Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Antimicrobial Adjuvants - A Novel Approach to Manage Antimicrobial Resistance

Author(s): Chirag Patel*, Sanjeev Acharya and Priyanka Patel

Volume 18, Issue 4, 2020

Page: [315 - 325] Pages: 11

DOI: 10.2174/2211352518666200224093739

Price: $65

Abstract

Antibiotic resistance is one of the most prevalent, complex and serious global health issues, and needs to be monitored and controlled with medicine. Many approaches have been used to reduce the emergence and impact of resistance to antibiotics. The antimicrobial adjuvant approach is considered as novel, more effective and less expensive. The said approach not only suppresses the emergence of resistance but also conserves the activity of existing antibiotics by offering a promising strategy that is also complementary to the discovery of new antibiotics. This review contains an outline of the basic types of antibiotic adjuvant, their structure, the basis of their operation, their substrate antibiotics and the challenges in this field, as well as the role of potential compounds, namely β-lactamase inhibitors, efflux pump inhibitors and permeability enhancers in antibiotic resistance and their possible solutions.

Keywords: Antibiotic, antimicrobial resistance, efflux pump, inhibitors, antimicrobial adjuvant, β-lactamase.

Graphical Abstract

[1]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[2]
Ampaire, L. Muhindo; A.; Orikiriza; P.; Mwanga-Amumpaire, J.; Bebell, L.; Boum Y. A review of antimicrobial resistance in East Africa. Afr. J. Lab. Med., 2016, 5, a432.
[http://dx.doi.org/10.4102/ajlm.v5i1.432]
[3]
Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res., 2018, 36(1), 22-32.
[PMID: 28722231]
[4]
Renwick, M.J.; Brogan, D.M.; Mossialos, E. A systematic review and critical assessment of incentive strategies for discovery and development of novel antibiotics. J. Antibiot. (Tokyo), 2016, 69(2), 73-88.
[http://dx.doi.org/10.1038/ja.2015.98] [PMID: 26464014]
[5]
Cogan, D.; Karrar, K.; Iyer, J.K. Shortages, stockouts and scarcity-The issues facing the security of antibiotic supply and the role for pharmaceutical companies, 2018, 5, 1-22.
[6]
Zaheer, Z. Antimicrobial Adjuvants- an Innovative Strategy for Handling Antimicrobial Resistance Displayed by Microbes. J. Bacteriol. Mycol. Open. Access., 2017, 5, 4-6.
[http://dx.doi.org/10.15406/jbmoa.2017.05.00144]
[7]
González-Bello, C. Antibiotic adjuvants – A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 2017, 2, 4221-4228.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.027]
[8]
Dever, L.A.; Dermody, T.S. Mechanisms of bacterial resistance to antibiotics. Arch. Intern. Med., 1991, 151(5), 886-895.
[http://dx.doi.org/10.1001/archinte.1991.00400050040010] [PMID: 2025137]
[9]
Gill, E.E.; Franco, O.L.; Hancock, R.E.W. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem. Biol. Drug Des., 2015, 85(1), 56-78.
[http://dx.doi.org/10.1111/cbdd.12478] [PMID: 25393203]
[10]
Wright, G.D. Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. Trends Microbiol., 2016, 24(11), 862-871.
[http://dx.doi.org/10.1016/j.tim.2016.06.009] [PMID: 27430191]
[11]
Bernal, P.; Molina-Santiago, C.; Daddaoua, A.; Llamas, M.A. Antibiotic adjuvants: identification and clinical use. Microb. Biotechnol., 2013, 6(5), 445-449.
[http://dx.doi.org/10.1111/1751-7915.12044] [PMID: 23445397]
[12]
Bueno, J. Antimicrobial Adjuvants Drug Discovery, the Challenge of Avoid the Resistance and Recover the Susceptibility of Multidrug-Resistant Strains. J. Microb. Biochem. Technol., 2016, 8, 169-176.
[http://dx.doi.org/10.4172/1948-5948.1000281]
[13]
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171.
[http://dx.doi.org/10.1016/j.drup.2010.08.003] [PMID: 20833577]
[14]
Boehr, D.D.; Draker, K.A.; Koteva, K.; Bains, M.; Hancock, R.E.; Wright, G.D. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol., 2003, 10(2), 189-196.
[http://dx.doi.org/10.1016/S1074-5521(03)00026-7] [PMID: 12618191]
[15]
Welch, K.T.; Virga, K.G.; Whittemore, N.A.; Ozen, C.; Wright, E.; Brown, C.L.; Lee, R.E.; Serpersu, E.H. Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Bioorg. Med. Chem., 2005, 13(22), 6252-6263.
[http://dx.doi.org/10.1016/j.bmc.2005.06.059] [PMID: 16140014]
[16]
Bush, L.M.; Johnson, C.C. Ureidopenicillins and beta-lactam/beta-lactamase inhibitor combinations. Infect. Dis. Clin. North Am., 2000, 14(2), 409-433.ix..
[http://dx.doi.org/10.1016/S0891-5520(05)70255-5] [PMID: 10829263]
[17]
Drawz, S.M.; Papp-Wallace, K.M.; Bonomo, R.A. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother., 2014, 58(4), 1835-1846.
[http://dx.doi.org/10.1128/AAC.00826-13] [PMID: 24379206]
[18]
Docquier, J.D.; Mangani, S. An update on β-lactamase inhibitor discovery and development. Drug Resist. Updat., 2018, 36, 13-29.
[http://dx.doi.org/10.1016/j.drup.2017.11.002] [PMID: 29499835]
[19]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[20]
Stachyra, T.; Péchereau, M.C.; Bruneau, J.M.; Claudon, M.; Frère, J.M.; Miossec, C.; Coleman, K.; Black, M.T. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-β-lactam β-lactamase inhibitor. Antimicrob. Agents Chemother., 2010, 54(12), 5132-5138.
[http://dx.doi.org/10.1128/AAC.00568-10] [PMID: 20921316]
[21]
van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis., 2016, 63(2), 234-241.
[http://dx.doi.org/10.1093/cid/ciw243] [PMID: 27098166]
[22]
Falcone, M.; Paterson, D. Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J. Antimicrob. Chemother., 2016, 71(10), 2713-2722.
[http://dx.doi.org/10.1093/jac/dkw239] [PMID: 27432599]
[23]
Hirsch, E.B.; Ledesma, K.R.; Chang, K.T.; Schwartz, M.S.; Motyl, M.R.; Tam, V.H. In vitro activity of MK-7655, a novel β-lactamase inhibitor, in combination with imipenem against carbapenem-resistant Gram-negative bacteria. Antimicrob. Agents Chemother., 2012, 56(7), 3753-3757.
[http://dx.doi.org/10.1128/AAC.05927-11] [PMID: 22526311]
[24]
Livermore, D.M.; Warner, M.; Mushtaq, S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J. Antimicrob. Chemother., 2013, 68(10), 2286-2290.
[http://dx.doi.org/10.1093/jac/dkt178] [PMID: 23696619]
[25]
Lob, S.H.; Hackel, M.A.; Kazmierczak, K.M.; Young, K.; Motyl, M.R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of Imipenem-Relebactam against Gram-Negative ESKAPE Pathogens Isolated by Clinical Laboratories in the United States in 2015 (Results from the SMART Global Surveillance Program). Antimicrob. Agents Chemother., 2017, 61(6), 1-9.
[http://dx.doi.org/10.1128/AAC.02209-16] [PMID: 28320716]
[26]
Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob. Agents Chemother., 2015, 59(8), 5029-5031.
[http://dx.doi.org/10.1128/AAC.00830-15] [PMID: 26014931]
[27]
Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A.; Kartsonis, N.A.; Paschke, A. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother., 2016, 60(10), 6234-6243.
[http://dx.doi.org/10.1128/AAC.00633-16] [PMID: 27503659]
[28]
Snydman, D.R.; Jacobus, N.V.; McDermott, L.A. In vitro evaluation of the activity of imipenem-relebactam against 451 recent clinical isolates of Bacteroides group and related species. Antimicrob. Agents Chemother., 2016, 60(10), 6393-6397.
[http://dx.doi.org/10.1128/AAC.01125-16] [PMID: 27480858]
[29]
Morinaka, A.; Tsutsumi, Y.; Yamada, K.; Takayama, Y.; Sakakibara, S.; Takata, T.; Abe, T.; Furuuchi, T.; Inamura, S.; Sakamaki, Y.; Tsujii, N.; Ida, T. In Vitro and In Vivo Activities of OP0595, a New Diazabicyclooctane, against CTX-M-15-Positive Escherichia coli and KPC-Positive Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2016, 60(5), 3001-3006.
[http://dx.doi.org/10.1128/AAC.02704-15] [PMID: 26953205]
[30]
Morinaka, A.; Tsutsumi, Y.; Yamada, M.; Suzuki, K.; Watanabe, T.; Abe, T.; Furuuchi, T.; Inamura, S.; Sakamaki, Y.; Mitsuhashi, N.; Ida, T.; Livermore, D.M. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam ‘enhancer’. J. Antimicrob. Chemother., 2015, 70(10), 2779-2786.
[http://dx.doi.org/10.1093/jac/dkv166] [PMID: 26089439]
[31]
Barnes, M.D.; Bethel, C.R.; Rutter, J.D.; Akker, F.V.D.; Papp-Wallace, K.M.; Bonomo, R.A. The novel β-lactamase inhibitor, ETX-2514, in combination with sulbactam effectively inhibits acinetobacter baumannii. Open Forum Infect. Dis., 2017, 4, S368.
[http://dx.doi.org/10.1093/ofid/ofx163.900]
[32]
Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; Moussa, S.H.; Velez-Vega, C.; Olivier, N.B.; McLaughlin, R.; Gao, N.; Thresher, J.; Palmer, T.; Andrews, B.; Giacobbe, R.A.; Newman, J.V.; Ehmann, D.E.; de Jonge, B.; O’Donnell, J.; Mueller, J.P.; Tommasi, R.A.; Miller, A.A. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol., 2017, 2, 17104.
[http://dx.doi.org/10.1038/nmicrobiol.2017.104] [PMID: 28665414]
[33]
Vázquez-Ucha, J.C.; Maneiro, M.; Martínez-Guitián, M.; Buynak, J.; Bethel, C.R.; Bonomo, R.A. 5; Bou, G.; Poza, M.; González-Bello, C.; Beceiro, A. Activity of the ß-Lactamase inhibitor LN-1-255 against carbapenem-hydrolyzing class D ß-Lactamases from acinetobacter baumannii. Antimicrob. Agents Chemother., 2017, 61, e01172-e17.
[http://dx.doi.org/10.1128/AAC.01172-17] [PMID: 28807908]
[34]
Hackel, M.A.; Lomovskaya, O.; Dudley, M.N.; Karlowsky, J.A.; Sahm, D.F. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae. Antimicrob. Agents Chemother., 2017, 62(1), e01904-e01917.
[http://dx.doi.org/10.1128/AAC.01904-17] [PMID: 29084745]
[35]
Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; Dudley, M.N. Vaborbactam: Spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in enterobacteriaceae. Antimicrob. Agents Chemother., 2017, 61(11), e01443-e17.
[http://dx.doi.org/10.1128/AAC.01443-17] [PMID: 28848018]
[36]
Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Dudley, M.N.; Lomovskaya, O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2017, 61(12), e01694-e17.
[http://dx.doi.org/10.1128/AAC.01694-17] [PMID: 29038260]
[37]
Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Quale, J.; Landman, D. Activity of meropenem combined with RPX7009, a novel β-lactamase inhibitor, against gram-negative clinical isolates in New York City. Antimicrob. Agents Chemother., 2015, 59(8), 4856-4860.
[http://dx.doi.org/10.1128/AAC.00843-15] [PMID: 26033723]
[38]
Griffith, D.C.; Loutit, J.S.; Morgan, E.E.; Durso, S.; Dudley, M.N. Phase 1 study of the safety, tolerability, and pharmacokinetics of the B-lactamase inhibitor vaborbactam (RPX7009) in healthy adult subjects. Antimicrob. Agents Chemother., 2016, 60(10), 6326-6332.
[http://dx.doi.org/10.1128/AAC.00568-16] [PMID: 27527080]
[39]
Hecker, S.J.; Reddy, K.R.; Totrov, M.; Hirst, G.C.; Lomovskaya, O.; Griffith, D.C.; King, P.; Tsivkovski, R.; Sun, D.; Sabet, M.; Tarazi, Z.; Clifton, M.C.; Atkins, K.; Raymond, A.; Potts, K.T.; Abendroth, J.; Boyer, S.H.; Loutit, J.S.; Morgan, E.E.; Durso, S.; Dudley, M.N. Discovery of a cyclic boronic acid β-lactamase inhibitor (RPX7009) with utility vs class A serine carbapenemases. J. Med. Chem., 2015, 58(9), 3682-3692.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00127] [PMID: 25782055]
[40]
Ke, W.; Bethel, C.R.; Papp-Wallace, K.M.; Pagadala, S.R.; Nottingham, M.; Fernandez, D.; Buynak, J.D.; Bonomo, R.A.; van den Akker, F. Crystal structures of KPC-2 β-lactamase in complex with 3-nitrophenyl boronic acid and the penam sulfone PSR-3-226. Antimicrob. Agents Chemother., 2012, 56(5), 2713-2718.
[http://dx.doi.org/10.1128/AAC.06099-11] [PMID: 22330909]
[41]
Reza, A.; Sutton, J.M.; Rahman, K.M. Effectiveness of Efflux Pump Inhibitors as Biofilm Disruptors and Resistance Breakers in Gram-Negative (ESKAPEE) Bacteria. Antibiotics (Basel), 2019, 8(4), 229.
[http://dx.doi.org/10.3390/antibiotics8040229] [PMID: 31752382]
[42]
Rampioni, G.; Pillai, C.R.; Longo, F.; Bondì, R.; Baldelli, V.; Messina, M.; Imperi, F.; Visca, P.; Leoni, L. Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci. Rep., 2017, 7(1), 11392.
[http://dx.doi.org/10.1038/s41598-017-11892-9] [PMID: 28900249]
[43]
Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One, 2013, 8(3)e60666
[http://dx.doi.org/10.1371/journal.pone.0060666] [PMID: 23544160]
[44]
Opperman, T.J.; Nguyen, S.T. Recent advances toward a molecular mechanism of efflux pump inhibition. Front. Microbiol., 2015, 6, 421.
[http://dx.doi.org/10.3389/fmicb.2015.00421] [PMID: 25999939]
[45]
Gholami, M.; Hashemi, A.; Hakemi-Vala, M.; Goudarzi, H.; Hallajzadeh, M. Efflux pump inhibitor phenylalanine-arginine B-naphthylamide effect on the minimum inhibitory concentration of imipenem in acinetobacter baumannii strains isolated from hospitalized patients in Shahid Motahari Burn Hospital, Tehran, Iran. Jundishapur J. Microbiol., 2015, 8(10)e19048
[http://dx.doi.org/10.5812/jjm.19048] [PMID: 26568800]
[46]
Mitchell, C.J.; Stone, T.A.; Deber, C.M. Peptide-based efflux pump inhibitors of the small multidrug resistance protein from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2019, 63(9), e00730-e19.
[http://dx.doi.org/10.1128/AAC.00730-19] [PMID: 31209007]
[47]
Bohnert, J.A.; Kern, W.V. Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob. Agents Chemother., 2005, 49(2), 849-852.
[http://dx.doi.org/10.1128/AAC.49.2.849-852.2005] [PMID: 15673787]
[48]
Schumacher, A.; Steinke, P.; Bohnert, J.A.; Akova, M.; Jonas, D.; Kern, W.V. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J. Antimicrob. Chemother., 2006, 57(2), 344-348.
[http://dx.doi.org/10.1093/jac/dki446] [PMID: 16354746]
[49]
Pannek, S.; Higgins, P.G.; Steinke, P.; Jonas, D.; Akova, M.; Bohnert, J.A.; Seifert, H.; Kern, W.V. Multidrug efflux inhibition in Acinetobacter baumannii: comparison between 1-(1-naphthylmethyl)-piperazine and phenyl-arginine-β-naphthylamide. J. Antimicrob. Chemother., 2006, 57(5), 970-974.
[http://dx.doi.org/10.1093/jac/dkl081] [PMID: 16531429]
[50]
Coban, A.Y.; Guney, A.K.; Tanriverdi Cayci, Y.; Durupinar, B. Effect of 1-(1-Naphtylmethyl)-piperazine, an efflux pump inhibitor, on antimicrobial drug susceptibilities of clinical Acinetobacter baumannii isolates. Curr. Microbiol., 2011, 62(2), 508-511.
[http://dx.doi.org/10.1007/s00284-010-9736-9] [PMID: 20717673]
[51]
Zuo, Z.; Weng, J.; Wang, W. Insights into the Inhibitory Mechanism of D13-9001 to the Multidrug Transporter AcrB through Molecular Dynamics Simulations. J. Phys. Chem. B, 2016, 120(9), 2145-2154.
[http://dx.doi.org/10.1021/acs.jpcb.5b11942] [PMID: 26900716]
[52]
Opperman, T.J.; Kwasny, S.M.; Kim, H.S.; Nguyen, S.T.; Houseweart, C.; D’Souza, S.; Walker, G.C.; Peet, N.P.; Nikaido, H.; Bowlin, T.L. Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob. Agents Chemother., 2014, 58(2), 722-733.
[http://dx.doi.org/10.1128/AAC.01866-13] [PMID: 24247144]
[53]
Vargiu, A.V.; Ruggerone, P.; Opperman, T.J.; Nguyen, S.T.; Nikaido, H. Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob. Agents Chemother., 2014, 58(10), 6224-6234.
[http://dx.doi.org/10.1128/AAC.03283-14] [PMID: 25114133]
[54]
Zimmermann, S.; Klinger-Strobel, M.; Bohnert, J.A.; Wendler, S.; Rödel, J.; Pletz, M.W.; Löffler, B.; Tuchscherr, L. Clinically approved drugs inhibit the Staphylococcus aureus multidrug NorA efflux pump and reduce biofilm formation. Front. Microbiol., 2019, 10, 2762.
[http://dx.doi.org/10.3389/fmicb.2019.02762] [PMID: 31849901]
[55]
Malléa, M.; Chevalier, J.; Eyraud, A.; Pagès, J.M. Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem. Biophys. Res. Commun., 2002, 293(5), 1370-1373.
[http://dx.doi.org/10.1016/S0006-291X(02)00404-7] [PMID: 12054665]
[56]
Malléa, M.; Mahamoud, A.; Chevalier, J.; Alibert-Franco, S.; Brouant, P.; Barbe, J.; Pagès, J.M. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem. J., 2003, 376(Pt 3), 801-805.
[http://dx.doi.org/10.1042/bj20030963] [PMID: 12959639]
[57]
Ghisalberti, D.; Mahamoud, A.; Chevalier, J.; Baitiche, M.; Martino, M.; Pagès, J.M.; Barbe, J. Chloroquinolines block antibiotic efflux pumps in antibiotic-resistant Enterobacter aerogenes isolates. Int. J. Antimicrob. Agents, 2006, 27(6), 565-569.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.03.010] [PMID: 16707249]
[58]
Zeng, B.; Wang, H.; Zou, L.; Zhang, A.; Yang, X.; Guan, Z. Evaluation and target validation of indole derivatives as inhibitors of the AcrAB-TolC efflux pump. Biosci. Biotechnol. Biochem., 2010, 74(11), 2237-2241.
[http://dx.doi.org/10.1271/bbb.100433] [PMID: 21071837]
[59]
Mahamoud, A.; Chevalier, J.; Baitiche, M.; Adam, E.; Pagès, J.M. An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates. Microbiology, 2011, 157(Pt 2), 566-571.
[http://dx.doi.org/10.1099/mic.0.045716-0] [PMID: 21071494]
[60]
Lee, M.D.; Galazzo, J.L.; Staley, A.L.; Lee, J.C.; Warren, M.S.; Fuernkranz, H.; Chamberland, S.; Lomovskaya, O.; Miller, G.H. Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco, 2001, 56(1-2), 81-85.
[http://dx.doi.org/10.1016/S0014-827X(01)01002-3] [PMID: 11347972]
[61]
Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pagès, J.M.; Amaral, L.; Bolla, J.M. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob. Agents Chemother., 2009, 53(5), 2209-2211.
[http://dx.doi.org/10.1128/AAC.00919-08] [PMID: 19258278]
[62]
Friedman, M. Antibiotic-Resistant Bacteria: Prevalence in Food and Inactivation by Food-Compatible Compounds and Plant Extracts. J. Agric. Food Chem., 2015, 63, 3805-3822.
[63]
Lu, W.J.; Lin, H.J.; Hsu, P.H.; Lai, M.; Chiu, J.Y.; Lin, H.T. Brown and red seaweeds serve as potential efflux pump inhibitors for drug-resistant Escherichia coli. Evid. Based. Complement. Alternat. Med.,, 2019, 2019
[64]
Aparna, V.; Dineshkumar, K.; Mohanalakshmi, N.; Velmurugan, D.; Hopper, W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One, 2014, 9(7)e101840
[http://dx.doi.org/10.1371/journal.pone.0101840] [PMID: 25025665]
[65]
Masi, M.; Réfregiers, M.; Pos, K.M.; Pagès, J.M. Mechanisms of envelope permeability and antibiotic influx and efflux in Gram-negative bacteria. Nat. Microbiol., 2017, 2, 17001.
[http://dx.doi.org/10.1038/nmicrobiol.2017.1] [PMID: 28224989]
[66]
Zgurskaya, H.I.; Löpez, C.A.; Gnanakaran, S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect. Dis., 2015, 1(11), 512-522.
[http://dx.doi.org/10.1021/acsinfecdis.5b00097] [PMID: 26925460]
[67]
Ferrer-Espada, R.; Shahrour, H.; Pitts, B.; Stewart, P.S.; Sánchez-Gómez, S.; Martínez-de-Tejada, G. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci. Rep., 2019, 9(1), 3452.
[http://dx.doi.org/10.1038/s41598-019-39659-4] [PMID: 30837499]
[68]
Laws, M.; Shaaban, A.; Rahman, K.M. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol. Rev., 2019, 43(5), 490-516.
[http://dx.doi.org/10.1093/femsre/fuz014] [PMID: 31150547]
[69]
Kwon, D.H.; Lu, C.D. Polyamines increase antibiotic susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2006, 50(5), 1623-1627.
[http://dx.doi.org/10.1128/AAC.50.5.1623-1627.2006] [PMID: 16641427]
[70]
Kaur, I. Novel Strategies to Combat Antimicrobial Resistance. J. Infect. Dis. Ther., 2016, 4, 292.
[http://dx.doi.org/10.4172/2332-0877.1000292]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy