Review Article

依达拉奉可能预防ALS的肥大症

卷 21, 期 8, 2020

页: [776 - 780] 页: 5

弟呕挨: 10.2174/1389450121666200220123305

价格: $65

摘要

Radicava™(依达拉奉)被美国食品药品监督管理局(FDA)批准为肌萎缩性侧索硬化症(ALS)的新疗法。 依达拉奉是一种合成抗氧化剂,专门针对与细胞中脂质自由基相互作用的氧化损伤。 在ALS疾病中,多种细胞类型参与了运动神经元的破坏性丧失。 各种细胞类型的突变和生化变化共同导致运动神经元死亡,疾病发作和疾病进展。 ALS中神经退行性疾病的整体机制仍未完全了解。 据报垂死的运动神经元表现出凋亡特征。 然而,垂死的运动神经元的非凋亡特征也已被报道,如铁碱定病。 讨论了依达拉奉与ALS治疗的其他治疗方法同时在预防肥大症中的作用。

关键词: 依达拉奉,肌萎缩性侧索硬化症(ALS),肥大症,治疗,神经元,神经变性。

图形摘要

[1]
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10(3): 405-43.
[http://dx.doi.org/10.1089/ars.2007.1760] [PMID: 18370853]
[2]
Musarò A. Understanding ALS: new therapeutic approaches. FEBS J 2013; 280(17): 4315-22.
[http://dx.doi.org/10.1111/febs.12087] [PMID: 23217177]
[3]
Silani V, Ludolph A, Fornai F. The emerging picture of ALS: a multisystem, not only a "motor neuron disease. Arch Ital Biol 2017; 155(4): 99-109.
[PMID: 29405027]
[4]
Frakes AE, Braun L, Ferraiuolo L, Guttridge DC, Kaspar BK. Additive amelioration of ALS by co-targeting independent pathogenic mechanisms. Ann Clin Transl Neurol 2017; 4(2): 76-86.
[http://dx.doi.org/10.1002/acn3.375] [PMID: 28168207]
[5]
Spasojević I, Mojović M, Stević Z, et al. Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid. Redox Rep 2010; 15((1):): 29-- 35. a.
[http://dx.doi.org/10.1179/174329210X12650506623087] [PMID: 20196926]
[6]
Ignjatović A, Stević Z, Lavrnić S, Daković M, Bačić G. Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 2013; 38(6): 1472-9.
[http://dx.doi.org/10.1002/jmri.24121] [PMID: 23564606]
[7]
Acosta-Cabronero J, Machts J, Schreiber S, et al. Quantitative susceptibility MRI to detect brain iron in amyotrophic lateral sclerosis. Radiology 2018; 289(1): 195-203.
[http://dx.doi.org/10.1148/radiol.2018180112] [PMID: 30040038]
[8]
Hadzhieva M, Kirches E, Wilisch-Neumann A, et al. Dysregulation of iron protein expression in the G93A model of amyotrophic lateral sclerosis. Neuroscience 2013; 230: 94-101.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.021] [PMID: 23178912]
[9]
Moreau C, Danel V, Devedjian JC, et al. Could Conservative Iron Chelation Lead to Neuroprotection in Amyotrophic Lateral Sclerosis? Antioxid Redox Signal 2018; 29(8): 742-8.
[http://dx.doi.org/10.1089/ars.2017.7493] [PMID: 29287521]
[10]
Desnuelle C, Dib M, Garrel C, Favier A. A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS riluzole-tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2001; 2(1): 9-18.
[http://dx.doi.org/10.1080/146608201300079364] [PMID: 11465936]
[11]
Apostolski S, Marinković Z, Nikolić A, Blagojević D, Spasić MB, Michelson AM. Glutathione peroxidase in amyotrophic lateral sclerosis: the effects of selenium supplementation. J Environ Pathol Toxicol Oncol 1998; 17(3-4): 325-9.
[PMID: 9726810]
[12]
Stojsavljević A, Jagodić J, Vujotić L, et al. Reference values for trace essential elements in the whole blood and serum samples of the adult Serbian population: significance of selenium deficiency. Environ Sci Pollut Res Int 2020; 27(2): 1397-405.
[http://dx.doi.org/10.1007/s11356-019-06936-8] [PMID: 31748992]
[13]
Conrad M, Schneider M, Seiler A, Bornkamm GW. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol Chem 2007; 388(10): 1019-25.
[http://dx.doi.org/10.1515/BC.2007.130] [PMID: 17937615]
[14]
Yamamoto Y, Kuwahara T, Watanabe K, Watanabe K. Antioxidant activity of 3-methyl-1-phenyl-2-pyrazolin-5-one. Redox Rep 1996; 2(5): 333-8.
[http://dx.doi.org/10.1080/13510002.1996.11747069] [PMID: 27406414]
[15]
Yoshida H, Yanai H, Namiki Y, Fukatsu-Sasaki K, Furutani N, Tada N. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev 2006; 12(1): 9-20.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00009.x] [PMID: 16834755]
[16]
Watanabe K, Tanaka M, Yuki S, Hirai M, Yamamoto Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J Clin Biochem Nutr 2018; 62(1): 20-38.
[http://dx.doi.org/10.3164/jcbn.17-62] [PMID: 29371752]
[17]
Yamamoto Y. Plasma marker of tissue oxidative damage and edaravone as a scavenger drug against peroxyl radicals and peroxynitrite. J Clin Biochem Nutr 2017; 60(1): 49-54.
[http://dx.doi.org/10.3164/jcbn.16-63] [PMID: 28163382]
[18]
Abe S, Kirima K, Tsuchiya K, et al. The reaction rate of edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186)) with hydroxyl radical. Chem Pharm Bull (Tokyo) 2004; 52(2): 186-91.
[http://dx.doi.org/10.1248/cpb.52.186] [PMID: 14758002]
[19]
Wang H, Kozekov ID, Harris TM, Rizzo CJ. Site-specific synthesis and reactivity of oligonucleotides containing stereochemically defined 1,N2-deoxyguanosine adducts of the lipid peroxidation product trans-4-hydroxynonenal. J Am Chem Soc 2003; 125(19): 5687-700.
[http://dx.doi.org/10.1021/ja0288800] [PMID: 12733907]
[20]
Higashi Y, Jitsuiki D, Chayama K, Yoshizumi M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 2006; 1(1): 85-93.
[http://dx.doi.org/10.2174/157489006775244191] [PMID: 18221078]
[21]
Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 2005; 36(10): 2220-5.
[http://dx.doi.org/10.1161/01.STR.0000182241.07096.06] [PMID: 16166574]
[22]
Jin YJ, Mima T, Raicu V, Park KC, Shimizu K. Combined argatroban and edaravone caused additive neuroprotection against 15 min of forebrain ischemia in gerbils. Neurosci Res 2002; 43(1): 75-9.
[http://dx.doi.org/10.1016/S0168-0102(02)00019-6] [PMID: 12074843]
[23]
Nakamura T, Kuroda Y, Yamashita S, et al. Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke 2008; 39(2): 463-9.
[http://dx.doi.org/10.1161/STROKEAHA.107.486654] [PMID: 18096835]
[24]
Ohta M, Higashi Y, Yawata T, et al. Attenuation of axonal injury and oxidative stress by edaravone protects against cognitive impairments after traumatic brain injury. Brain Res 2013; 1490: 184-92.
[http://dx.doi.org/10.1016/j.brainres.2012.09.011] [PMID: 22982593]
[25]
Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother 2010; 11(10): 1753-63.
[http://dx.doi.org/10.1517/14656566.2010.493558] [PMID: 20491547]
[26]
Homma T, Kobayashi S, Sato H, Fujii J. Edaravone, a free radical scavenger, protects against ferroptotic cell death in vitro. Exp Cell Res 2019; 384(1)111592
[http://dx.doi.org/10.1016/j.yexcr.2019.111592] [PMID: 31479686]
[27]
Abraham A, Nefussy B, Fainmesser Y, Ebrahimi Y, Karni A, Drory VE. Early post-marketing experience with edaravone in an unselected group of patients with ALS. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20(3-4): 260-3.
[http://dx.doi.org/10.1080/21678421.2019.1572191] [PMID: 30784320]
[28]
Abe K, Itoyama Y, Sobue G, et al. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15(7-8): 610-7.
[http://dx.doi.org/10.3109/21678421.2014.959024] [PMID: 25286015]
[29]
Abe K, Aoki M, Tsuji S, et al. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2017; 16(7): 505-12.
[http://dx.doi.org/10.1016/S1474-4422(17)30115-1] [PMID: 28522181]
[30]
Spasojević I, Stević Z, Nikolić-Kokić A, Jones DR, Blagojević D, Spasić MB. Different roles of radical scavengers--ascorbate and urate in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Redox Rep 2010; 15(2): 81-6.
[http://dx.doi.org/10.1179/174329210X12650506623320] [PMID: 20500989]
[31]
Paganoni S, Nicholson K, Chan J, et al. Urate levels predict survival in amyotrophic lateral sclerosis: Analysis of the expanded Pooled Resource Open-Access ALS clinical trials database. Muscle Nerve 2018; 57(3): 430-4.
[http://dx.doi.org/10.1002/mus.25950] [PMID: 28857199]
[32]
O’Reilly EJ, Liu D, Johns DR, et al. Serum urate at trial entry and ALS progression in EMPOWER. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18(1-2): 120-5.
[http://dx.doi.org/10.1080/21678421.2016.1214733] [PMID: 27677562]
[33]
Paganoni S, Zhang M, Quiroz Zárate A, et al. Uric acid levels predict survival in men with amyotrophic lateral sclerosis. J Neurol 2012; 259(9): 1923-8.
[http://dx.doi.org/10.1007/s00415-012-6440-7] [PMID: 22323210]
[34]
Bakshi R, Zhang H, Logan R, et al. Neuroprotective effects of urate are mediated by augmenting astrocytic glutathione synthesis and release. Neurobiol Dis 2015; 82: 574-9.
[http://dx.doi.org/10.1016/j.nbd.2015.08.022] [PMID: 26341543]
[35]
Du Y, Chen CP, Tseng CY, Eisenberg Y, Firestein BL. Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 2007; 55(5): 463-72.
[http://dx.doi.org/10.1002/glia.20472] [PMID: 17203476]
[36]
Nicholson K, Chan J, Macklin EA, et al. Pilot trial of inosine to elevate urate levels in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2018; 5(12): 1522-33.
[http://dx.doi.org/10.1002/acn3.671] [PMID: 30564619]
[37]
Xiao B, Bi FF, Hu YQ, et al. Edaravone neuroprotection effected by suppressing the gene expression of the Fas signal pathway following transient focal ischemia in rats. Neurotox Res 2007; 12(3): 155-62.
[http://dx.doi.org/10.1007/BF03033912] [PMID: 17967739]
[38]
Ignjatović A, Stević Z, Lavrnić D, et al. Inappropriately chelated iron in the cerebrospinal fluid of amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler 2012; 13(4): 357-62.
[http://dx.doi.org/10.3109/17482968.2012.665929] [PMID: 22424123]
[39]
Keizman D, Ish-Shalom M, Berliner S, et al. Low uric acid levels in serum of patients with ALS: further evidence for oxidative stress? J Neurol Sci 2009; 285(1-2): 95-9.
[http://dx.doi.org/10.1016/j.jns.2009.06.002] [PMID: 19552925]
[40]
Nikolić-Kokić A, Oreščanin-Dušić Z, Slavić M, et al. The effects of human wild-type and FALS mutant L144P SOD1 on non-vascular smooth muscle contractions. J Med Biochem 2013; 32: 375-9.
[http://dx.doi.org/10.2478/jomb-2013-0032]
[41]
Allen MJ, Lacroix JJ, Ramachandran S, et al. Mutant SOD1 forms ion channel: implications for ALS pathophysiology. Neurobiol Dis 2012; 45(3): 831-8.
[http://dx.doi.org/10.1016/j.nbd.2011.08.031] [PMID: 21930207]
[42]
McAlary L, Plotkin SS, Yerbury JJ, Cashman NR. Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019; 12: 262.
[http://dx.doi.org/10.3389/fnmol.2019.00262] [PMID: 31736708]
[43]
Chen L, Hambright WS, Na R, Ran Q. ablation of the ferroptosis inhibitor glutathione peroxidase 4 in neurons results in rapid motor neuron degeneration and paralysis. J Biol Chem 2015; 290(47): 28097-106.
[http://dx.doi.org/10.1074/jbc.M115.680090] [PMID: 26400084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy