Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Development of Supramolecular Sensors Constructed by Hybridization of Organic Macrocycles with Nanomaterials

Author(s): Yong-Yi Zhao, Jian-Mei Yang, Xian-Yi Jin, Hang Cong*, Qing-Mei Ge, Mao Liu* and Zhu Tao

Volume 24, Issue 3, 2020

Page: [265 - 290] Pages: 26

DOI: 10.2174/1385272824666200214110110

Price: $65

Abstract

Macrocyclic compounds have attracted tremendous attention for their superior performance in supramolecular recognition, catalysis, and host-guest interaction. With these admirable properties, macrocyclic compounds were used as modifiers for enhancing the sensitivity and selectivity of electrodes and optical sensors. The classic macrocyclic compounds, including crown ethers, cyclodextrins, calixarenes, cucurbiturils, and pillararenes, were employed as receptors for electrochemical and optical sensors to develop new analytical methods with the wilder detection range, lower detection limit, and better tolerance of interference. Macrocyclic molecules functionalized with nanomaterials, the small entities with dimensions in the nanoscale, realized the versatility and diversification of the nano-hybrid materials, which improved the capabilities of recognition and response with the combining characteristics of two components. Herein, this review focused on the development in the research field of hybridization of organic macrocycles with nanoparticles and their applications for chemosensors, aiming at both existing researchers in the field and who would like to enter into the research.

Keywords: Macrocyclic compound, supramolecular chemistry, chemosensor, nanomaterials, nano hybridization, molecular recognition, host-guest interaction.

Graphical Abstract

[1]
Wang, M.X. Heterocalixaromatics, new generation macrocyclic host molecules in supramolecular chemistry. Chem. Commum., 2008, (38), 4541-4551.
[http://dx.doi.org/10.1039/b809287g]
[2]
Ghale, G.; Nau, W.M. Dynamically analyte-responsive macrocyclic host-fluorophore systems. Acc. Chem. Res., 2014, 47(7), 2150-2159.
[http://dx.doi.org/10.1021/ar500116d] [PMID: 24785659]
[3]
Ogoshi, T.; Yamagishi, T.A.; Nakamoto, Y. Pillar-shaped macrocyclic hosts pillar[n]arenes: new key players for supramolecular chemistry. Chem. Rev., 2016, 116(14), 7937-8002.
[http://dx.doi.org/10.1021/acs.chemrev.5b00765] [PMID: 27337002]
[4]
Lindoy, L.F.; Park, K.M.; Lee, S.S. Metals, macrocycles and molecular assemblies - macrocyclic complexes in metallo-supramolecular chemistry. Chem. Soc. Rev., 2013, 42(4), 1713-1727.
[http://dx.doi.org/10.1039/C2CS35218D] [PMID: 22895524]
[5]
Pedersen, C.J. The discovery of crown ethers (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1988, 27(8), 1021-1027.
[http://dx.doi.org/10.1002/anie.198810211]
[6]
Witulski, B.; Weber, M.; Bergsträsser, U.; Desvergne, J.P.; Bassani, D.M.; Bouas-Laurent, H. Novel alkali cation chemosensors based on n-9-anthrylaza-crown ethers. Org. Lett., 2001, 3(10), 1467-1470.
[http://dx.doi.org/10.1021/ol015778j] [PMID: 11388843]
[7]
Liu, C.; Walter, D.; Neuhauser, D.; Baer, R. Molecular recognition and conductance in crown ethers. J. Am. Chem. Soc., 2003, 125(46), 13936-13937.
[http://dx.doi.org/10.1021/ja029085p] [PMID: 14611211]
[8]
Gokel, G.W.; Leevy, W.M.; Weber, M.E. Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev., 2004, 104(5), 2723-2750.
[http://dx.doi.org/10.1021/cr020080k] [PMID: 15137805]
[9]
Li, J.; Yim, D.; Jang, W.D.; Yoon, J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem. Soc. Rev., 2017, 46(9), 2437-2458.
[http://dx.doi.org/10.1039/C6CS00619A] [PMID: 27711665]
[10]
Li, S.; Purdy, W.C. Cyclodextrins and their applications in analytical chemistry. Chem. Rev., 1992, 92(6), 1457-1470.
[http://dx.doi.org/10.1021/cr00014a009]
[11]
Wenz, G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. Engl., 1994, 33(8), 803-822.
[http://dx.doi.org/10.1002/anie.199408031]
[12]
Khan, A.R.; Forgo, P.; Stine, K.J.; D’Souza, V.T. Methods for selective modifications of cyclodextrins. Chem. Rev., 1998, 98(5), 1977-1996.
[http://dx.doi.org/10.1021/cr970012b] [PMID: 11848955]
[13]
Schneider, H.J.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev., 1998, 98(5), 1755-1786.
[http://dx.doi.org/10.1021/cr970019t] [PMID: 11848948]
[14]
Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as supramolecular hosts for organometallic complexes. Chem. Rev., 2006, 106(3), 767-781.
[http://dx.doi.org/10.1021/cr050576c] [PMID: 16522008]
[15]
Deng, W.; Yamaguchi, H.; Takashima, Y.; Harada, A. A chemical-responsive supramolecular hydrogel from modified cyclodextrins. Angew. Chem. Int. Ed. Engl., 2007, 46(27), 5144-5147.
[http://dx.doi.org/10.1002/anie.200701272] [PMID: 17526038]
[16]
Gutsche, C.D. Calixarenes. Acc. Chem. Res., 1983, 16(5), 161-170.
[http://dx.doi.org/10.1021/ar00089a003]
[17]
Gutsche, C.D.; Lin, L.G. Calixarenes 12: the synthesis of functionalized calixarenes. Tetrahedron, 1986, 42(6), 1633-1640.
[http://dx.doi.org/10.1016/S0040-4020(01)87580-3]
[18]
Atwood, J.L.; Koutsantonis, G.A.; Raston, C.L. Purification of C60 and C70 by selective complexation with calixarenes. Nature, 1994, 368(6468), 229-231.
[http://dx.doi.org/10.1038/368229a0]
[19]
Gupta, V.K.; Jain, A.K.; Al Khayat, M.; Bhargava, S.K.; Raisoni, J.R. Electroanalytical studies on cobalt (II) selective potentiometric sensor based on bridge modified calixarene in poly (vinyl chloride). Electrochim. Acta, 2008, 53(16), 5409-5414.
[http://dx.doi.org/10.1016/j.electacta.2008.02.085]
[20]
Mutihac, L.; Lee, J.H.; Kim, J.S.; Vicens, J. Recognition of amino acids by functionalized calixarenes. Chem. Soc. Rev., 2011, 40(5), 2777-2796.
[http://dx.doi.org/10.1039/c0cs00005a] [PMID: 21321724]
[21]
Mock, W.L.; Shih, N.Y. Structure and selectivity in host-guest complexes of cucurbituril. J. Org. Chem., 1986, 51(23), 4440-4446.
[http://dx.doi.org/10.1021/jo00373a018]
[22]
Kim, J.; Jung, I.S.; Kim, S.Y.; Lee, E.; Kang, J.K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n= 5, 7, and 8). J. Am. Chem. Soc., 2000, 122(3), 540-541.
[http://dx.doi.org/10.1021/ja993376p]
[23]
Márquez, C.; Hudgins, R.R.; Nau, W.M. Mechanism of host-guest complexation by cucurbituril. J. Am. Chem. Soc., 2004, 126(18), 5806-5816.
[http://dx.doi.org/10.1021/ja0319846] [PMID: 15125673]
[24]
Jeon, W.S.; Moon, K.; Park, S.H.; Chun, H.; Ko, Y.H.; Lee, J.Y.; Lee, E.S.; Samal, S.; Selvapalam, N.; Rekharsky, M.V.; Sindelar, V.; Sobransingh, D.; Inoue, Y.; Kaifer, A.E.; Kim, K. Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. J. Am. Chem. Soc., 2005, 127(37), 12984-12989.
[http://dx.doi.org/10.1021/ja052912c] [PMID: 16159293]
[25]
Kim, K.; Selvapalam, N.; Ko, Y.H.; Park, K.M.; Kim, D.; Kim, J. Functionalized cucurbiturils and their applications. Chem. Soc. Rev., 2007, 36(2), 267-279.
[http://dx.doi.org/10.1039/B603088M] [PMID: 17264929]
[26]
Barrow, S.J.; Kasera, S.; Rowland, M.J.; del Barrio, J.; Scherman, O.A. Cucurbituril-based molecular recognition. Chem. Rev., 2015, 115(22), 12320-12406.
[http://dx.doi.org/10.1021/acs.chemrev.5b00341] [PMID: 26566008]
[27]
Xue, M.; Yang, Y.; Chi, X.; Zhang, Z.; Huang, F. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res., 2012, 45(8), 1294-1308.
[http://dx.doi.org/10.1021/ar2003418] [PMID: 22551015]
[28]
Li, C. Pillararene-based supramolecular polymers: from molecular recognition to polymeric aggregates. Chem. Commun. (Camb.), 2014, 50(83), 12420-12433.
[http://dx.doi.org/10.1039/C4CC03170A] [PMID: 25033095]
[29]
Zhang, H.C.; Ma, X.; Guo, J.F.; Nguyen, K.T.; Zhang, Q.; Wang, X.J.; Yan, H.; Zhu, L.L.; Zhao, Y.L. Thermo-responsive fluorescent vesicles assembled by fluorescein-functionalized pillar[5]arene. RSC Advances, 2013, 3(2), 368-371.
[http://dx.doi.org/10.1039/C2RA22123C]
[30]
Shi, B.; Xia, D.; Yao, Y. A water-soluble supramolecular polymer constructed by pillar[5]arene-based molecular recognition. Chem. Commun. (Camb.), 2014, 50(90), 13932-13935.
[http://dx.doi.org/10.1039/C4CC06971D] [PMID: 25259721]
[31]
Chen, J.F.; Lin, Q.; Zhang, Y.M.; Yao, H.; Wei, T.B. Pillararene-based fluorescent chemosensors: recent advances and perspectives. Chem. Commun. (Camb.), 2017, 53(100), 13296-13311.
[http://dx.doi.org/10.1039/C7CC08365C] [PMID: 29205237]
[32]
Bojtár, M.; Kozma, J.; Szakács, Z.; Hessz, D.; Kubinyi, M.; Bitter, I. Pillararene-based fluorescent indicator displacement assay for the selective recognition of ATP. Sens. Actuators B Chem., 2017, 248, 305-310.
[http://dx.doi.org/10.1016/j.snb.2017.03.163]
[33]
Scida, K.; Stege, P.W.; Haby, G.; Messina, G.A.; García, C.D. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal. Chim. Acta, 2011, 691(1-2), 6-17.
[http://dx.doi.org/10.1016/j.aca.2011.02.025] [PMID: 21458626]
[34]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[35]
Montes-García, V.; Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M. Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chemistry, 2014, 20(35), 10874-10883.
[http://dx.doi.org/10.1002/chem.201403107] [PMID: 25043786]
[36]
Li, H.; Yang, Y.W. Gold nanoparticles functionalized with supramolecular macrocycles. Chin. Chem. Lett., 2013, 24(7), 545-552.
[http://dx.doi.org/10.1016/j.cclet.2013.04.014]
[37]
Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale, 2013, 5(16), 7098-7140.
[http://dx.doi.org/10.1039/c3nr02176a] [PMID: 23832165]
[38]
Wei, A. Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials. Chem. Commun. (Camb.), 2006, (15), 1581-1591.
[http://dx.doi.org/10.1039/b515806k] [PMID: 16582988]
[39]
Zelzer, M.; Ulijn, R.V. Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev., 2010, 39(9), 3351-3357.
[http://dx.doi.org/10.1039/c0cs00035c] [PMID: 20676412]
[40]
Bakker, E.; Telting-Diaz, M. Electrochemical sensors. Anal. Chem., 2002, 74(12), 2781-2800.
[http://dx.doi.org/10.1021/ac0202278] [PMID: 12090665]
[41]
Bunyakul, N.; Baeumner, A.J. Combining electrochemical sensors with miniaturized sample preparation for rapid detection in clinical samples. Sensors (Basel), 2014, 15(1), 547-564.
[http://dx.doi.org/10.3390/s150100547] [PMID: 25558994]
[42]
Ahmed, M.U.; Hossain, M.M.; Tamiya, E. Electrochemical biosensors for medical and food applications. Electroanalysis, 2008, 20(6), 616-626.
[http://dx.doi.org/10.1002/elan.200704121]
[43]
Švorc, Ľ.; Rievaj, M.; Bustin, D. Green electrochemical sensor for environmental monitoring of pesticides: determination of atrazine in river waters using a boron-doped diamond electrode. Sens. Actuators B Chem., 2013, 181, 294-300.
[http://dx.doi.org/10.1016/j.snb.2013.02.036]
[44]
Yoon, H.; Kim, J.H.; Lee, N.; Kim, B.G.; Jang, J. A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. ChemBioChem, 2008, 9(4), 634-641.
[http://dx.doi.org/10.1002/cbic.200700660] [PMID: 18247433]
[45]
Hwang, G.H.; Han, W.K.; Park, J.S.; Kang, S.G. Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 2008, 76(2), 301-308.
[http://dx.doi.org/10.1016/j.talanta.2008.02.039] [PMID: 18585281]
[46]
Maduraiveeran, G.; Ramaraj, R. A facile electrochemical sensor designed from gold nanoparticles embedded in three-dimensional sol-gel network for concurrent detection of toxic chemicals. Electrochem. Commun., 2007, 9(8), 2051-2055.
[http://dx.doi.org/10.1016/j.elecom.2007.05.021]
[47]
Song, M.J.; Hwang, S.W.; Whang, D. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta, 2010, 80(5), 1648-1652.
[http://dx.doi.org/10.1016/j.talanta.2009.09.061] [PMID: 20152391]
[48]
Rahman, M.A.; Kumar, P.; Park, D.S.; Shim, Y.B. Electrochemical sensors based on organic conjugated polymers. Sensors (Basel), 2008, 8(1), 118-141.
[http://dx.doi.org/10.3390/s8010118] [PMID: 27879698]
[49]
Zen, J.M.; Senthil Kumar, A.; Tsai, D.M. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis, 2003, 15(13), 1073-1087.
[http://dx.doi.org/10.1002/elan.200390130]
[50]
Wang, M.Q.; Li, K.; Hou, J.T.; Wu, M.Y.; Huang, Z.; Yu, X.Q. BINOL-based fluorescent sensor for recognition of Cu(II) and sulfide anion in water. J. Org. Chem., 2012, 77(18), 8350-8354.
[http://dx.doi.org/10.1021/jo301196m] [PMID: 22909394]
[51]
Zhang, M.; Ye, B.C. Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal. Chem., 2011, 83(5), 1504-1509.
[http://dx.doi.org/10.1021/ac102922f] [PMID: 21302899]
[52]
Lee, S.J.; Lee, J.E.; Seo, J.; Jeong, I.Y.; Lee, S.S.; Jung, J.H. Optical sensor based on nanomaterial for the selective detection of toxic metal ions. Adv. Funct. Mater., 2007, 17(17), 3441-3446.
[http://dx.doi.org/10.1002/adfm.200601202]
[53]
Song, K.M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem., 2011, 415(2), 175-181.
[http://dx.doi.org/10.1016/j.ab.2011.04.007] [PMID: 21530479]
[54]
Parker, C.A.; Rees, W.T. Fluorescence spectrometry. A review. Analyst (Lond.), 1962, 87(1031), 83-111.
[http://dx.doi.org/10.1039/an9628700083]
[55]
Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors. Sens. Actuators B Chem., 1999, 54(1-2), 3-15.
[http://dx.doi.org/10.1016/S0925-4005(98)00321-9]
[56]
Speltini, A.; Merli, D.; Profumo, A. Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal. Chim. Acta, 2013, 783, 1-16.
[http://dx.doi.org/10.1016/j.aca.2013.03.041] [PMID: 23726094]
[57]
Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta, 2015, 886, 16-28.
[http://dx.doi.org/10.1016/j.aca.2015.05.044] [PMID: 26320632]
[58]
Taylor, R.; Walton, D.R.M. The chemistry of fullerenes. Nature, 1993, 363(6431), 685-693.
[http://dx.doi.org/10.1038/363685a0]
[59]
Ajayan, P.M. Nanotubes from Carbon. Chem. Rev., 1999, 99(7), 1787-1800.
[http://dx.doi.org/10.1021/cr970102g] [PMID: 11849010]
[60]
Li, D.; Kaner, R.B. Graphene-based materials. Science, 2008, 320(5880), 1170-1171.
[http://dx.doi.org/10.1126/science.1158180] [PMID: 18511678]
[61]
Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature, 2006, 442(7100), 282-286.
[http://dx.doi.org/10.1038/nature04969] [PMID: 16855586]
[62]
Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev., 2010, 39(11), 4146-4157.
[http://dx.doi.org/10.1039/c002690p] [PMID: 20623061]
[63]
Gao, C.; Guo, Z.; Liu, J.H.; Huang, X.J. The new age of carbon nanotubes: an updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4(6), 1948-1963.
[http://dx.doi.org/10.1039/c2nr11757f] [PMID: 22337209]
[64]
Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-based electrochemical sensors. Small, 2013, 9(8), 1160-1172.
[http://dx.doi.org/10.1002/smll.201202896] [PMID: 23494883]
[65]
Rather, J.A.; Debnath, P.; De Waei, K. Fullerene-β-cyclodextrin conjugate based electrochemical sensing device for ultrasensitive detection of p-nitrophenol. Electroanalysis, 2013, 25(9), 2145-2150.
[http://dx.doi.org/10.1002/elan.201300304]
[66]
Anandhakumar, S.; Mathiyarasu, J. Detection of lead(II) using a glassy carbon electrode modified with Nafion, carbon nanotubes and benzo-18-crown-6. Mikrochim. Acta, 2013, 180(11-12), 1065-1071.
[http://dx.doi.org/10.1007/s00604-013-1022-7]
[67]
Wang, L.; Wang, X.; Shi, G.; Peng, C.; Ding, Y. Thiacalixarene covalently functionalized multiwalled carbon nanotubes as chemically modified electrode material for detection of ultratrace Pb2+ ions. Anal. Chem., 2012, 84(24), 10560-10567.
[http://dx.doi.org/10.1021/ac302747f] [PMID: 23140187]
[68]
Wei, Y.; Kong, L.T.; Yang, R.; Wang, L.; Liu, J.H.; Huang, X.J. Electrochemical impedance determination of polychlorinated biphenyl using a pyrenecyclodextrin-decorated single-walled carbon nanotube hybrid. Chem. Commun. (Camb.), 2011, 47(18), 5340-5342.
[http://dx.doi.org/10.1039/c1cc11267h] [PMID: 21451857]
[69]
Wei, W.; Xu, C.; Ren, J.; Xu, B.; Qu, X. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun. (Camb.), 2012, 48(9), 1284-1286.
[http://dx.doi.org/10.1039/C2CC16481G] [PMID: 22179588]
[70]
Mondal, A.; Jana, N.R. Fluorescent detection of cholesterol using β-cyclodextrin functionalized graphene. Chem. Commun. (Camb.), 2012, 48(58), 7316-7318.
[http://dx.doi.org/10.1039/c2cc33410k] [PMID: 22710921]
[71]
Zhang, Z.; Gu, S.; Ding, Y.; Shen, M.; Jiang, L. Mild and novel electrochemical preparation of β-cyclodextrin/graphene nanocomposite film for super-sensitive sensing of quercetin. Biosens. Bioelectron., 2014, 57, 239-244.
[http://dx.doi.org/10.1016/j.bios.2014.02.014] [PMID: 24594590]
[72]
Lv, M.J.; Wang, X.B.; Li, J.; Yang, X.Y.; Zhang, C.A.; Yang, J.; Hu, H. Cyclodextrin-reduced graphene oxide hybrid nanosheets for the simultaneous determination of lead(II) and cadmium(II) using square wave anodic stripping voltammetry. Electrochim. Acta, 2013, 108, 412-420.
[http://dx.doi.org/10.1016/j.electacta.2013.06.099]
[73]
Du, D.; Wang, M.; Cai, J.; Tao, Y.; Tu, H.; Zhang, A. Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing. Analyst (Lond.), 2008, 133(12), 1790-1795.
[http://dx.doi.org/10.1039/b803851a] [PMID: 19082085]
[74]
Sun, Y.; Mao, X.; Luo, L.; Tian, D.; Li, H. Calix[4]arene triazole-linked pyrene: click synthesis, assembly on graphene oxide, and highly sensitive carbaryl sensing in serum. Org. Biomol. Chem., 2015, 13(35), 9294-9299.
[http://dx.doi.org/10.1039/C5OB01388G] [PMID: 26235312]
[75]
Göde, C.; Yola, M.L.; Yılmaz, A.; Atar, N.; Wang, S. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J. Colloid Interface Sci., 2017, 508, 525-531.
[http://dx.doi.org/10.1016/j.jcis.2017.08.086] [PMID: 28866461]
[76]
Buaki-Sogo, M.; del Pozo, M.; Hernández, P.; García, H.; Quintana, C. Graphene in combination with cucurbit[n]urils as electrode modifiers for electroanalytical biomolecules sensing. Talanta, 2012, 101, 135-140.
[http://dx.doi.org/10.1016/j.talanta.2012.09.016] [PMID: 23158302]
[77]
Zhao, G.; Yang, L.; Wu, S.; Zhao, H.; Tang, E.; Li, C.P. The synthesis of amphiphilic pillar[5]arene functionalized reduced graphene oxide and its application as novel fluorescence sensing platform for the determination of acetaminophen. Biosens. Bioelectron., 2017, 91, 863-869.
[http://dx.doi.org/10.1016/j.bios.2017.01.053] [PMID: 28160654]
[78]
Liu, H.; Feng, Y.; Chen, D.; Li, C.Y.; Cui, P.L.; Yang, J. Noble metal-based composite nanomaterials fabricated via solution-based approaches. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(7), 3182-3223.
[http://dx.doi.org/10.1039/C4TA05801A]
[79]
Mohanty, A.; Garg, N.; Jin, R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. Int. Ed. Engl., 2010, 49(29), 4962-4966.
[http://dx.doi.org/10.1002/anie.201000902] [PMID: 20540128]
[80]
Wang, J. Electrochemical biosensing based on noble metal nanoparticles. Mikrochim. Acta, 2012, 177(3-4), 245-270.
[http://dx.doi.org/10.1007/s00604-011-0758-1]
[81]
Evtugyn, G.A.; Shamagsumova, R.V.; Padnya, P.V.; Stoikov, I.I.; Antipin, I.S. Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta, 2014, 127, 9-17.
[http://dx.doi.org/10.1016/j.talanta.2014.03.048] [PMID: 24913851]
[82]
Zhou, J.; Chen, M.; Xie, J.; Diao, G. Synergistically enhanced electrochemical response of host-guest recognition based on ternary nanocomposites: reduced graphene oxide-amphiphilic pillar[5]arene-gold nanoparticles. ACS Appl. Mater. Interfaces, 2013, 5(21), 11218-11224.
[http://dx.doi.org/10.1021/am403463p] [PMID: 24089695]
[83]
Hui, Y.H.; Ma, X.Y.; Hou, X.Z.; Chen, F.; Yu, J. Silver nanoparticles-β-cyclodextrin-graphene nanocomposites based biosensor for guanine and adenine sensing. Ionics, 2015, 21(6), 1751-1759.
[http://dx.doi.org/10.1007/s11581-014-1343-5]
[84]
Zavar, M.H.A.; Heydari, S.; Rounaghi, G.H.; Eshghi, H.; Azizi-Toupkanloo, H. Electrochemical behavior of para-nitroaniline at a new synthetic crown ether-silver nanoparticle modified carbon paste electrode. Anal. Methods, 2012, 4(4), 953-958.
[http://dx.doi.org/10.1039/c2ay05892h]
[85]
Ghanei-Motlagh, M.; Karami, C.; Taher, M.A.; Hosseini-Nasab, S.J. Stripping voltammetric detection of copper ions using carbon paste electrode modified with aza-crown ether capped gold nanoparticles and reduced graphene oxide. RSC Advances, 2016, 6(92), 89167-89175.
[http://dx.doi.org/10.1039/C6RA10267K]
[86]
Haghnazari, N.; Alizadeh, A.; Karami, C.; Hamidi, Z. Simple optical determination of silver ion in aqueous solutions using benzo-crown-ether modified gold nanoparticles. Mikrochim. Acta, 2013, 180(3-4), 287-294.
[http://dx.doi.org/10.1007/s00604-012-0928-9]
[87]
Mehta, V.N.; Solanki, J.N.; Kailasa, S.K. Selective visual detection of Pb (II) ion via gold nanoparticles coated with a dithiocarbamate-modified 4′-amino-benzo-18-crown-6. Mikrochim. Acta, 2014, 181(15-16), 1905-1915.
[http://dx.doi.org/10.1007/s00604-014-1287-5]
[88]
Maity, D.; Gupta, R.; Gunupuru, R.; Srivastava, D.N.; Paul, P. Calix[4]arene functionalized gold nanoparticles: application in colorimetric and electrochemical sensing of cobalt ion in organic and aqueous medium. Sens. Actuators B Chem., 2014, 191, 757-764.
[http://dx.doi.org/10.1016/j.snb.2013.10.066]
[89]
Wen, D.; Liu, W.; Herrmann, A.K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmüller, A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles. Small, 2016, 12(18), 2439-2442.
[http://dx.doi.org/10.1002/smll.201503874] [PMID: 27151829]
[90]
Liu, X.W.; Hou, X.Q.; Li, Z.; Li, J.; Ran, X.; Yang, L. Water-soluble amino pillar [5] arene functionalized gold nanoclusters as fluorescence probes for the sensitive determination of dopamine. Microchem. J., 2019, 150104084
[http://dx.doi.org/10.1016/j.microc.2019.104084]
[91]
Tan, S.L.; Zhao, H.Y.; Tian, D.M.; Wang, F.; Liu, J.A.; Li, H.B. Piperidine-calix[4]arene modified gold nanoparticles: imidacloprid colorimetric sensing. Sens. Actuators B Chem., 2014, 204, 522-527.
[http://dx.doi.org/10.1016/j.snb.2014.08.012]
[92]
Song, S.F.D.; Hu, X.J.; Li, H.J.; Zhao, J.L.; Koh, K.; Chen, H.X. Guests involved CB[8] capped silver nanoparticles as a means of electrochemical signal enhancement for sensitive detection of Caspase-3. Sens. Actuators B Chem., 2018, 274, 54-59.
[http://dx.doi.org/10.1016/j.snb.2018.07.143]
[93]
Song, Z.; Yu, L.; Sun, Y.; He, H. Visual and spectrophotometric detection of metformin based on the host-guest molecular recognition of cucurbit[6]uril-modified silver nanoparticles. Anal. Bioanal. Chem., 2019, 411(27), 7293-7301.
[http://dx.doi.org/10.1007/s00216-019-02105-5] [PMID: 31598741]
[94]
Nsengiyuma, G.; Hu, R.; Li, J.; Li, H.B.; Tian, D.M. Self-assembly of 1, 3-alternate calix[4]arene carboxyl acids-modified silver nanoparticles for colorimetric Cu2+ sensing. Sens. Actuators B Chem., 2016, 236, 675-681.
[http://dx.doi.org/10.1016/j.snb.2016.05.148]
[95]
Tan, X.; Liu, X.; Zeng, W.; Zhang, Z.; Huang, T.; Yu, L.; Zhao, G. Colorimetric sensing towards spermine based on supramolecular pillar[5]arene reduced and stabilized gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 221, 117176
[http://dx.doi.org/10.1016/j.saa.2019.117176] [PMID: 31158763]
[96]
Tan, X.; Yang, Y.; Luo, S.; Zhang, Z.; Zeng, W.; Zhang, T.; Su, F.; Zhou, L. Novel competitive fluorescence sensing platform for L-carnitine based on cationic pillar[5]arene modified gold nanoparticles. Sensors (Basel), 2018, 18(11), 3927.
[http://dx.doi.org/10.3390/s18113927] [PMID: 30441777]
[97]
Oskam, G. Metal oxide nanoparticles: synthesis, characterization and application. J. Sol-Gel Sci. Technol., 2006, 37(3), 161-164.
[http://dx.doi.org/10.1007/s10971-005-6621-2]
[98]
Pal, J.; Pal, T. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale, 2015, 7(34), 14159-14190.
[http://dx.doi.org/10.1039/C5NR03395K] [PMID: 26255749]
[99]
Gulson, B.; McCall, M.J.; Bowman, D.M.; Pinheiro, T. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch. Toxicol., 2015, 89(11), 1909-1930.
[http://dx.doi.org/10.1007/s00204-015-1564-z] [PMID: 26140917]
[100]
Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci., 2012, 7(6), 4871-4888.
[101]
Schilling, K.; Bradford, B.; Castelli, D.; Dufour, E.; Nash, J.F.; Pape, W.; Schulte, S.; Tooley, I.; van den Bosch, J.; Schellauf, F. Human safety review of “nano” titanium dioxide and zinc oxide. Photochem. Photobiol. Sci., 2010, 9(4), 495-509.
[http://dx.doi.org/10.1039/b9pp00180h] [PMID: 20354643]
[102]
Trujillo-Reyes, J.; Majumdar, S.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure studies of core-shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? J. Hazard. Mater., 2014, 267, 255-263.
[http://dx.doi.org/10.1016/j.jhazmat.2013.11.067] [PMID: 24462971]
[103]
Wang, W.; Zhang, Y.; Yang, Q.; Sun, M.; Fei, X.; Song, Y.; Zhang, Y.; Li, Y. Fluorescent and colorimetric magnetic microspheres as nanosensors for Hg2+ in aqueous solution prepared by a sol-gel grafting reaction and host-guest interaction. Nanoscale, 2013, 5(11), 4958-4965.
[http://dx.doi.org/10.1039/c3nr00580a] [PMID: 23632769]
[104]
Hayes, R.; Ahmed, A.; Edge, T.; Zhang, H. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J. Chromatogr. A, 2014, 1357, 36-52.
[http://dx.doi.org/10.1016/j.chroma.2014.05.010] [PMID: 24856904]
[105]
Nerambourg, N.; Aubert, T.; Neaime, C.; Cordier, S.; Mortier, M.; Patriarche, G.; Grasset, F. Multifunctional hybrid silica nanoparticles based on [Mo6Br14]2− phosphorescent nanosized clusters, magnetic γ-Fe2O3 and plasmonic gold nanoparticles. J. Colloid Interface Sci., 2014, 424, 132-140.
[http://dx.doi.org/10.1016/j.jcis.2014.03.008] [PMID: 24767509]
[106]
Abdallah, N.A.; Ibrahim, H.F. Electrochemical determination of Saxagliptin hydrochloride with MWCNTs/CuO/4′-amino-benzo-18-crown-6-ether composite modified carbon paste electrode. Microchem. J., 2019, 147, 487-496.
[http://dx.doi.org/10.1016/j.microc.2019.03.060]
[107]
Karthika, A.; Rosaline, D.R.; Inbanathan, S.S.R.; Suganthi, A.; Rajarajan, M. Fabrication of Cupric oxide decorated β-cyclodextrin nanocomposite solubilized Nafion as a high performance electrochemical sensor for L-tyrosine detection. J. Phys. Chem. Solids, 2020, 136, 109145
[http://dx.doi.org/10.1016/j.jpcs.2019.109145]
[108]
Karthik, R.; Mutharani, B.; Chen, S.M.; Vinoth Kumar, J.; Abinaya, M.; Chen, T.W.; Lei, W.; Hao, Q. Synthesis, characterization and catalytic performance of nanostructured dysprosium molybdate catalyst for selective biomolecule detection in biological and pharmaceutical samples. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(33), 5065-5077.
[http://dx.doi.org/10.1039/C9TB01020C] [PMID: 31432868]
[109]
Lu, W.H.; Zhang, J.X.; Li, N.L.; You, Z.; Feng, Z.Y.; Natarajan, V.; Chen, J.; Zhan, J.H. Co3O4@ β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuators B Chem., 2020, 303, 127106
[http://dx.doi.org/10.1016/j.snb.2019.127106]
[110]
Cui, X.Q.; Cao, D.; Djellabi, R.; Qiao, M.; Wang, Y.; Zhao, S.; Mao, R.; Gong, Y.; Zhao, X.; Yang, B. Enhancement of Ni/NiO/graphitized carbon and β-Cyclodextrin/reduced graphene oxide for the electrochemical detection of norfloxacin in water sample. J. Electroanal. Chem. (Lausanne Switz.), 2019, 851, 113407
[http://dx.doi.org/10.1016/j.jelechem.2019.113407]
[111]
Zhang, Y.; Wang, W.; Li, Q.; Yang, Q.; Li, Y.; Du, J. Colorimetric magnetic microspheres as chemosensor for Cu(2+) prepared from adamantane-modified rhodamine and β-cyclodextrin-modified Fe3O4@SiO2via host-guest interaction. Talanta, 2015, 141, 33-40.
[http://dx.doi.org/10.1016/j.talanta.2015.03.015] [PMID: 25966377]
[112]
Xie, H.W.; Wen, B.; Xu, H.; Liu, L.; Guo, Y. Catalase immobilized ZnO nanorod with β-cyclodextrin functionalization for electrochemical determination of forchlorfenuron. Int. J. Electrochem. Sci., 2016, 11(4), 2612-2620.
[http://dx.doi.org/10.20964/110402612]
[113]
Adarakatti, P.S.; Siddaramanna, A.; Malingappa, P. Fabrication of a new calix[4] arene-functionalized Mn3O4 nanoparticle-based modified glassy carbon electrode as a fast responding sensor towards Pb2+ and Cd2+ ions. Anal. Methods, 2019, 11(6), 813-820.
[http://dx.doi.org/10.1039/C8AY02648C]
[114]
Özcan, A.; Gürbüz, M.; Özbal, A. Preparation of a double-step modified carbon paste electrode for the voltammetric determination of propham via bulk modification with fumed silica and drop-casting of maghemite-modified fumed silica nanocomposite. Sens. Actuators B Chem., 2018, 255, 1517-1524.
[http://dx.doi.org/10.1016/j.snb.2017.08.162]
[115]
Wang, Y.; Wang, L.; Tian, T.; Yao, G.; Hu, X.; Yang, C.; Xu, Q. A highly sensitive and automated method for the determination of hypoxanthine based on lab-on-valve approach using Fe3O4/MWCNTs/β-CD modified electrode. Talanta, 2012, 99, 840-845.
[http://dx.doi.org/10.1016/j.talanta.2012.07.040] [PMID: 22967631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy