Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Fermentation and Metabolism of Dietary Protein by Intestinal Microorganisms

Author(s): Ke Zhang, Nan Wang, Lin Lu* and Xi Ma*

Volume 21, Issue 8, 2020

Page: [807 - 811] Pages: 5

DOI: 10.2174/1389203721666200212095902

Price: $65

Abstract

Dietary protein is linked to the intestinal microorganisms. The decomposition of dietary protein can provide nutrients for microbial growth, which in turn can ferment protein to produce some metabolites. This review elaborates that the effects of different protein levels and types on intestinal microorganisms and their metabolites fermented by intestinal microorganisms, as well as the effects of these metabolites on organisms. It is well known that intestinal microbial imbalance can cause some diseases. Dietary protein supplementation can alter the composition of intestinal microorganisms and thus regulates the body health. However, protein can also produce some harmful metabolites. Therefore, how to rationally supplement protein is particularly important.

Keywords: Dietary protein, intestinal microorganisms, metabolites, protein fermentation, short-chain fatty acids, amino acids.

Graphical Abstract

[1]
Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R. Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[2]
Hamer, H.M.; De Preter, V.; Windey, K.; Verbeke, K. Functional analysis of colonic bacterial metabolism: relevant to health? Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 302(1), G1-G9.
[http://dx.doi.org/10.1152/ajpgi.00048.2011] [PMID: 22016433]
[3]
Morowitz, M.J.; Carlisle, E.M.; Alverdy, J.C. Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surg. Clin. North Am., 2011, 91(4), 771-785 viii..
[http://dx.doi.org/10.1016/j.suc.2011.05.001] [PMID: 21787967]
[4]
Lubbs, D.C.; Vester, B.M.; Fastinger, N.D.; Swanson, K.S. Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J. Anim. Physiol. Anim. Nutr. (Berl.), 2009, 93(1), 113-121.
[http://dx.doi.org/10.1111/j.1439-0396.2007.00788.x] [PMID: 19386015]
[5]
Udayamputhoor, R.S.; Hariharan, H.; Van Lunen, T.A.; Lewis, P.J.; Heaney, S.; Price, L.; Woodward, D. Effects of diet formulations containing proteins from different sources on intestinal colonization by Campylobacter jejuni in broiler chickens. Can. J. Vet. Res., 2003, 67(3), 204-212.
[PMID: 12889727]
[6]
Świątecka, D.; Narbad, A.; Ridgway, K.P.; Kostyra, H. The study on the impact of glycated pea proteins on human intestinal bacteria. Int. J. Food Microbiol., 2011, 145(1), 267-272.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.01.002] [PMID: 21276631]
[7]
Xi, M.; Sun, P.; He, P.; Han, P.; Wang, J.; Qiao, S.; Li, D. Development of monoclonal antibodies and a competitive ELISA detection method for glycinin, an allergen in soybean. Food Chem., 2010, 121, 546-551.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.045]
[8]
Pieper, R.; Boudry, C.; Bindelle, J.; Vahjen, W.; Zentek, J. Interaction between dietary protein content and the source of carbohydrates along the gastrointestinal tract of weaned piglets. Arch. Anim. Nutr., 2014, 68(4), 263-280.
[http://dx.doi.org/10.1080/1745039X.2014.932962] [PMID: 24979393]
[9]
Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol., 2004, 66, 361-384.
[http://dx.doi.org/10.1146/annurev.physiol.66.032102.144149] [PMID: 14977407]
[10]
Yada, R.Y. Proteins in food processing. Int. J. Food Sci. Technol., 2010, 39, 1006-1007.
[11]
Shimizu, M.; Son, D.O. Food-derived peptides and intestinal functions. Curr. Pharm. Des., 2007, 13(9), 885-895.
[http://dx.doi.org/10.2174/138161207780414287] [PMID: 17430188]
[12]
Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu. Rev. Anim. Biosci., 2014, 2, 387-417.
[http://dx.doi.org/10.1146/annurev-animal-022513-114113] [PMID: 25384149]
[13]
Chen, C.; Yin, Y.; Tu, Q.; Yang, H. Glucose and amino acid in enterocyte: absorption, metabolism and maturation. Front. Biosci., 2018, 23, 1721-1739.
[http://dx.doi.org/10.2741/4669] [PMID: 29293459]
[14]
Davila, A.M.; Blachier, F.; Gotteland, M.; Andriamihaja, M.; Benetti, P.H.; Sanz, Y.; Tomé, D. Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol. Res., 2013, 68(1), 95-107.
[http://dx.doi.org/10.1016/j.phrs.2012.11.005] [PMID: 23183532]
[15]
Amitay, E.L.; Krilaviciute, A.; Brenner, H. Systematic review: Gut microbiota in fecal samples and detection of colorectal neoplasms. Gut Microbes, 2018, 9(4), 293-307.
[http://dx.doi.org/10.1080/19490976.2018.1445957] [PMID: 29543545]
[16]
Arnoldini, M.; Cremer, J.; Hwa, T. Bacterial growth, flow, and mixing shape human gut microbiota density and composition. Gut Microbes, 2018, 9(6), 559-566.
[http://dx.doi.org/10.1080/19490976.2018.1448741] [PMID: 29533125]
[17]
Brown, K.; Abbott, D.W.; Uwiera, R.R.E.; Inglis, G.D. Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes, 2018, 9(3), 218-235.
[http://dx.doi.org/10.1080/19490976.2017.1408763] [PMID: 29227180]
[18]
Burns, M.B.; Blekhman, R. Integrating tumor genomics into studies of the microbiome in colorectal cancer. Gut Microbes, 2018, 1-6.
[PMID: 30556775]
[19]
Flemer, B.; Herlihy, M.; O’Riordain, M.; Shanahan, F.; O’Toole, P.W. Tumour-associated and non-tumour-associated microbiota. Addendum. Gut Microbes, 2018, 9(4), 369-373.
[PMID: 29420132]
[20]
Florin, T.; Movva, R.; Begun, J.; Duley, J.; Oancea, I.; Cuív, P.O. Colonic thioguanine pro-drug: Investigation of microbiome and novel host metabolism. Gut Microbes, 2018, 9(2), 175-178.
[http://dx.doi.org/10.1080/19490976.2017.1387343] [PMID: 28976243]
[21]
Gomes, A.C.; Hoffmann, C.; Mota, J.F. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes, 2018, 9(4), 308-325.
[http://dx.doi.org/10.1080/19490976.2018.1465157] [PMID: 29667480]
[22]
Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Dekker Nitert, M. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9(3), 189-201.
[http://dx.doi.org/10.1080/19490976.2017.1406584] [PMID: 29144833]
[23]
Kiely, C.J.; Pavli, P.; O’Brien, C.L. The role of inflammation in temporal shifts in the inflammatory bowel disease mucosal microbiome. Gut Microbes, 2018, 9(6), 477-485.
[http://dx.doi.org/10.1080/19490976.2018.1448742] [PMID: 29543557]
[24]
Lee, H.; Lee, Y.; Kim, J.; An, J.; Lee, S.; Kong, H.; Song, Y.; Lee, C.K.; Kim, K. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9(2), 155-165.
[http://dx.doi.org/10.1080/19490976.2017.1405209] [PMID: 29157127]
[25]
Mann, P.E.; Huynh, K.; Widmer, G. Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes, 2018, 9(2), 143-154.
[http://dx.doi.org/10.1080/19490976.2017.1395122] [PMID: 29135334]
[26]
Richard, M.L.; Liguori, G.; Lamas, B.; Brandi, G.; da Costa, G.; Hoffmann, T.W.; Pierluigi Di Simone, M.; Calabrese, C.; Poggioli, G.; Langella, P.; Campieri, M.; Sokol, H. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes, 2018, 9(2), 131-142.
[http://dx.doi.org/10.1080/19490976.2017.1379637] [PMID: 28914591]
[27]
Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Richard, M.L.; Beaugerie, L. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes, 2018, 9(1), 55-60.
[http://dx.doi.org/10.1080/19490976.2017.1361092] [PMID: 28786749]
[28]
Windey, K.; De Preter, V.; Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res., 2012, 56(1), 184-196.
[http://dx.doi.org/10.1002/mnfr.201100542] [PMID: 22121108]
[29]
Olivares, M.; Benítez-Páez, A.; de Palma, G.; Capilla, A.; Nova, E.; Castillejo, G.; Varea, V.; Marcos, A.; Garrote, J.A.; Polanco, I.; Donat, E.; Ribes-Koninckx, C.; Calvo, C.; Ortigosa, L.; Palau, F.; Sanz, Y. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes, 2018, 9(6), 551-558.
[http://dx.doi.org/10.1080/19490976.2018.1451276] [PMID: 29672211]
[30]
Sevrin, G.; Massier, S.; Chassaing, B.; Agus, A.; Delmas, J.; Denizot, J.; Billard, E.; Barnich, N. Adaptation of adherent-invasive E. coli to gut environment: Impact on flagellum expression and bacterial colonization ability. Gut Microbes, 2018, 1-17.
[http://dx.doi.org/10.1080/19490976.2017.1421886] [PMID: 29494278]
[31]
Elhenawy, W.; Oberc, A.; Coombes, B.K. A polymicrobial view of disease potential in Crohn’s-associated adherent-invasive E. coli. Gut Microbes, 2018, 9(2), 166-174.
[http://dx.doi.org/10.1080/19490976.2017.1378291] [PMID: 28914579]
[32]
Zhang, Y.G.; Singhal, M.; Lin, Z.; Manzella, C.; Kumar, A.; Alrefai, W.A.; Dudeja, P.K.; Saksena, S.; Sun, J.; Gill, R.K. Infection with enteric pathogens Salmonella typhimurium and Citrobacter rodentium modulate TGF-beta/Smad signaling pathways in the intestine. Gut Microbes, 2018, 9(4), 326-337.
[http://dx.doi.org/10.1080/19490976.2018.1429878] [PMID: 29381406]
[33]
Zackular, J.P.; Skaar, E.P. The role of zinc and nutritional immunity in Clostridium difficile infection. Gut Microbes, 2018, 9(5), 469-476.
[http://dx.doi.org/10.1080/19490976.2018.1448354] [PMID: 29533126]
[34]
The, H.C.; Florez de Sessions, P.; Jie, S.; Pham Thanh, D.; Thompson, C.N.; Nguyen Ngoc Minh, C.; Chu, C.W.; Tran, T.A.; Thomson, N.R.; Thwaites, G.E.; Rabaa, M.A.; Hibberd, M.; Baker, S. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes, 2018, 9(1), 38-54.
[http://dx.doi.org/10.1080/19490976.2017.1361093] [PMID: 28767339]
[35]
Sevrin, G.; Massier, S.; Chassaing, B.; Agus, A.; Delmas, J.; Denizot, J.; Billard, E.; Barnich, N. Adaptation of adherent-invasive E. coli to gut environment: Impact on flagellum expression and bacterial colonization ability. Gut Microbes, 2018, 1-17.
[http://dx.doi.org/10.1080/19490976.2017.1421886] [PMID: 29494278]
[36]
Miki, T.; Okada, N.; Hardt, W.D. Inflammatory bactericidal lectin RegIIIβ: Friend or foe for the host? Gut Microbes, 2018, 9(2), 179-187.
[http://dx.doi.org/10.1080/19490976.2017.1387344] [PMID: 28985140]
[37]
Markey, L.; Shaban, L.; Green, E.R.; Lemon, K.P.; Mecsas, J.; Kumamoto, C.A. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection. Gut Microbes, 2018, 9(6), 497-509.
[http://dx.doi.org/10.1080/19490976.2018.1465158] [PMID: 29667487]
[38]
Marion, S.; Studer, N.; Desharnais, L.; Menin, L.; Escrig, S.; Meibom, A.; Hapfelmeier, S.; Bernier-Latmani, R. In vitro and in vivo characterization of Clostridium scindens bile acid transformations. Gut Microbes, 2018, 1-23.
[PMID: 30589376]
[39]
Lashermes, A.; Boudieu, L.; Barbier, J.; Sion, B.; Gelot, A.; Barnich, N.; Ardid, D.; Carvalho, F.A. Adherent-Invasive E. coli enhances colonic hypersensitivity and P2X receptors expression during post-infectious period. Gut Microbes, 2018, 9(1), 26-37.
[http://dx.doi.org/10.1080/19490976.2017.1361091] [PMID: 28806140]
[40]
Cieplak, T.; Soffer, N.; Sulakvelidze, A.; Nielsen, D.S. A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes, 2018, 9(5), 391-399.
[http://dx.doi.org/10.1080/19490976.2018.1447291] [PMID: 29517960]
[41]
Anjuwon-Foster, B.R.; Tamayo, R. Phase variation of Clostridium difficile virulence factors. Gut Microbes, 2018, 9(1), 76-83.
[http://dx.doi.org/10.1080/19490976.2017.1362526] [PMID: 28806147]
[42]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[http://dx.doi.org/10.1038/srep43412] [PMID: 28252026]
[43]
Ye, X.; Li, J.; Lu, M.; Deng, G.; Jiang, X.; Tian, Y.; Quan, Y.; Jian, Q. Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fish. Sci., 2011, 77, 623-632.
[http://dx.doi.org/10.1007/s12562-011-0365-4]
[44]
Wellock, I.J.; Fortomaris, P.D.; Houdijk, J.G.; Kyriazakis, I. The effect of dietary protein supply on the performance and risk of post-weaning enteric disorders in newly weaned pigs. J. Anim. Sci., 2006, 82, 327-335.
[http://dx.doi.org/10.1079/ASC200643]
[45]
Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. (Berl.), 2013, 97(2), 207-237.
[http://dx.doi.org/10.1111/j.1439-0396.2012.01284.x] [PMID: 22416941]
[46]
Bikker, P. 1.; Dirkzwager, A.; Fledderus, J.; Trevisi, P.; le Huërou-Luron, I.; Lallès, J.P.; Awati, A. The effect of dietary protein and fermentable carbohydrates levels in newly weaned pigs on performance and intestinal characteristics. J. Anim. Sci., 2006, 84, 3337-3345.
[http://dx.doi.org/10.2527/jas.2006-076] [PMID: 17093226]
[47]
Luo, J.; Chen, D.; Yu, B. Effects of different dietary protein sources on expression of genes related to protein metabolism in growing rats. Br. J. Nutr., 2010, 104(10), 1421-1428.
[http://dx.doi.org/10.1017/S000711451000231X] [PMID: 20609265]
[48]
Faith, J.J.; McNulty, N.P.; Rey, F.E.; Gordon, J.I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science, 2011, 333(6038), 101-104.
[http://dx.doi.org/10.1126/science.1206025] [PMID: 21596954]
[49]
Gill, S.R.; Pop, M.; Deboy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science, 2006, 312(5778), 1355-1359.
[http://dx.doi.org/10.1126/science.1124234] [PMID: 16741115]
[50]
Blachier, F.; Mariotti, F.; Huneau, J.F.; Tomé, D. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids, 2007, 33(4), 547-562.
[http://dx.doi.org/10.1007/s00726-006-0477-9] [PMID: 17146590]
[51]
Macfarlane. Utilization of protein by human gut bacteria. FEMS Microbiol. Lett., 1986, 38, 19-24.
[http://dx.doi.org/10.1111/j.1574-6968.1986.tb01934.x]
[52]
Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther., 2008, 27(2), 104-119.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x] [PMID: 17973645]
[53]
Piekarska, J.; Miśta, D.; Houszka, M.; Króliczewska, B.; Zawadzki, W.; Gorczykowski, M. Trichinella spiralis: the influence of short chain fatty acids on the proliferation of lymphocytes, the goblet cell count and apoptosis in the mouse intestine. Exp. Parasitol., 2011, 128(4), 419-426.
[http://dx.doi.org/10.1016/j.exppara.2011.05.019] [PMID: 21627965]
[54]
Vinolo, M.A.; Rodrigues, H.G.; Hatanaka, E.; Sato, F.T.; Sampaio, S.C.; Curi, R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem., 2011, 22(9), 849-855.
[http://dx.doi.org/10.1016/j.jnutbio.2010.07.009] [PMID: 21167700]
[55]
Lupton, J.R. Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr., 2004, 134(2), 479-482.
[http://dx.doi.org/10.1093/jn/134.2.479] [PMID: 14747692]
[56]
Visek, W.J. Diet and cell growth modulation by ammonia. Am. J. Clin. Nutr., 1978, 31(10)(Suppl.), S216-S220.
[http://dx.doi.org/10.1093/ajcn/31.10.S216] [PMID: 707376]
[57]
Hughes, R.; Magee, E.A.; Bingham, S. Protein degradation in the large intestine: relevance to colorectal cancer. Curr. Issues Intest. Microbiol., 2000, 1(2), 51-58.
[PMID: 11709869]
[58]
Magee, E.A.; Richardson, C.J.; Hughes, R.; Cummings, J.H. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr., 2000, 72(6), 1488-1494.
[http://dx.doi.org/10.1093/ajcn/72.6.1488] [PMID: 11101476]
[59]
Hecht, S.S.; Hoffmann, D. N-nitroso compounds and man: sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev., 1998, 7(2), 165-166.
[PMID: 9818780]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy