Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis

Author(s): Alamgeer, Hira Asif , Muhammad Z.A. Sandhu, Madiha Aziz, Hafiz M. Irfan, Karyne G.T. Moreno and Arquimedes Gasparotto Junior*

Volume 26, Issue 22, 2020

Page: [2574 - 2582] Pages: 9

DOI: 10.2174/1381612826666200214161139

Price: $65

Abstract

Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.

Keywords: Phytoconstituents, antiatherosclerotic, endothelial dysfunction, plaque formation, phytotherapeutics, atheromatous.

[1]
Wang T, Palucci D, Law K, Yanagawa B, Yam J, Butany J. Atherosclerosis: pathogenesis and pathology. Diagn Histopathol 2012; 18: 461-7.
[http://dx.doi.org/10.1016/j.mpdhp.2012.09.004]
[2]
Sedighi M, Bahmani M, Asgary S, Beyranvand F, Rafieian-Kopaei M. A review of plant-based compounds and medicinal plants effective on atherosclerosis. J Res Med Sci 2017; 22: 30.
[http://dx.doi.org/10.4103/1735-1995.202151] [PMID: 28461816]
[3]
Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006; 47(8)(Suppl.): C7-C12.
[http://dx.doi.org/10.1016/j.jacc.2005.09.068] [PMID: 16631513]
[4]
Chroni A, Leondaritis G, Karlsson H. Lipids and lipoproteins in atherosclerosis. J Lipids 2011 2011.160104
[5]
Stancu C, Sima A. Statins: mechanism of action and effects. J Cell Mol Med 2001; 5(4): 378-87.
[http://dx.doi.org/10.1111/j.1582-4934.2001.tb00172.x] [PMID: 12067471]
[6]
Ziaee A, Zamansoltani F, Nassiri-Asl M, Abbasi E. Effects of rutin on lipid profile in hypercholesterolaemic rats. Basic Clin Pharmacol Toxicol 2009; 104(3): 253-8.
[http://dx.doi.org/10.1111/j.1742-7843.2008.00368.x] [PMID: 19175365]
[7]
Harb AA, Bustanji YK, Abdalla SS. Hypocholesterolemic effect of β-caryophyllene in rats fed cholesterol and fat enriched diet. J Clin Biochem Nutr 2018; 62(3): 230-7.
[http://dx.doi.org/10.3164/jcbn.17-3] [PMID: 29892161]
[8]
Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol 2003; 91(3A): 7A-11A.
[http://dx.doi.org/10.1016/S0002-9149(02)03144-2] [PMID: 12645638]
[9]
Kita T, Kume N, Minami M, et al. Role of oxidized LDL in atherosclerosis. Ann N Y Acad Sci 2001; 947: 199-205.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03941.x] [PMID: 11795267]
[10]
Gholipour S, Sewell RDE, Lorigooini Z, Rafieian-Kopaei M. Medicinal plants and atherosclerosis: A review on molecular aspects. Curr Pharm Des 2018; 24(26): 3123-31.
[http://dx.doi.org/10.2174/1381612824666180911121525] [PMID: 30205790]
[11]
Lian T-W, Wang L, Lo Y-H, Huang I-J, Wu M-J. Fisetin, morin and myricetin attenuate CD36 expression and oxLDL uptake in U937-derived macrophages. Biochim Biophys Acta 2008; 1781(10): 601-9.
[http://dx.doi.org/10.1016/j.bbalip.2008.06.009] [PMID: 18662803]
[12]
Kosmas CE, DeJesus E, Rosario D, Vittorio TJ. CETP inhibition: past failures and future hopes. Clin Med Insights Cardiol 2016; 10: 37-42.
[http://dx.doi.org/10.4137/CMC.S32667] [PMID: 26997876]
[13]
Barter PJ, Brewer HB Jr, Chapman MJ, Hennekens CH, Rader DJ, Tall AR. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23(2): 160-7.
[http://dx.doi.org/10.1161/01.ATV.0000054658.91146.64] [PMID: 12588754]
[14]
Di Bartolo BA, Nicholls SJ. Anacetrapib as a potential cardioprotective strategy. Drug Des Devel Ther 2017; 11: 3497-502.
[http://dx.doi.org/10.2147/DDDT.S114104] [PMID: 29263647]
[15]
Choi S-Y, Park G-S, Lee SY, Kim JY, Kim YK. The conformation and CETP inhibitory activity of [10]-dehydrogingerdione isolated from Zingiber officinale. Arch Pharm Res 2011; 34(5): 727-31.
[http://dx.doi.org/10.1007/s12272-011-0505-5] [PMID: 21656357]
[16]
Hirata H, Takazumi K, Segawa S, et al. Xanthohumol, a prenylated chalcone from Humulus lupulus L., inhibits cholesteryl ester transfer protein. Food Chem 2012; 134(3): 1432-7.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.043] [PMID: 25005963]
[17]
Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 2016; 118(4): 620-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[18]
Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109(23)(Suppl. 1): III27-32.
[PMID: 15198963]
[19]
Kajal A, Kishore L, Kaur N, Gollen R, Singh R. Therapeutic agents for the management of atherosclerosis from herbal sources. Beni Suef Univ J Basic Appl Sci 2016; 5: 156-69.
[http://dx.doi.org/10.1016/j.bjbas.2016.02.004]
[20]
Monsalve B, Concha-Meyer A, Palomo I, Fuentes E. Mechanisms of endothelial protection by natural bioactive compounds from fruit and vegetables. An Acad Bras Cienc 2017; 89(1)(Suppl. 0): 615-33.
[http://dx.doi.org/10.1590/0001-3765201720160509] [PMID: 28538813]
[21]
Yang T, Shi HX, Wang ZT, Wang CH. Hypolipidemic effects of andrographolide and neoandrographolide in mice and rats. Phytother Res 2013; 27(4): 618-23.
[http://dx.doi.org/10.1002/ptr.4771] [PMID: 22744979]
[22]
Xing S-S, Yang X-Y, Zheng T, et al. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vascul Pharmacol 2015; 72: 141-52.
[http://dx.doi.org/10.1016/j.vph.2015.07.004] [PMID: 26187353]
[23]
Chang T-Y, Li B-L, Chang CC, Urano Y. Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab 2009; 297(1): E1-9.
[http://dx.doi.org/10.1152/ajpendo.90926.2008] [PMID: 19141679]
[24]
Sudhop T, Lütjohann D, Kodal A, et al. Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 2002; 106(15): 1943-8.
[http://dx.doi.org/10.1161/01.CIR.0000034044.95911.DC] [PMID: 12370217]
[25]
Chang C, Dong R, Miyazaki A, et al. Human acyl-CoA:cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2006; 38(3): 151-6.
[http://dx.doi.org/10.1111/j.1745-7270.2006.00154.x] [PMID: 16518538]
[26]
Im K-R, Jeong T-S, Kwon B-M, Baek N-I, Kim S-H, Kim DK. Acyl-CoA: cholesterol acyltransferase inhibitors from Ilex macropoda. Arch Pharm Res 2006; 29(3): 191-4.
[http://dx.doi.org/10.1007/BF02969391] [PMID: 16596989]
[27]
Lee WS, Im KR, Park YD, Sung ND, Jeong TS. Human ACAT-1 and ACAT-2 inhibitory activities of pentacyclic triterpenes from the leaves of Lycopus lucidus TURCZ. Biol Pharm Bull 2006; 29(2): 382-4.
[http://dx.doi.org/10.1248/bpb.29.382] [PMID: 16462051]
[28]
Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int 2016; 20169582430
[http://dx.doi.org/10.1155/2016/9582430]
[29]
Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med 1986; 314(8): 488-500.
[http://dx.doi.org/10.1056/NEJM198602203140806] [PMID: 3511384]
[30]
Huang X, Zou L, Yu X, et al. Salidroside attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2a receptor related mitochondria-dependent apoptosis pathway. J Mol Cell Cardiol 2015; 82: 153-66.
[http://dx.doi.org/10.1016/j.yjmcc.2015.03.005] [PMID: 25772255]
[31]
Qu ZQ, Zhou Y, Zeng YS, et al. Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One 2012; 7(1)e29641
[http://dx.doi.org/10.1371/journal.pone.0029641] [PMID: 22235318]
[32]
Zhang T, Wu W, Li D, et al. Anti-oxidant and anti-apoptotic effects of luteolin on mice peritoneal macrophages stimulated by angiotensin II. Int Immunopharmacol 2014; 20(2): 346-51.
[http://dx.doi.org/10.1016/j.intimp.2014.03.018] [PMID: 24726243]
[33]
Ni J, Li Y, Li W, Guo R. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways. Lipids Health Dis 2017; 16(1): 198.
[http://dx.doi.org/10.1186/s12944-017-0582-7] [PMID: 29017559]
[34]
Sun D-W, Zhang H-D, Mao L, et al. Luteolin inhibits breast cancer development and progression in vitro and in vivo by suppressing notch signaling and regulating MiRNAs. Cell Physiol Biochem 2015; 37(5): 1693-711.
[http://dx.doi.org/10.1159/000438535] [PMID: 26545287]
[35]
López-Lázaro M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem 2009; 9(1): 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[36]
Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135-43.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[37]
Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. Curr Opin Hematol 2007; 14(1): 55-61.
[http://dx.doi.org/10.1097/00062752-200701000-00011] [PMID: 17133101]
[38]
Kong L, Luo C, Li X, Zhou Y, He H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis 2013; 12: 115.
[http://dx.doi.org/10.1186/1476-511X-12-115] [PMID: 23895132]
[39]
Wang J, Zhang R, Xu Y, Zhou H, Wang B, Li S. Genistein inhibits the development of atherosclerosis via inhibiting NF-kappaB and VCAM-1 expression in LDLR knockout mice. Can J Physiol Pharmacol 2008; 86(11): 777-84.
[http://dx.doi.org/10.1139/Y08-085] [PMID: 19011673]
[40]
Selmi C, Mao TK, Keen CL, Schmitz HH, Eric Gershwin M. The anti-inflammatory properties of cocoa flavanols. J Cardiovasc Pharmacol 2006; 47(Suppl. 2): S163-71.
[http://dx.doi.org/10.1097/00005344-200606001-00010] [PMID: 16794453]
[41]
Khoo HE, Azlan A, Tang ST, Lim SM. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 2017; 61(1)1361779
[http://dx.doi.org/10.1080/16546628.2017.1361779] [PMID: 28970777]
[42]
Mena P, Domínguez-Perles R, Gironés-Vilaplana A, Baenas N, García-Viguera C, Villaño D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life 2014; 66(11): 745-58.
[http://dx.doi.org/10.1002/iub.1332] [PMID: 25504851]
[43]
Murakami A, Ohnishi K. Target molecules of food phytochemicals: food science bound for the next dimension. Food Funct 2012; 3(5): 462-76.
[http://dx.doi.org/10.1039/c2fo10274a] [PMID: 22377900]
[44]
Momtazi-Borojeni AA, Esmaeili S-A, Abdollahi E, Sahebkar A. A review on the pharmacology and toxicology of steviol glycosides extracted from Stevia rebaudiana. Curr Pharm Des 2017; 23(11): 1616-22.
[http://dx.doi.org/10.2174/1381612822666161021142835] [PMID: 27784241]
[45]
Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J. Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 2008; 65(19): 2979-99.
[http://dx.doi.org/10.1007/s00018-008-8103-5] [PMID: 18516495]
[46]
Liang G, Zhou H, Wang Y, et al. Inhibition of LPS-induced production of inflammatory factors in the macrophages by mono-carbonyl analogues of curcumin. J Cell Mol Med 2009; 13(9B): 3370-9.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00711.x] [PMID: 19243473]
[47]
Buhrmann C, Popper B, Aggarwal BB, Shakibaei M. Resveratrol downregulates inflammatory pathway activated by lymphotoxin α (TNF-β) in articular chondrocytes: Comparison with TNF-α. PLoS One 2017; 12(11)e0186993
[http://dx.doi.org/10.1371/journal.pone.0186993] [PMID: 29095837]
[48]
Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int 2019; 2019 8748253
[http://dx.doi.org/10.1155/2019/8748253]
[49]
Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 2001; 107(2): 135-42.
[http://dx.doi.org/10.1172/JCI11914] [PMID: 11160126]
[50]
Cazarolli LH, Zanatta L, Alberton EH, et al. Flavonoids: prospective drug candidates. Mini Rev Med Chem 2008; 8(13): 1429-40.
[http://dx.doi.org/10.2174/138955708786369564] [PMID: 18991758]
[51]
Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011; 38(2): 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014] [PMID: 21514796]
[52]
Schuier M, Sies H, Illek B, Fischer H. Cocoa-related flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. J Nutr 2005; 135(10): 2320-5.
[http://dx.doi.org/10.1093/jn/135.10.2320] [PMID: 16177189]
[53]
Guan S, Tang Q, Liu W, Zhu R, Li B. Nobiletin Inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia in a rat carotid artery injury model. Drug Dev Res 2014; 75(8): 489-96.
[http://dx.doi.org/10.1002/ddr.21230] [PMID: 25452110]
[54]
Luo X, Fang S, Xiao Y, et al. Cyanidin-3-glucoside suppresses TNF-α-induced cell proliferation through the repression of Nox activator 1 in mouse vascular smooth muscle cells: involvement of the STAT3 signaling. Mol Cell Biochem 2012; 362(1-2): 211-8.
[http://dx.doi.org/10.1007/s11010-011-1144-3] [PMID: 22120492]
[55]
Hu Y, Liu K, Yan M, Zhang Y, Wang Y, Ren L. Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen. Mol Med Rep 2016; 13(3): 2899-903.
[http://dx.doi.org/10.3892/mmr.2016.4813] [PMID: 26820466]
[56]
Zhu L-H, Wang L, Wang D, et al. Puerarin attenuates high-glucose-and diabetes-induced vascular smooth muscle cell proliferation by blocking PKCbeta2/Rac1-dependent signaling. Free Radic Biol Med 2010; 48(4): 471-82.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.040] [PMID: 19854265]
[57]
Li Y-J, Du G-H. Effects of alpinetin on rat vascular smooth muscle cells. J Asian Nat Prod Res 2004; 6(2): 87-92.
[http://dx.doi.org/10.1080/1028602031000135558] [PMID: 15008454]
[58]
Wei L, Deng W, Cheng Z, et al. Effects of hesperetin on platelet-derived growth factor-BB-induced pulmonary artery smooth muscle cell proliferation. Mol Med Rep 2016; 13(1): 955-60.
[http://dx.doi.org/10.3892/mmr.2015.4625] [PMID: 26647836]
[59]
Kim HJ, Cha B-Y, Choi B, Lim JS, Woo J-T, Kim J-S. Glyceollins inhibit platelet-derived growth factor-mediated human arterial smooth muscle cell proliferation and migration. Br J Nutr 2012; 107(1): 24-35.
[http://dx.doi.org/10.1017/S0007114511002571] [PMID: 21733313]
[60]
Haghighatdoost F, Nobakht M Gh BF, Hariri M, Hariri M. Effect of green tea on plasma adiponectin levels: a systematic review and meta-analysis of randomized controlled clinical trials. J Am Coll Nutr 2017; 36(7): 541-8.
[http://dx.doi.org/10.1080/07315724.2017.1333470] [PMID: 28853999]
[61]
Jung M, Triebel S, Anke T, Richling E, Erkel G. Influence of apple polyphenols on inflammatory gene expression. Mol Nutr Food Res 2009; 53(10): 1263-80.
[http://dx.doi.org/10.1002/mnfr.200800575] [PMID: 19764067]
[62]
Jitta SR, Daram P, Gourishetti K, et al. Terminalia tomentosa bark ameliorates inflammation and arthritis in carrageenan induced inflammatory model and freund’s adjuvant-induced arthritis model in rats. J Toxicol 2019; 2019 7898914
[http://dx.doi.org/10.1155/2019/7898914] [PMID: 30774656]
[63]
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of resveratrol and other polyphenols on SIRT1: Relevance to brain function during aging. Curr Neuropharmacol 2018; 16(2): 126-36.
[http://dx.doi.org/10.2174/1570159X15666170703113212] [PMID: 28676015]
[64]
Hung HH, Chen YL, Lin SJ, et al. A salvianolic acid B-rich fraction of Salvia miltiorrhiza induces neointimal cell apoptosis in rabbit angioplasty model. Histol Histopathol 2001; 16(1): 175-83.
[PMID: 11193193]
[65]
Xu K, Al-ani MK, Pan X, Chi Q, Dong N, Qiu X. Plant-derived products for treatment of vascular intima hyperplasia selectively inhibit vascular smooth muscle cell functions. Evid Based Complement Alternat Med 2018; 2018 3549312
[http://dx.doi.org/10.1155/2018/3549312]
[66]
Karki R, Ho O-M, Kim D-W. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim Biophys Acta 2013; 1830(3): 2619-28.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.015] [PMID: 23274740]
[67]
Chen L, Wang WY, Wang YP. Inhibitory effects of lithospermic acid on proliferation and migration of rat vascular smooth muscle cells. Acta Pharmacol Sin 2009; 30(9): 1245-52.
[http://dx.doi.org/10.1038/aps.2009.122] [PMID: 19701233]
[68]
Chien Y-C, Huang G-J, Cheng H-C, Wu C-H, Sheu M-J. Hispolon attenuates balloon-injured neointimal formation and modulates vascular smooth muscle cell migration via AKT and ERK phosphorylation. J Nat Prod 2012; 75(9): 1524-33.
[http://dx.doi.org/10.1021/np3002145] [PMID: 22967007]
[69]
Yang X, Thomas DP, Zhang X, et al. Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 2006; 26(1): 85-90.
[http://dx.doi.org/10.1161/01.ATV.0000191635.00744.b6] [PMID: 16239599]
[70]
Zhong Y, Feng J, Li J, Fan Z. Curcumin prevents lipopolysaccharide-induced matrix metalloproteinase‑2 activity via the Ras/MEK1/2 signaling pathway in rat vascular smooth muscle cells. Mol Med Rep 2017; 16(4): 4315-9.
[http://dx.doi.org/10.3892/mmr.2017.7037] [PMID: 28731157]
[71]
Islam MT. Diterpenes and their derivatives as potential anticancer agents. Phytother Res 2017; 31(5): 691-712.
[http://dx.doi.org/10.1002/ptr.5800] [PMID: 28370843]
[72]
Kiyama R. Estrogenic terpenes and terpenoids: Pathways, functions and applications. Eur J Pharmacol 2017; 815: 405-15.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.049] [PMID: 28970013]
[73]
Jeon S-M, Park YB, Choi M-S. Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clin Nutr 2004; 23(5): 1025-34.
[http://dx.doi.org/10.1016/j.clnu.2004.01.006] [PMID: 15380892]
[74]
Li X-Y, Zhao Z-X, Huang M, et al. Effect of Berberine on promoting the excretion of cholesterol in high-fat diet-induced hyperlipidemic hamsters. J Transl Med 2015; 13: 278.
[http://dx.doi.org/10.1186/s12967-015-0629-3] [PMID: 26310319]
[75]
Chang G-R, Chen P-L, Hou P-H, Mao FC. Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice. Iran J Basic Med Sci 2015; 18(11): 1063-71.
[PMID: 26949492]
[76]
Shin SK, Ha TY, McGregor RA, Choi MS. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res 2011; 55(12): 1829-40.
[http://dx.doi.org/10.1002/mnfr.201100440] [PMID: 22058071]
[77]
Jayachandran M, Chandrasekaran B, Namasivayam N. Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters. Mol Cell Biochem 2015; 398(1-2): 39-53.
[http://dx.doi.org/10.1007/s11010-014-2203-3] [PMID: 25218494]
[78]
Zhao L-Y, Huang W, Yuan Q-X, et al. Hypolipidaemic effects and mechanisms of the main component of Opuntia dillenii Haw. polysaccharides in high-fat emulsion-induced hyperlipidaemic rats. Food Chem 2012; 134(2): 964-71.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.001] [PMID: 23107714]
[79]
Chung MJ, Sung N-J, Park C-S, et al. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur J Pharmacol 2008; 578(2-3): 159-70.
[http://dx.doi.org/10.1016/j.ejphar.2007.09.036] [PMID: 17976573]
[80]
Scharinger B, Messner B, Türkcan A, et al. Leoligin, the major lignan from Edelweiss, inhibits 3-hydroxy-3-methyl-glutaryl-CoA reductase and reduces cholesterol levels in ApoE-/- mice. J Mol Cell Cardiol 2016; 99: 35-46.
[http://dx.doi.org/10.1016/j.yjmcc.2016.08.003] [PMID: 27497529]
[81]
Fuhrman B, Elis A, Aviram M. Hypocholesterolemic effect of lycopene and β-carotene is related to suppression of cholesterol synthesis and augmentation of LDL receptor activity in macrophages. Biochem Biophys Res Commun 1997; 233(3): 658-62.
[http://dx.doi.org/10.1006/bbrc.1997.6520] [PMID: 9168909]
[82]
Tang F-T, Cao Y, Wang T-Q, et al. Tanshinone IIA attenuates atherosclerosis in ApoE(-/-) mice through down-regulation of scavenger receptor expression. Eur J Pharmacol 2011; 650(1): 275-84.
[http://dx.doi.org/10.1016/j.ejphar.2010.07.038] [PMID: 20854809]
[83]
Gonen A, Harats D, Rabinkov A, et al. The antiatherogenic effect of allicin: possible mode of action. Pathobiology 2005; 72(6): 325-34.
[http://dx.doi.org/10.1159/000091330] [PMID: 16582584]
[84]
Zhang Z, Jiang M, Xie X, et al. Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation. Sci Rep 2017; 7: 40237.
[http://dx.doi.org/10.1038/srep40237] [PMID: 28067284]
[85]
Xu J-W, Ikeda K, Yamori Y. Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension 2004; 44(2): 217-22.
[http://dx.doi.org/10.1161/01.HYP.0000135868.38343.c6] [PMID: 15226277]
[86]
Li Q, Wu J-H, Guo D-J, Cheng H-L, Chen S-L, Chan S-W. Suppression of diet-induced hypercholesterolemia by scutellarin in rats. Planta Med 2009; 75(11): 1203-8.
[http://dx.doi.org/10.1055/s-0029-1185539] [PMID: 19350483]
[87]
Gómez-Guzmán M, Jiménez R, Sánchez M, et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radic Biol Med 2012; 52(1): 70-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.015] [PMID: 22001745]
[88]
Jiang R, Hodgson JM, Mas E, Croft KD, Ward NC. Chlorogenic acid improves ex vivo vessel function and protects endothelial cells against HOCl-induced oxidative damage, via increased production of nitric oxide and induction of Hmox-1. J Nutr Biochem 2016; 27: 53-60.
[http://dx.doi.org/10.1016/j.jnutbio.2015.08.017] [PMID: 26386740]
[89]
Martin S, Giannone G, Andriantsitohaina R, Martinez MC. Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br J Pharmacol 2003; 139(6): 1095-102.
[http://dx.doi.org/10.1038/sj.bjp.0705347] [PMID: 12871827]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy