Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Vesicular Transport Machinery in Brain Endothelial Cells: What We Know and What We Do not

Author(s): Andrea E. Toth*, Mikkel R. Holst and Morten S. Nielsen*

Volume 26, Issue 13, 2020

Page: [1405 - 1416] Pages: 12

DOI: 10.2174/1381612826666200212113421

Price: $65

Abstract

The vesicular transport machinery regulates numerous essential functions in cells such as cell polarity, signaling pathways, and the transport of receptors and their cargoes. From a pharmaceutical perspective, vesicular transport offers avenues to facilitate the uptake of therapeutic agents into cells and across cellular barriers. In order to improve receptor-mediated transcytosis of biologics across the blood-brain barrier and into the diseased brain, a detailed understanding of intracellular transport mechanisms is essential. The vesicular transport machinery is a highly complex network and involves an array of protein complexes, cytosolic adaptor proteins, and the subcellular structures of the endo-lysosomal system. The endo-lysosomal system includes several types of vesicular entities such as early, late, and recycling endosomes, exosomes, ectosomes, retromer-coated vesicles, lysosomes, trans-endothelial channels, and tubules. While extensive research has been done on the trafficking system in many cell types, little is known about vesicular trafficking in brain endothelial cells. Consequently, assumptions on the transport system in endothelial cells are based on findings in polarised epithelial cells, although recent studies have highlighted differences in the endothelial system. This review highlights aspects of the vesicular trafficking machinery in brain endothelial cells, including recent findings, limitations, and opportunities for further studies.

Keywords: Brain endothelial cells, blood-brain barrier, endo-lysosomal system, vesicular transport, trafficking machinery, transcytosis, endosome, drug delivery.

[1]
Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 2007; 100(2): 174-90.
[http://dx.doi.org/10.1161/01.RES.0000255690.03436.ae] [PMID: 17272819]
[2]
Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 2007; 100(2): 158-73.
[http://dx.doi.org/10.1161/01.RES.0000255691.76142.4a] [PMID: 17272818]
[3]
Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36(3): 437-49.
[http://dx.doi.org/10.1007/s10545-013-9608-0] [PMID: 23609350]
[4]
Ohtsuki S, Terasaki T. Contribution of carrier-mediated transport systems to the blood-brain barrier as a supporting and protecting interface for the brain; importance for CNS drug discovery and development. Pharm Res 2007; 24(9): 1745-58.
[http://dx.doi.org/10.1007/s11095-007-9374-5] [PMID: 17619998]
[5]
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37(1): 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[6]
Schreij AM, Fon EA, McPherson PS. Endocytic membrane trafficking and neurodegenerative disease. Cell Mol Life Sci 2016; 73(8): 1529-45.
[http://dx.doi.org/10.1007/s00018-015-2105-x] [PMID: 26721251]
[7]
Toth AE, Siupka P, P Augustine TJ, et al. The Endo-lysosomal system of brain endothelial cells is influenced by astrocytes in vitro. Mol Neurobiol 2018; 55(11): 8522-37.
[http://dx.doi.org/10.1007/s12035-018-0988-x] [PMID: 29560581]
[8]
Toth AE, Nielsen MS. Analysis of the trafficking system in blood-brain barrier models by high content screening microscopy. Neural Regen Res 2018; 13(11): 1883-4.
[http://dx.doi.org/10.4103/1673-5374.239435] [PMID: 30233057]
[9]
Villaseñor R, Collin L. High-resolution confocal imaging of the blood-brain barrier: imaging, 3d reconstruction, and quantification of transcytosis. J Vis Exp 2017; 129(129)
[http://dx.doi.org/10.3791/56407] [PMID: 29286366]
[10]
Fung KY, Wang C, Nyegaard S, Heit B, Fairn GD, Lee WL. SR-BI mediated transcytosis of HDL in brain microvascular endothelial cells is independent of caveolin, clathrin, and PDZK1. Front Physiol 2017; 8: 841.
[http://dx.doi.org/10.3389/fphys.2017.00841] [PMID: 29163190]
[11]
Predescu SA, Predescu DN, Malik AB. Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2007; 293(4): L823-42.
[http://dx.doi.org/10.1152/ajplung.00436.2006] [PMID: 17644753]
[12]
Parton RG, Tillu VA, Collins BM. Caveolae. Curr Biol 2018; 28(8): R402-5.
[http://dx.doi.org/10.1016/j.cub.2017.11.075] [PMID: 29689223]
[13]
Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 2014; 6(5), a016725
[http://dx.doi.org/10.1101/cshperspect.a016725] [PMID: 24789820]
[14]
Farsi Z, Gowrisankaran S, Krunic M, et al. Clathrin coat controls synaptic vesicle acidification by blocking vacuolar ATPase activity. eLife 2018; 7
[http://dx.doi.org/10.7554/eLife.32569] [PMID: 29652249]
[15]
Huotari J, Helenius A. Endosome maturation. EMBO J 2011; 30(17): 3481-500.
[http://dx.doi.org/10.1038/emboj.2011.286] [PMID: 21878991]
[16]
Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M. Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1999; 1(6): 376-82.
[http://dx.doi.org/10.1038/14075] [PMID: 10559966]
[17]
Johnson LS, Dunn KW, Pytowski B, McGraw TE. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor’s internalization motif. Mol Biol Cell 1993; 4(12): 1251-66.
[http://dx.doi.org/10.1091/mbc.4.12.1251] [PMID: 8167408]
[18]
Doyotte A, Russell MR, Hopkins CR, Woodman PG. Depletion of TSG101 forms a mammalian “Class E” compartment: a multicisternal early endosome with multiple sorting defects. J Cell Sci 2005; 118(Pt 14): 3003-17.
[http://dx.doi.org/10.1242/jcs.02421] [PMID: 16014378]
[19]
Toth AE, Nielsen SSE, Tomaka W, Abbott NJ, Nielsen MS. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 2019; 16(1): 14.
[http://dx.doi.org/10.1186/s12987-019-0134-9] [PMID: 31142333]
[20]
van Ijzendoorn SC. Recycling endosomes. J Cell Sci 2006; 119(Pt 9): 1679-81.
[http://dx.doi.org/10.1242/jcs.02948] [PMID: 16636069]
[21]
Mari M, Bujny MV, Zeuschner D, et al. SNX1 defines an early endosomal recycling exit for sortilin and mannose 6-phosphate receptors. Traffic 2008; 9(3): 380-93.
[http://dx.doi.org/10.1111/j.1600-0854.2007.00686.x] [PMID: 18088323]
[22]
Harterink M, Port F, Lorenowicz MJ, et al. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 2011; 13(8): 914-23.
[http://dx.doi.org/10.1038/ncb2281] [PMID: 21725319]
[23]
Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016; 36(3): 301-12.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[24]
Bainton DF. The discovery of lysosomes. J Cell Biol 1981; 91(3 Pt 2): S66-76.
[http://dx.doi.org/10.1083/jcb.91.3.66s] [PMID: 7033245]
[25]
Klumperman J, Raposo G. The complex ultrastructure of the endolysosomal system. Cold Spring Harb Perspect Biol 2014; 6(10): a016857
[http://dx.doi.org/10.1101/cshperspect.a016857] [PMID: 24851870]
[26]
Dvorak AM, Feng D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 2001; 49(4): 419-32.
[http://dx.doi.org/10.1177/002215540104900401] [PMID: 11259444]
[27]
Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature 2003; 422(6927): 37-44.
[http://dx.doi.org/10.1038/nature01451] [PMID: 12621426]
[28]
Cossart P, Helenius A. Endocytosis of viruses and bacteria. Cold Spring Harb Perspect Biol 2014; 6(8): 6.
[http://dx.doi.org/10.1101/cshperspect.a016972] [PMID: 25085912]
[29]
Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 2009; 78: 857-902.
[http://dx.doi.org/10.1146/annurev.biochem.78.081307.110540] [PMID: 19317650]
[30]
Ferreira APA, Boucrot E. Mechanisms of carrier formation during clathrin-independent endocytosis. Trends Cell Biol 2018; 28(3): 188-200.
[http://dx.doi.org/10.1016/j.tcb.2017.11.004] [PMID: 29241687]
[31]
Freeman SA, Grinstein S. Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic 2018; 19(12): 965-74.
[http://dx.doi.org/10.1111/tra.12614] [PMID: 30159984]
[32]
Johannes L, Pezeshkian W, Ipsen JH, Shillcock JC. Clustering on membranes: fluctuations and more. Trends Cell Biol 2018; 28(5): 405-15.
[http://dx.doi.org/10.1016/j.tcb.2018.01.009] [PMID: 29502867]
[33]
Hirama T, Lu SM, Kay JG, et al. Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nat Commun 2017; 8(1): 1393.
[http://dx.doi.org/10.1038/s41467-017-01554-9] [PMID: 29123120]
[34]
Preston JE, Joan Abbott N, Begley DJ. Transcytosis of macromolecules at the blood-brain barrier. Adv Pharmacol 2014; 71: 147-63.
[http://dx.doi.org/10.1016/bs.apha.2014.06.001] [PMID: 25307216]
[35]
Roberts RL, Fine RE, Sandra A. Receptor-mediated endocytosis of transferrin at the blood-brain barrier. J Cell Sci 1993; 104(Pt 2): 521-32.
[36]
Taylor MJ, Perrais D, Merrifield CJ. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol 2011; 9(3)e1000604
[http://dx.doi.org/10.1371/journal.pbio.1000604] [PMID: 21445324]
[37]
Carman PJ, Dominguez R. BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10(6): 1587-604.
[http://dx.doi.org/10.1007/s12551-018-0467-7] [PMID: 30456600]
[38]
Van Acker ZP, Bretou M, Annaert W. Endo-lysosomal dysregulations and late-onset Alzheimer’s disease: impact of genetic risk factors. Mol Neurodegener 2019; 14(1): 20.
[http://dx.doi.org/10.1186/s13024-019-0323-7] [PMID: 31159836]
[39]
Parikh I, Fardo DW, Estus S. Genetics of PICALM expression and Alzheimer’s disease. PLoS One 2014; 9(3), e91242
[http://dx.doi.org/10.1371/journal.pone.0091242] [PMID: 24618820]
[40]
Sabbagh MF, Heng JS, Luo C, et al. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018; 7
[http://dx.doi.org/10.7554/eLife.36187] [PMID: 30188322]
[41]
Vanlandewijck M, He L, Mäe MA, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018; 554(7693): 475-80.
[http://dx.doi.org/10.1038/nature25739] [PMID: 29443965]
[42]
Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014; 34(36): 11929-47.
[http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014] [PMID: 25186741]
[43]
Zhao Z, Sagare AP, Ma Q, et al. Central role for PICALM in amyloid-β blood-brain barrier transcytosis and clearance. Nat Neurosci 2015; 18(7): 978-87.
[http://dx.doi.org/10.1038/nn.4025] [PMID: 26005850]
[44]
Yang YR, Xiong XY, Liu J, et al. Mfsd2a (major facilitator superfamily domain containing 2a) attenuates intracerebral hemorrhage-induced blood-brain barrier disruption by inhibiting vesicular transcytosis. J Am Heart Assoc 2017; 6(7): 6.
[http://dx.doi.org/10.1161/JAHA.117.005811] [PMID: 28724654]
[45]
Sporny M, Guez-Haddad J, Kreusch A, et al. Structural history of human SRGAP2 Proteins. Mol Biol Evol 2017; 34(6): 1463-78.
[http://dx.doi.org/10.1093/molbev/msx094] [PMID: 28333212]
[46]
Guerrier S, Coutinho-Budd J, Sassa T, et al. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 2009; 138(5): 990-1004.
[http://dx.doi.org/10.1016/j.cell.2009.06.047] [PMID: 19737524]
[47]
Juul Rasmussen I, Tybjærg-Hansen A, Rasmussen KL, Nordestgaard BG, Frikke-Schmidt R. Blood-brain barrier transcytosis genes, risk of dementia and stroke: a prospective cohort study of 74,754 individuals. Eur J Epidemiol 2019; 34(6): 579-90.
[http://dx.doi.org/10.1007/s10654-019-00498-2] [PMID: 30830563]
[48]
Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J 2008; 10(3): 455-72.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[49]
Diz-Muñoz A, Fletcher DA, Weiner OD. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 2013; 23(2): 47-53.
[http://dx.doi.org/10.1016/j.tcb.2012.09.006] [PMID: 23122885]
[50]
Holst MR, Vidal-Quadras M, Larsson E, et al. Clathrin-independent endocytosis suppresses cancer cell blebbing and invasion. Cell Rep 2017; 20(8): 1893-905.
[http://dx.doi.org/10.1016/j.celrep.2017.08.006] [PMID: 28834752]
[51]
Thottacherry JJ, Kosmalska AJ, Kumar A, et al. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat Commun 2018; 9(1): 4217.
[http://dx.doi.org/10.1038/s41467-018-06738-5] [PMID: 30310066]
[52]
Vidal-Quadras M, Holst MR, Francis MK, et al. Endocytic turnover of Rab8 controls cell polarization. J Cell Sci 2017; 130(6): 1147-57.
[http://dx.doi.org/10.1242/jcs.195420] [PMID: 28137756]
[53]
Francis MK, Holst MR, Vidal-Quadras M, et al. Endocytic membrane turnover at the leading edge is driven by a transient interaction between Cdc42 and GRAF1. J Cell Sci 2015; 128(22): 4183-95.
[http://dx.doi.org/10.1242/jcs.174417] [PMID: 26446261]
[54]
Kumari S, Mayor S. ARF1 is directly involved in dynamin-independent endocytosis. Nat Cell Biol 2008; 10(1): 30-41.
[http://dx.doi.org/10.1038/ncb1666] [PMID: 18084285]
[55]
Sabharanjak S, Sharma P, Parton RG, Mayor S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2002; 2(4): 411-23.
[http://dx.doi.org/10.1016/S1534-5807(02)00145-4] [PMID: 11970892]
[56]
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115: 182-93.
[http://dx.doi.org/10.1016/j.nbd.2018.04.010] [PMID: 29660499]
[57]
Schultz ML, Tecedor L, Stein CS, Stamnes MA, Davidson BL. CLN3 deficient cells display defects in the ARF1-Cdc42 pathway and actin-dependent events. PLoS One 2014; 9(5), e96647
[http://dx.doi.org/10.1371/journal.pone.0096647] [PMID: 24792215]
[58]
Zhou AL, Swaminathan SK, Curran GL, et al. Apolipoprotein A-I crosses the blood-brain barrier through clathrin-independent and cholesterol-mediated endocytosis. J Pharmacol Exp Ther 2019; 369(3): 481-8.
[http://dx.doi.org/10.1124/jpet.118.254201] [PMID: 30971477]
[59]
Sinha B, Köster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 2011; 144(3): 402-13.
[http://dx.doi.org/10.1016/j.cell.2010.12.031] [PMID: 21295700]
[60]
Andreone BJ, Chow BW, Tata A, et al. Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 2017; 94: 581-94. e5
[http://dx.doi.org/10.1016/j.neuron.2017.03.043]
[61]
Chaudhary N, Gomez GA, Howes MT, et al. Endocytic crosstalk: cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLoS Biol 2014; 12(4), e1001832
[http://dx.doi.org/10.1371/journal.pbio.1001832] [PMID: 24714042]
[62]
Mayor S, Presley JF, Maxfield FR. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process. J Cell Biol 1993; 121(6): 1257-69.
[http://dx.doi.org/10.1083/jcb.121.6.1257] [PMID: 8509447]
[63]
Presley JF, Mayor S, McGraw TE, Dunn KW, Maxfield FR. Bafilomycin A1 treatment retards transferrin receptor recycling more than bulk membrane recycling. J Biol Chem 1997; 272(21): 13929-36.
[http://dx.doi.org/10.1074/jbc.272.21.13929] [PMID: 9153255]
[64]
Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2001; 2(2): 107-17.
[http://dx.doi.org/10.1038/35052055] [PMID: 11252952]
[65]
Bucci C, Parton RG, Mather IH, et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 1992; 70(5): 715-28.
[http://dx.doi.org/10.1016/0092-8674(92)90306-W] [PMID: 1516130]
[66]
Simonsen A, Lippé R, Christoforidis S, et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 1998; 394(6692): 494-8.
[http://dx.doi.org/10.1038/28879] [PMID: 9697774]
[67]
Christoforidis S, McBride HM, Burgoyne RD, Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 1999; 397(6720): 621-5.
[http://dx.doi.org/10.1038/17618] [PMID: 10050856]
[68]
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009; 10(8): 513-25.
[http://dx.doi.org/10.1038/nrm2728] [PMID: 19603039]
[69]
Bhuin T, Roy JK. Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328(1): 1-19.
[http://dx.doi.org/10.1016/j.yexcr.2014.07.027] [PMID: 25088255]
[70]
Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol 1983; 96(1): 1-27.
[http://dx.doi.org/10.1083/jcb.96.1.1] [PMID: 6298247]
[71]
Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 2004; 5(2): 121-32.
[http://dx.doi.org/10.1038/nrm1315] [PMID: 15040445]
[72]
Sheff DR, Daro EA, Hull M, Mellman I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol 1999; 145(1): 123-39.
[http://dx.doi.org/10.1083/jcb.145.1.123] [PMID: 10189373]
[73]
Ghosh RN, Maxfield FR. Evidence for nonvectorial, retrograde transferrin trafficking in the early endosomes of HEp2 cells. J Cell Biol 1995; 128(4): 549-61.
[http://dx.doi.org/10.1083/jcb.128.4.549] [PMID: 7860630]
[74]
Knight A, Hughson E, Hopkins CR, Cutler DF. Membrane protein trafficking through the common apical endosome compartment of polarized Caco-2 cells. Mol Biol Cell 1995; 6(5): 597-610.
[http://dx.doi.org/10.1091/mbc.6.5.597] [PMID: 7545032]
[75]
van der Sluijs P, Hull M, Webster P, Mâle P, Goud B, Mellman I. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 1992; 70(5): 729-40.
[http://dx.doi.org/10.1016/0092-8674(92)90307-X] [PMID: 1516131]
[76]
Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. J Cell Biol 1996; 135(4): 913-24.
[http://dx.doi.org/10.1083/jcb.135.4.913] [PMID: 8922376]
[77]
Thompson A, Nessler R, Wisco D, Anderson E, Winckler B, Sheff D. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol Biol Cell 2007; 18(7): 2687-97.
[http://dx.doi.org/10.1091/mbc.e05-09-0873] [PMID: 17494872]
[78]
Li J, Peters PJ, Bai M, et al. An ACAP1-containing clathrin coat complex for endocytic recycling. J Cell Biol 2007; 178(3): 453-64.
[http://dx.doi.org/10.1083/jcb.200608033] [PMID: 17664335]
[79]
Kalari KR, Thompson KJ, Nair AA, et al. BBBomics-human blood brain barrier transcriptomics hub. Front Neurosci 2016; 10: 71.
[http://dx.doi.org/10.3389/fnins.2016.00071] [PMID: 26973449]
[80]
Dai J, Li J, Bos E, et al. ACAP1 promotes endocytic recycling by recognizing recycling sorting signals. Dev Cell 2004; 7(5): 771-6.
[http://dx.doi.org/10.1016/j.devcel.2004.10.002] [PMID: 15525538]
[81]
The Human Protien Atlas. Available at: . https://www.prot einatlas.org/ENSG00000072274-TFRC/tissue
[82]
The Human Protien Atlas. Available at: . https://www.prot einatlas.org/ENSG00000123384-LRP1/tissue
[83]
Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 2009; 10(9): 597-608.
[http://dx.doi.org/10.1038/nrm2755] [PMID: 19696797]
[84]
Koivisto UM, Hubbard AL, Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 2001; 105(5): 575-85.
[http://dx.doi.org/10.1016/S0092-8674(01)00371-3] [PMID: 11389828]
[85]
Fölsch H, Ohno H, Bonifacino JS, Mellman I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 1999; 99(2): 189-98.
[http://dx.doi.org/10.1016/S0092-8674(00)81650-5] [PMID: 10535737]
[86]
Pevsner J, Volknandt W, Wong BR, Scheller RH. Two rat homologs of clathrin-associated adaptor proteins. Gene 1994; 146(2): 279-83.
[http://dx.doi.org/10.1016/0378-1119(94)90306-9] [PMID: 8076832]
[87]
Faúndez V, Horng JT, Kelly RB. A function for the AP3 coat complex in synaptic vesicle formation from endosomes. Cell 1998; 93(3): 423-32.
[http://dx.doi.org/10.1016/S0092-8674(00)81170-8] [PMID: 9590176]
[88]
Klinger SC, Siupka P, Nielsen MS. Retromer-mediated trafficking of transmembrane receptors and transporters. Membranes 2015; 5(3): 288-306.
[http://dx.doi.org/10.3390/membranes5030288] [PMID: 26154780]
[89]
Rojas R, van Vlijmen T, Mardones GA, et al. Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol 2008; 183(3): 513-26.
[http://dx.doi.org/10.1083/jcb.200804048] [PMID: 18981234]
[90]
Pfeffer SR. Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett 2009; 583(23): 3811-6.
[http://dx.doi.org/10.1016/j.febslet.2009.10.075] [PMID: 19879268]
[91]
Chen KE, Healy MD, Collins BM. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 2019; 20(7): 465-78.
[http://dx.doi.org/10.1111/tra.12649] [PMID: 30993794]
[92]
Mellado M, Cuartero Y, Brugada R, Verges M. Subcellular localisation of retromer in post-endocytic pathways of polarised Madin-Darby canine kidney cells. Biol Cell 2014; 106(11): 377-93.
[http://dx.doi.org/10.1111/boc.201400011] [PMID: 25081925]
[93]
Siupka P, Hersom MN, Lykke-Hartmann K, et al. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells. J Cereb Blood Flow Metab 2017; 37(7): 2598-613.
[http://dx.doi.org/10.1177/0271678X17700665] [PMID: 28337939]
[94]
Tan JZA, Gleeson PA. Cargo sorting at the trans-golgi network for shunting into specific transport routes: role of arf small G proteins and adaptor complexes. Cells 2019; 8(6): 8.
[http://dx.doi.org/10.3390/cells8060531] [PMID: 31163688]
[95]
Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 2002; 297(5587): 1700-3.
[http://dx.doi.org/10.1126/science.1075327] [PMID: 12215646]
[96]
Toh WH, Chia PZC, Hossain MI, Gleeson PA. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production. Mol Biol Cell 2018; 29(2): 191-208.
[http://dx.doi.org/10.1091/mbc.E17-05-0270] [PMID: 29142073]
[97]
Tesco G, Koh YH, Kang EL, et al. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 2007; 54(5): 721-37.
[http://dx.doi.org/10.1016/j.neuron.2007.05.012] [PMID: 17553422]
[98]
Kang EL, Cameron AN, Piazza F, Walker KR, Tesco G. Ubiquitin regulates GGA3-mediated degradation of BACE1. J Biol Chem 2010; 285(31): 24108-19.
[http://dx.doi.org/10.1074/jbc.M109.092742] [PMID: 20484053]
[99]
Devraj K, Poznanovic S, Spahn C, et al. BACE-1 is expressed in the blood-brain barrier endothelium and is upregulated in a murine model of Alzheimer’s disease. J Cereb Blood Flow Metab 2016; 36(7): 1281-94.
[http://dx.doi.org/10.1177/0271678X15606463] [PMID: 26661166]
[100]
Uemura T, Kametaka S, Waguri S. GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote cell growth. Sci Rep 2018; 8(1): 1368.
[http://dx.doi.org/10.1038/s41598-018-19542-4] [PMID: 29358589]
[101]
Bhattacharya D, Chaudhuri S, Singh MK, Chaudhuri S. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model. Exp Mol Pathol 2015; 98(3): 455-66.
[http://dx.doi.org/10.1016/j.yexmp.2015.03.026] [PMID: 25797371]
[102]
Hirase T, Staddon JM, Saitou M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110(Pt 14): 1603-13.
[PMID: 9247194]
[103]
Patki V, Virbasius J, Lane WS, Toh BH, Shpetner HS, Corvera S. Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 1997; 94(14): 7326-30.
[http://dx.doi.org/10.1073/pnas.94.14.7326] [PMID: 9207090]
[104]
Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function. Nat Rev Mol Cell Biol 2007; 8(8): 622-32.
[http://dx.doi.org/10.1038/nrm2217] [PMID: 17637737]
[105]
Bananis E, Nath S, Gordon K, et al. Microtubule-dependent movement of late endocytic vesicles in vitro: requirements for Dynein and Kinesin. Mol Biol Cell 2004; 15(8): 3688-97.
[http://dx.doi.org/10.1091/mbc.e04-04-0278] [PMID: 15181154]
[106]
Loubéry S, Wilhelm C, Hurbain I, Neveu S, Louvard D, Coudrier E. Different microtubule motors move early and late endocytic compartments. Traffic 2008; 9(4): 492-509.
[http://dx.doi.org/10.1111/j.1600-0854.2008.00704.x] [PMID: 18194411]
[107]
Hurley JH. ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 2008; 20(1): 4-11.
[http://dx.doi.org/10.1016/j.ceb.2007.12.002] [PMID: 18222686]
[108]
Somsel Rodman J, Wandinger-Ness A. Rab GTPases coordinate endocytosis. J Cell Sci 2000; 113(Pt 2): 183-92.
[PMID: 10633070]
[109]
Del Conte-Zerial P, Brusch L, Rink JC, et al. Membrane identity and GTPase cascades regulated by toggle and cut-out switches. Mol Syst Biol 2008; 4: 206.
[http://dx.doi.org/10.1038/msb.2008.45] [PMID: 18628746]
[110]
Pálfy M, Reményi A, Korcsmáros T. Endosomal crosstalk: meeting points for signaling pathways. Trends Cell Biol 2012; 22(9): 447-56.
[http://dx.doi.org/10.1016/j.tcb.2012.06.004] [PMID: 22796207]
[111]
Villaseñor R, Kalaidzidis Y, Zerial M. Signal processing by the endosomal system. Curr Opin Cell Biol 2016; 39: 53-60.
[http://dx.doi.org/10.1016/j.ceb.2016.02.002] [PMID: 26921695]
[112]
Miller F, Fenart L, Landry V, et al. The MAP kinase pathway mediates transcytosis induced by TNF-alpha in an in vitro blood-brain barrier model. Eur J Neurosci 2005; 22(4): 835-44.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04273.x] [PMID: 16115207]
[113]
Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia 2013; 61(12): 1939-58.
[http://dx.doi.org/10.1002/glia.22575] [PMID: 24123158]
[114]
Xu R, Greening DW, Zhu HJ, Takahashi N, Simpson RJ. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest 2016; 126(4): 1152-62.
[http://dx.doi.org/10.1172/JCI81129] [PMID: 27035807]
[115]
Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB. Method for isolation and molecular characterization of extracellular microvesicles released from brain endothelial cells. Fluids Barriers CNS 2013; 10(1): 4.
[http://dx.doi.org/10.1186/2045-8118-10-4] [PMID: 23305214]
[116]
Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 2012; 44(1): 11-5.
[http://dx.doi.org/10.1016/j.biocel.2011.10.005] [PMID: 22024155]
[117]
Zagrean AM, Hermann DM, Opris I, Zagrean L, Popa-Wagner A. Multicellular crosstalk between exosomes and the neurovascular unit after cerebral ischemia. Therapeutic implications. Front Neurosci 2018; 12: 811.
[http://dx.doi.org/10.3389/fnins.2018.00811] [PMID: 30459547]
[118]
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15(1): 19.
[http://dx.doi.org/10.1186/s12987-018-0104-7] [PMID: 29960602]
[119]
Kawikova I, Askenase PW. Diagnostic and therapeutic potentials of exosomes in CNS diseases. Brain Res 2015; 1617: 63-71.
[http://dx.doi.org/10.1016/j.brainres.2014.09.070] [PMID: 25304360]
[120]
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 2015; 32(6): 2003-14.
[http://dx.doi.org/10.1007/s11095-014-1593-y] [PMID: 25609010]
[121]
Perets N, Betzer O, Shapira R, et al. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett 2019; 19(6): 3422-31.
[http://dx.doi.org/10.1021/acs.nanolett.8b04148] [PMID: 30761901]
[122]
Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 2016; 9(4): 509-29.
[http://dx.doi.org/10.1007/s12195-016-0458-3] [PMID: 28392840]
[123]
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011; 29(4): 341-5.
[http://dx.doi.org/10.1038/nbt.1807] [PMID: 21423189]
[124]
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol 2012; 74: 69-86.
[http://dx.doi.org/10.1146/annurev-physiol-012110-142317] [PMID: 22335796]
[125]
Villaseñor R, Ozmen L, Messaddeq N, et al. Trafficking of endogenous immunoglobulins by endothelial cells at the blood-brain barrier. Sci Rep 2016; 6: 25658.
[http://dx.doi.org/10.1038/srep25658] [PMID: 27149947]
[126]
Broadwell RD, Salcman M. Expanding the definition of the blood-brain barrier to protein. Proc Natl Acad Sci USA 1981; 78(12): 7820-4.
[http://dx.doi.org/10.1073/pnas.78.12.7820] [PMID: 6950422]
[127]
Freskgård PO, Urich E. Antibody therapies in CNS diseases. Neuropharmacology 2017; 120: 38-55.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.014] [PMID: 26972827]
[128]
Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014; 81(1): 49-60.
[http://dx.doi.org/10.1016/j.neuron.2013.10.061] [PMID: 24411731]
[129]
Bien-Ly N, Yu YJ, Bumbaca D, et al. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J Exp Med 2014; 211(2): 233-44.
[http://dx.doi.org/10.1084/jem.20131660] [PMID: 24470444]
[130]
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14(5): 283-96.
[http://dx.doi.org/10.1038/nrm3565] [PMID: 23609508]
[131]
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21(10): 1318-31.
[http://dx.doi.org/10.1038/s41593-018-0234-x] [PMID: 30250261]
[132]
Gali CC, Fanaee-Danesh E, Zandl-Lang M, et al. Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-β in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Mol Cell Neurosci 2019; 99, 103390
[http://dx.doi.org/10.1016/j.mcn.2019.103390] [PMID: 31276749]
[133]
Hellinger E, Veszelka S, Tóth AE, et al. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models. Eur J Pharm Biopharm 2012; 82(2): 340-51.
[http://dx.doi.org/10.1016/j.ejpb.2012.07.020] [PMID: 22906709]
[134]
Cornford EM, Hyman S, Cornford ME, Landaw EM, Delgado-Escueta AV. Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier. J Cereb Blood Flow Metab 1998; 18(1): 26-42.
[http://dx.doi.org/10.1097/00004647-199801000-00003] [PMID: 9428303]
[135]
Sheikov N, McDannold N, Jolesz F, Zhang YZ, Tam K, Hynynen K. Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier. Ultrasound Med Biol 2006; 32(9): 1399-409.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2006.05.015] [PMID: 16965980]
[136]
McMahon HT, Gallop JL. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005; 438(7068): 590-6.
[http://dx.doi.org/10.1038/nature04396] [PMID: 16319878]
[137]
Johannes L, Wunder C, Bassereau P. Bending “on the rocks”--a cocktail of biophysical modules to build endocytic pathways. Cold Spring Harb Perspect Biol 2014; 6(1): 6.
[http://dx.doi.org/10.1101/cshperspect.a016741] [PMID: 24384570]
[138]
Peter BJ, Kent HM, Mills IG, et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004; 303(5657): 495-9.
[http://dx.doi.org/10.1126/science.1092586] [PMID: 14645856]
[139]
van Weering JR, Cullen PJ. Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin Cell Dev Biol 2014; 31: 40-7.
[http://dx.doi.org/10.1016/j.semcdb.2014.03.015] [PMID: 24641888]
[140]
Lossinsky AS, Shivers RR. Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. Review. Histol Histopathol 2004; 19(2): 535-64.
[PMID: 15024715]
[141]
Villaseñor R, Schilling M, Sundaresan J, Lutz Y, Collin L. sorting tubules regulate blood-brain barrier transcytosis. Cell Rep 2017; 21(11): 3256-70.
[http://dx.doi.org/10.1016/j.celrep.2017.11.055] [PMID: 29241551]
[142]
Bundgaard M. Tubular invaginations in cerebral endothelium and their relation to smooth-surfaced cisternae in hagfish (myxine glutinosa). Cell Tissue Res 1987; 249: 359-65.
[http://dx.doi.org/10.1007/BF00215520]
[143]
Tuma P, Hubbard AL. Transcytosis: crossing cellular barriers. Physiol Rev 2003; 83(3): 871-932.
[http://dx.doi.org/10.1152/physrev.00001.2003] [PMID: 12843411]
[144]
Hunziker W, Peters PJ. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J Biol Chem 1998; 273(25): 15734-41.
[http://dx.doi.org/10.1074/jbc.273.25.15734] [PMID: 9624171]
[145]
Fung KYY, Fairn GD, Lee WL. Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities. Traffic 2018; 19(1): 5-18.
[http://dx.doi.org/10.1111/tra.12533] [PMID: 28985008]
[146]
Banks WA, Broadwell RD. Blood to brain and brain to blood passage of native horseradish peroxidase, wheat germ agglutinin, and albumin: pharmacokinetic and morphological assessments. J Neurochem 1994; 62(6): 2404-19.
[http://dx.doi.org/10.1046/j.1471-4159.1994.62062404.x] [PMID: 7514652]
[147]
Broadwell RD, Baker-Cairns BJ, Friden PM, Oliver C, Villegas JC. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor. Exp Neurol 1996; 142(1): 47-65.
[http://dx.doi.org/10.1006/exnr.1996.0178] [PMID: 8912898]
[148]
Villegas JC, Broadwell RD. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA-HRP and the blood-brain and brain-blood barriers. J Neurocytol 1993; 22(2): 67-80.
[http://dx.doi.org/10.1007/BF01181571] [PMID: 7680372]
[149]
Prat A, Biernacki K, Wosik K, Antel JP. Glial cell influence on the human blood-brain barrier. Glia 2001; 36(2): 145-55.
[http://dx.doi.org/10.1002/glia.1104] [PMID: 11596123]
[150]
Ezan P, André P, Cisternino S, et al. Deletion of astroglial connexins weakens the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(8): 1457-67.
[http://dx.doi.org/10.1038/jcbfm.2012.45] [PMID: 22472609]
[151]
Armulik A, Genové G, Mäe M, et al. Pericytes regulate the blood-brain barrier. Nature 2010; 468(7323): 557-61.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[152]
Ben-Zvi A, Lacoste B, Kur E, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 2014; 509(7501): 507-11.
[http://dx.doi.org/10.1038/nature13324] [PMID: 24828040]
[153]
Villaseñor R, Lampe J, Schwaninger M, Collin L. Intracellular transport and regulation of transcytosis across the blood-brain barrier. Cell Mol Life Sci 2019; 76(6): 1081-92.
[http://dx.doi.org/10.1007/s00018-018-2982-x] [PMID: 30523362]
[154]
Tian X, Nyberg S, S Sharp P, et al. LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Sci Rep 2015; 5: 11990.
[http://dx.doi.org/10.1038/srep11990] [PMID: 26189707]
[155]
Haqqani AS, Thom G, Burrell M, et al. Intracellular sorting and transcytosis of the rat transferrin receptor antibody OX26 across the blood-brain barrier in vitro is dependent on its binding affinity. J Neurochem 2018; 146(6): 735-52.
[http://dx.doi.org/10.1111/jnc.14482] [PMID: 29877588]
[156]
Gerber SH, Südhof TC. Molecular determinants of regulated exocytosis. Diabetes 2002; 51(Suppl. 1): S3-S11.
[http://dx.doi.org/10.2337/diabetes.51.2007.S3] [PMID: 11815450]
[157]
Wu LG, Hamid E, Shin W, Chiang HC. Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 2014; 76: 301-31.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170305] [PMID: 24274740]
[158]
Sehgal PB, Mukhopadhyay S. Pulmonary arterial hypertension: a disease of tethers, SNAREs and SNAPs? Am J Physiol Heart Circ Physiol 2007; 293(1): H77-85.
[http://dx.doi.org/10.1152/ajpheart.01386.2006] [PMID: 17416597]
[159]
Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 2007; 12(5): 671-82.
[http://dx.doi.org/10.1016/j.devcel.2007.04.005] [PMID: 17488620]
[160]
Hong W, Lev S. Tethering the assembly of SNARE complexes. Trends Cell Biol 2014; 24(1): 35-43.
[http://dx.doi.org/10.1016/j.tcb.2013.09.006] [PMID: 24119662]
[161]
Parlati F, Varlamov O, Paz K, et al. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci USA 2002; 99(8): 5424-9.
[http://dx.doi.org/10.1073/pnas.082100899] [PMID: 11959998]
[162]
Parlati F, McNew JA, Fukuda R, Miller R, Söllner TH, Rothman JE. Topological restriction of SNARE-dependent membrane fusion. Nature 2000; 407(6801): 194-8.
[http://dx.doi.org/10.1038/35025076] [PMID: 11001058]
[163]
Nelms B, Dalomba NF, Lencer W. A targeted RNAi screen identifies factors affecting diverse stages of receptor-mediated transcytosis. J Cell Biol 2017; 216(2): 511-25.
[http://dx.doi.org/10.1083/jcb.201609035] [PMID: 28069747]
[164]
Casanova JE, Wang X, Kumar R, et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol Biol Cell 1999; 10(1): 47-61.
[http://dx.doi.org/10.1091/mbc.10.1.47] [PMID: 9880326]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy