmacol., 2019, 245 112179
[http://dx.doi.org/10.1016/j.jep.2019.112179] [PMID: 31445130]
[88]
Ma, J.; Meng, X.; Kang, S.Y.; Zhang, J.; Jung, H.W.; Park, Y-K. Regulatory effects of the fruit extract of Lycium chinense and its active compound, betaine, on muscle differentiation and mitochondrial biogenesis in C2C12 cells. Biomed. Pharmacother., 2019, 118 109297
[http://dx.doi.org/10.1016/j.biopha.2019.109297] [PMID: 31404771]
[89]
Marti, G.; Eparvier, V.; Morleo, B.; Le Ven, J.; Apel, C.; Bodo, B.; Amand, S.; Dumontet, V.; Lozach, O.; Meijer, L.; Guéritte, F.; Litaudon, M. Natural aristolactams and aporphine alkaloids as inhibitors of CDK1/cyclin B and DYRK1A. Molecules, 2013, 18(3), 3018-3027.
[http://dx.doi.org/10.3390/molecules18033018] [PMID: 23467012]
[90]
Liu, X.; Xiao, Y.; Zhu, J.; Chen, Y.; Wang, J.; Peng, Y.; Jiang, L.; Hu, Y.; Bi, Y. Rho-associated protein kinase inhibitor Y-27632 increases the sensitivity of lung adenocarcinoma A549 cells to matrine via the Rad51/ERCC1 signaling pathway. Int. J. Clin. Exp. Med., 2016, 9(5), 8803-8811.
[91]
Beniddir, M.A.; Le Borgne, E.; Iorga, B.I.; Loaëc, N.; Lozach, O.; Meijer, L.; Awang, K.; Litaudon, M. Acridone alkaloids from Glycosmis chlorosperma as DYRK1A inhibitors. J. Nat. Prod., 2014, 77(5), 1117-1122.
[http://dx.doi.org/10.1021/np400856h] [PMID: 24798019]
[92]
Meng, X-L.; Chen, M-L.; Chen, C-L.; Gao, C-C.; Li, C.; Wang, D.; Liu, H-S.; Xu, C-B. Bisbenzylisoquinoline alkaloids of lotus (Nelumbo nucifera Gaertn.) seed embryo inhibit lipopolysaccharide-induced macrophage activation via suppression of Ca2+-CaM/CaMKII pathway. Food Agric. Immunol., 2019, 30(1), 878-896.
[http://dx.doi.org/10.1080/09540105.2019.1638889]
[93]
Shi, C.; Xu, M-J.; Bayer, M.; Deng, Z-W.; Kubbutat, M.H.; Wätjen, W.; Proksch, P.; Lin, W-H. Phenolic compounds and their anti-oxidative properties and protein kinase inhibition from the Chinese mangrove plant Laguncularia racemosa. Phytochemistry, 2010, 71(4), 435-442.
[http://dx.doi.org/10.1016/j.phytochem.2009.11.008] [PMID: 20022347]
[94]
El-Haddad, A.E-S.; Saadeldeen, A.M.; El-Emam, S.Z. Anti-angiogenic activity of major phenolics in tamarind assessed with molecular docking Study on VEGF kinase proteins. Pak. J. Biol. Sci., 2019, 22(10), 502-509.
[http://dx.doi.org/10.3923/pjbs.2019.502.509] [PMID: 31930840]
[95]
Bailly, C. Ready for a comeback of natural products in oncology. Biochem. Pharmacol., 2009, 77(9), 1447-1457.
[http://dx.doi.org/10.1016/j.bcp.2008.12.013] [PMID: 19161987]
[96]
Krystof, V.; Uldrijan, S. Cyclin-dependent kinase inhibitors as anticancer drugs. Curr. Drug Targets, 2010, 11(3), 291-302.
[http://dx.doi.org/10.2174/138945010790711950] [PMID: 20210754]
[97]
Gani, O.A.; Engh, R.A. Protein kinase inhibition of clinically important staurosporine analogues. Nat. Prod. Rep., 2010, 27(4), 489-498.
[http://dx.doi.org/10.1039/b923848b] [PMID: 20336234]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy