Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Impact of Prebiotics on Enteric Diseases and Oxidative Stress

Author(s): Jing Gao, Md A.K. Azad, Hui Han, Dan Wan* and TieJun Li*

Volume 26, Issue 22, 2020

Page: [2630 - 2641] Pages: 12

DOI: 10.2174/1381612826666200211121916

Price: $65

Abstract

In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.

Keywords: Prebiotics, gut microbiota, intestinal health, enteric disorder, oxidative stress, fructooligosaccharides.

[1]
Cheng W, Lu J, Lin W, et al. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct 2018; 9(3): 1612-20.
[http://dx.doi.org/10.1039/C7FO01720K] [PMID: 29465126]
[2]
Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 2018; 8: 13.
[http://dx.doi.org/10.3389/fcimb.2018.00013] [PMID: 29468141]
[3]
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011; 474(7351): 327-36.
[http://dx.doi.org/10.1038/nature10213] [PMID: 21677749]
[4]
Yin J, Ren W, Liu G, et al. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res 2013; 47(12): 1027-35.
[http://dx.doi.org/10.3109/10715762.2013.848277] [PMID: 24074241]
[5]
Kim H, Yun J, Kwon SM. Therapeutic strategies for oxidative stress-related cardiovascular diseases: Removal of excess reactive oxygen species in adult stem cells. Oxid Med Cell Longev 2016; 2016 2483163
[http://dx.doi.org/10.1155/2016/2483163] [PMID: 27668035]
[6]
Ginter E, Simko V, Panakova V. Antioxidants in health and disease. Bratisl Lek Listy 2014; 115(10): 603-6.
[PMID: 25573724]
[7]
Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1066-77.
[http://dx.doi.org/10.1016/j.bbadis.2016.11.010] [PMID: 27836629]
[8]
Xu K, Liu H, Bai M, Gao J, Wu X, Yin Y. Redox properties of tryptophan metabolism and the concept of tryptophan use in pregnancy. Int J Mol Sci 2017; 18(7): 18.
[http://dx.doi.org/10.3390/ijms18071595] [PMID: 28737706]
[9]
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ 2018; 361: k2179.
[http://dx.doi.org/10.1136/bmj.k2179] [PMID: 29899036]
[10]
Guevarra RB, Hong SH, Cho JH, et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J Anim Sci Biotechnol 2018; 9: 54.
[http://dx.doi.org/10.1186/s40104-018-0269-6] [PMID: 30069307]
[11]
Clayton JB, Al-Ghalith GA, Long HT, et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci Rep 2018; 8(1): 11159.
[http://dx.doi.org/10.1038/s41598-018-29277-x] [PMID: 30042392]
[12]
Ford AC, Harris LA, Lacy BE, Quigley EMM, Moayyedi P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment Pharmacol Ther 2018; 48(10): 1044-60.
[http://dx.doi.org/10.1111/apt.15001] [PMID: 30294792]
[13]
Steer T, Carpenter H, Tuohy K, Gibson GR. Perspectives on the role of the human gut microbiota and its modulation by pro- and prebiotics. Nutr Res Rev 2000; 13(2): 229-54.
[http://dx.doi.org/10.1079/095442200108729089] [PMID: 19087441]
[14]
Choque Delgado GT, Tamashiro WMDSC. Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res Int 2018; 113: 183-8.
[http://dx.doi.org/10.1016/j.foodres.2018.07.013] [PMID: 30195512]
[15]
Mercenier A, Pavan S, Pot B. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des 2003; 9(2): 175-91.
[http://dx.doi.org/10.2174/1381612033392224] [PMID: 12570667]
[16]
Szajewska H, Mrukowicz JZ. Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J Pediatr Gastroenterol Nutr 2001; 33(Suppl. 2): S17-25.
[http://dx.doi.org/10.1097/00005176-200110002-00004] [PMID: 11698781]
[17]
Gionchetti P, Rizzello F, Helwig U, et al. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterology 2003; 124(5): 1202-9.
[http://dx.doi.org/10.1016/S0016-5085(03)00171-9] [PMID: 12730861]
[18]
Moayyedi P, Ford AC, Talley NJ, et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 2010; 59(3): 325-32.
[http://dx.doi.org/10.1136/gut.2008.167270] [PMID: 19091823]
[19]
Roberfroid M. Prebiotics: the concept revisited. J Nutr 2007; 137(3)(Suppl. 2): 830S-7S.
[http://dx.doi.org/10.1093/jn/137.3.830S] [PMID: 17311983]
[20]
Tuohy KM, Rouzaud GC, Brück WM, Gibson GR. Modulation of the human gut microflora towards improved health using prebiotics--assessment of efficacy. Curr Pharm Des 2005; 11(1): 75-90.
[http://dx.doi.org/10.2174/1381612053382331] [PMID: 15638753]
[21]
Gibson GR. Prebiotics as gut microflora management tools. J Clin Gastroenterol 2008; 42(Suppl. 2): S75-9.
[http://dx.doi.org/10.1097/MCG.0b013e31815ed097] [PMID: 18542038]
[22]
Gibson GR. Understanding prebiotics in infant and childhood nutrition. J Fam Health Care 2006; 16(4): 119-22.
[PMID: 17002270]
[23]
Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Curr Opin Gastroenterol 2015; 31(2): 153-8.
[http://dx.doi.org/10.1097/MOG.0000000000000151] [PMID: 25594887]
[24]
Burokas A, Arboleya S, Moloney RD, et al. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 2017; 82(7): 472-87.
[http://dx.doi.org/10.1016/j.biopsych.2016.12.031] [PMID: 28242013]
[25]
Roberfroid M, Gibson GR, Hoyles L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010; 104(Suppl. 2): S1-S63.
[http://dx.doi.org/10.1017/S0007114510003363] [PMID: 20920376]
[26]
Evans JM, Morris LS, Marchesi JR. The gut microbiome: the role of a virtual organ in the endocrinology of the host. J Endocrinol 2013; 218(3): R37-47.
[http://dx.doi.org/10.1530/JOE-13-0131] [PMID: 23833275]
[27]
El Aidy S, van den Bogert B, Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 2015; 32: 14-20.
[http://dx.doi.org/10.1016/j.copbio.2014.09.005] [PMID: 25308830]
[28]
Gardner ML, Wood D. Transport of peptides across the gastrointestinal tract. Biochem Soc Trans 1989; 17(5): 934-7.
[http://dx.doi.org/10.1042/bst0170934] [PMID: 2695365]
[29]
Seifter JL. Body fluid compartments, cell membrane ion transport, electrolyte concentrations, and acid-base balance. Semin Nephrol 2019; 39(4): 368-79.
[http://dx.doi.org/10.1016/j.semnephrol.2019.04.006] [PMID: 31300092]
[30]
Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
[http://dx.doi.org/10.1186/s12876-014-0189-7] [PMID: 25407511]
[31]
Cardoso-Silva D, Delbue D, Itzlinger A, et al. Intestinal barrier function in gluten-related disorders. Nutrients 2019; 11(10): 11.
[http://dx.doi.org/10.3390/nu11102325] [PMID: 31581491]
[32]
Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24(6): 503-12.
[http://dx.doi.org/10.1111/j.1365-2982.2012.01921.x] [PMID: 22583600]
[33]
Grazioso TP, Brandt M, Djouder N. Diet, microbiota, and colorectal cancer. iScience 2019; 21: 168-87.
[34]
Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol 2014; 5: 427.
[http://dx.doi.org/10.3389/fimmu.2014.00427] [PMID: 25250028]
[35]
Walker WA. Initial intestinal colonization in the human infant and immune homeostasis. Ann Nutr Metab 2013; 63(Suppl. 2): 8-15.
[http://dx.doi.org/10.1159/000354907] [PMID: 24217032]
[36]
Redfern A, Suchodolski J, Jergens A. Role of the gastrointestinal microbiota in small animal health and disease. Vet Rec 2017; 181(14): 370.
[http://dx.doi.org/10.1136/vr.103826] [PMID: 28916525]
[37]
Tuohy KM, Probert HM, Smejkal CW, Gibson GR. Using probiotics and prebiotics to improve gut health. Drug Discov Today 2003; 8(15): 692-700.
[http://dx.doi.org/10.1016/S1359-6446(03)02746-6] [PMID: 12927512]
[38]
Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal physiology and function. Handb Exp Pharmacol 2017; 239: 1-16.
[http://dx.doi.org/10.1007/164_2016_118] [PMID: 28176047]
[39]
Wouters MM, Vicario M, Santos J. The role of mast cells in functional GI disorders. Gut 2016; 65(1): 155-68.
[http://dx.doi.org/10.1136/gutjnl-2015-309151] [PMID: 26194403]
[40]
Elson CO, Alexander KL. Host-microbiota interactions in the intestine. Dig Dis 2015; 33(2): 131-6.
[http://dx.doi.org/10.1159/000369534] [PMID: 25925913]
[41]
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489(7415): 242-9.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[42]
Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635-8.
[http://dx.doi.org/10.1126/science.1110591] [PMID: 15831718]
[43]
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444(7122): 1022-3.
[http://dx.doi.org/10.1038/4441022a] [PMID: 17183309]
[44]
Cherbut C. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 2003; 62(1): 95-9.
[http://dx.doi.org/10.1079/PNS2002213] [PMID: 12740048]
[45]
Iacob S, Iacob DG, Luminos LM. Intestinal microbiota as a host defense mechanism to infectious threats. Front Microbiol 2019; 9: 3328.
[http://dx.doi.org/10.3389/fmicb.2018.03328] [PMID: 30761120]
[46]
Cavaglieri CR, Nishiyama A, Fernandes LC, Curi R, Miles EA, Calder PC. Differential effects of short-chain fatty acids on proliferation and production of pro- and anti-inflammatory cytokines by cultured lymphocytes. Life Sci 2003; 73(13): 1683-90.
[http://dx.doi.org/10.1016/S0024-3205(03)00490-9] [PMID: 12875900]
[47]
Flemer B, Gaci N, Borrel G, et al. Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes 2017; 8(5): 428-39.
[http://dx.doi.org/10.1080/19490976.2017.1334033] [PMID: 28586297]
[48]
Shen TD. Diet and gut microbiota in health and disease. Nestle Nutr Inst Workshop Ser 2017; 88: 117-26.
[http://dx.doi.org/10.1159/000455220] [PMID: 28346928]
[49]
Robles-Alonso V, Guarner F. [Progress in the knowledge of the intestinal human microbiota]. Nutr Hosp 2013; 28(3): 553-7.
[PMID: 23848071]
[50]
Tomasello G, Tralongo P, Damiani P, et al. Dismicrobism in inflammatory bowel disease and colorectal cancer: changes in response of colocytes. World J Gastroenterol 2014; 20(48): 18121-30.
[http://dx.doi.org/10.3748/wjg.v20.i48.18121] [PMID: 25561781]
[51]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[52]
Musch MW, Walsh-Reitz MM, Chang EB. Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. Am J Physiol Gastrointest Liver Physiol 2006; 290(2): G222-31.
[http://dx.doi.org/10.1152/ajpgi.00301.2005] [PMID: 16239402]
[53]
Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 2013; 13(11): 790-801.
[http://dx.doi.org/10.1038/nri3535] [PMID: 24096337]
[54]
Pircalabioru G, Aviello G, Kubica M, et al. Defensive mutualism rescues nadph oxidase inactivation in gut infection. Cell Host Microbe 2016; 19(5): 651-63.
[http://dx.doi.org/10.1016/j.chom.2016.04.007] [PMID: 27173933]
[55]
Schluter J, Foster KR. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol 2012; 10(11) e1001424
[http://dx.doi.org/10.1371/journal.pbio.1001424] [PMID: 23185130]
[56]
Chen H, Mao X, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 2013; 110(10): 1837-48.
[http://dx.doi.org/10.1017/S0007114513001293] [PMID: 23656640]
[57]
Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol 2015; 3: 62.
[http://dx.doi.org/10.3389/fcell.2015.00062] [PMID: 26484345]
[58]
Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017; 2017 4535194
[http://dx.doi.org/10.1155/2017/4535194] [PMID: 28744337]
[59]
Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. The multifaceted role of the intestinal microbiota in colon cancer. Mol Cell 2014; 54(2): 309-20.
[http://dx.doi.org/10.1016/j.molcel.2014.03.039] [PMID: 24766895]
[60]
Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol 2004; 2(7): 593-602.
[http://dx.doi.org/10.1038/nrmicro929] [PMID: 15197394]
[61]
Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res 2009; 16(1): 1-12.
[http://dx.doi.org/10.1093/dnares/dsn033] [PMID: 19147530]
[62]
Turroni F, Marchesi JR, Foroni E, et al. Microbiomic analysis of the bifidobacterial population in the human distal gut. ISME J 2009; 3(6): 745-51.
[http://dx.doi.org/10.1038/ismej.2009.19] [PMID: 19295640]
[63]
Garrett WS, Gordon JI, Glimcher LH. Homeostasis and inflammation in the intestine. Cell 2010; 140(6): 859-70.
[http://dx.doi.org/10.1016/j.cell.2010.01.023] [PMID: 20303876]
[64]
Vitetta L, Vitetta G, Hall S. Immunological tolerance and function: associations between intestinal bacteria, probiotics, prebiotics, and phages. Front Immunol 2018; 9: 2240.
[http://dx.doi.org/10.3389/fimmu.2018.02240] [PMID: 30356736]
[65]
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13(10): 701-12.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[66]
Watanabe K, Makino H, Sasamoto M, Kudo Y, Fujimoto J, Demberel S. Bifidobacterium mongoliense sp. nov., from airag, a traditional fermented mare’s milk product from Mongolia. Int J Syst Evol Microbiol 2009; 59(Pt 6): 1535-40.
[http://dx.doi.org/10.1099/ijs.0.006247-0] [PMID: 19502349]
[67]
Bottacini F, Ventura M, van Sinderen D, O’Connell Motherway M. Diversity, ecology and intestinal function of bifidobacteria. Microb Cell Fact 2014; 13(Suppl. 1): S4.
[http://dx.doi.org/10.1186/1475-2859-13-S1-S4] [PMID: 25186128]
[68]
Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr 2014; 168(11): 1063-9.
[http://dx.doi.org/10.1001/jamapediatrics.2014.1539] [PMID: 25265089]
[69]
Hsieh CY, Osaka T, Moriyama E, Date Y, Kikuchi J, Tsuneda S. Strengthening of the intestinal epithelial tight junction by Bifidobacterium bifidum. Physiol Rep 2015; 3(3): 3.
[http://dx.doi.org/10.14814/phy2.12327] [PMID: 25780093]
[70]
Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011; 141(5): 769-76.
[http://dx.doi.org/10.3945/jn.110.135657] [PMID: 21430248]
[71]
Toscano M, De Grandi R, Stronati L, De Vecchi E, Drago L. Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: A preliminary study. World J Gastroenterol 2017; 23(15): 2696-704.
[http://dx.doi.org/10.3748/wjg.v23.i15.2696] [PMID: 28487606]
[72]
Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, et al. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PLoS One 2013; 8(3) e59370
[http://dx.doi.org/10.1371/journal.pone.0059370] [PMID: 23555025]
[73]
Fanning S, Hall LJ, Cronin M, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 2012; 109(6): 2108-13.
[http://dx.doi.org/10.1073/pnas.1115621109] [PMID: 22308390]
[74]
Vitaliti G, Pavone P, Guglielmo F, Spataro G, Falsaperla R. The immunomodulatory effect of probiotics beyond atopy: an update. J Asthma 2014; 51(3): 320-32.
[http://dx.doi.org/10.3109/02770903.2013.862259] [PMID: 24256057]
[75]
Rosenberg HF, Masterson JC, Furuta GT. Eosinophils, probiotics, and the microbiome. J Leukoc Biol 2016; 100(5): 881-8.
[http://dx.doi.org/10.1189/jlb.3RI0416-202R] [PMID: 27549754]
[76]
van Baarlen P, Troost F, van der Meer C, et al. Human mucosal in vivo transcriptome responses to three lactobacilli indicate how probiotics may modulate human cellular pathways. Proc Natl Acad Sci USA 2011; 108(Suppl. 1): 4562-9.
[http://dx.doi.org/10.1073/pnas.1000079107] [PMID: 20823239]
[77]
Kleerebezem M, Hols P, Bernard E, et al. The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010; 34(2): 199-230.
[http://dx.doi.org/10.1111/j.1574-6976.2009.00208.x] [PMID: 20088967]
[78]
Yan F, Cao H, Cover TL, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest 2011; 121(6): 2242-53.
[http://dx.doi.org/10.1172/JCI44031] [PMID: 21606592]
[79]
von Schillde MA, Hörmannsperger G, Weiher M, et al. Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 2012; 11(4): 387-96.
[http://dx.doi.org/10.1016/j.chom.2012.02.006] [PMID: 22520466]
[80]
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct 2018; 9(2): 688-704.
[http://dx.doi.org/10.1039/C7FO01820G] [PMID: 29410981]
[81]
Medina DA, Pinto F, Ortuzar V, Garrido D. Simulation and modeling of dietary changes in the infant gut microbiome. FEMS Microbiol Ecol 2018; 94(9): 94.
[http://dx.doi.org/10.1093/femsec/fiy140] [PMID: 30052968]
[82]
Hermann-Bank ML, Skovgaard K, Stockmarr A, Larsen N, Mølbak L. The Gut Microbiotassay: a high-throughput qPCR approach combinable with next generation sequencing to study gut microbial diversity. BMC Genomics 2013; 14: 788.
[http://dx.doi.org/10.1186/1471-2164-14-788] [PMID: 24225361]
[83]
De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 2010; 107(33): 14691-6.
[http://dx.doi.org/10.1073/pnas.1005963107] [PMID: 20679230]
[84]
Wegh CAM, Schoterman MHC, Vaughan EE, Belzer C, Benninga MA. The effect of fiber and prebiotics on children’s gastrointestinal disorders and microbiome. Expert Rev Gastroenterol Hepatol 2017; 11(11): 1031-45.
[http://dx.doi.org/10.1080/17474124.2017.1359539] [PMID: 28737484]
[85]
Menees S, Chey W. The gut microbiome and irritable bowel syndrome. F1000 Res 2018; 7: 7.
[http://dx.doi.org/10.12688/f1000research.14592.1] [PMID: 30026921]
[86]
Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016; 535(7610): 85-93.
[http://dx.doi.org/10.1038/nature18849] [PMID: 27383983]
[87]
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489(7415): 220-30.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[88]
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50-60.
[http://dx.doi.org/10.5740/jaoacint.SGE_Macfarlane] [PMID: 22468341]
[89]
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488(7410): 178-84.
[http://dx.doi.org/10.1038/nature11319] [PMID: 22797518]
[90]
Prasad KN, Bondy SC. Dietary fibers and their fermented short-chain fatty acids in prevention of human diseases. Mech Ageing Dev 2018; 17 100170
[http://dx.doi.org/10.1016/j.mad.2018.10.003] [PMID: 30336163]
[91]
Yoo JY, Kim SS. Probiotics and prebiotics: present status and future perspectives on metabolic disorders. Nutrients 2016; 8(3): 173.
[http://dx.doi.org/10.3390/nu8030173] [PMID: 26999199]
[92]
Pineiro M, Asp NG, Reid G, et al. FAO Technical meeting on prebiotics. J Clin Gastroenterol 2008; 42(Suppl. 3 Pt 2): S156-9.
[http://dx.doi.org/10.1097/MCG.0b013e31817f184e] [PMID: 18685504]
[93]
Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int J Antimicrob Agents 2001; 18(6): 553-7.
[http://dx.doi.org/10.1016/S0924-8579(01)00434-4] [PMID: 11738343]
[94]
Yucel Falco C, Sotres J, Rascón A, Risbo J, Cárdenas M. Design of a potentially prebiotic and responsive encapsulation material for probiotic bacteria based on chitosan and sulfated β-glucan. J Colloid Interface Sci 2017; 487: 97-106.
[http://dx.doi.org/10.1016/j.jcis.2016.10.019] [PMID: 27756004]
[95]
Singh SP, Jadaun JS, Narnoliya LK, Pandey A. Prebiotic oligosaccharides: special focus on fructooligosaccharides, its biosynthesis and bioactivity. Appl Biochem Biotechnol 2017; 183(2): 613-35.
[http://dx.doi.org/10.1007/s12010-017-2605-2] [PMID: 28948462]
[96]
Caetano BF, de Moura NA, Almeida AP, Dias MC, Sivieri K, Barbisan LF. Yacon (Smallanthus sonchifolius) as a food supplement: health-promoting benefits of fructooligosaccharides. Nutrients 2016; 8(7): 8.
[http://dx.doi.org/10.3390/nu8070436] [PMID: 27455312]
[97]
Yamaguchi M, Yang Y, Ando M, Kumrungsee T, Kato N, Okazaki Y. Increased intestinal ethanol following consumption of fructooligosaccharides in rats. Biomed Rep 2018; 9(5): 427-32.
[http://dx.doi.org/10.3892/br.2018.1150] [PMID: 30402226]
[98]
Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN. Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 2016; 36(2): 259-67.
[http://dx.doi.org/10.3109/07388551.2014.953443] [PMID: 25519697]
[99]
Apolinário AC, de Lima Damasceno BP, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA. Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 2014; 101: 368-78.
[http://dx.doi.org/10.1016/j.carbpol.2013.09.081] [PMID: 24299785]
[100]
Cooper PD, Petrovsky N. Delta inulin: a novel, immunologically active, stable packing structure comprising β-D-[2 -> 1] poly(fructo-furanosyl) α-D-glucose polymers. Glycobiology 2011; 21(5): 595-606.
[http://dx.doi.org/10.1093/glycob/cwq201] [PMID: 21147758]
[101]
Muise AM, Xu W, Guo CH, et al. NEOPICS NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut 2012; 61(7): 1028-35.
[http://dx.doi.org/10.1136/gutjnl-2011-300078] [PMID: 21900546]
[102]
O’Neill S, Brault J, Stasia MJ, Knaus UG. Genetic disorders coupled to ROS deficiency. Redox Biol 2015; 6: 135-56.
[http://dx.doi.org/10.1016/j.redox.2015.07.009] [PMID: 26210446]
[103]
Dhillon SS, Fattouh R, Elkadri A, et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease Gastroenterology 2014; 147: 680-89e2
[http://dx.doi.org/10.1053/j.gastro.2014.06.005]
[104]
Xu YQ, Xing YY, Wang ZQ, Yan SM, Shi BL. Pre-protective effects of dietary chitosan supplementation against oxidative stress induced by diquat in weaned piglets. Cell Stress Chaperones 2018; 23(4): 703-10.
[http://dx.doi.org/10.1007/s12192-018-0882-5] [PMID: 29455342]
[105]
Zou P, Li K, Liu S, et al. Effect of chitooligosaccharides with different degrees of acetylation on wheat seedlings under salt stress. Carbohydr Polym 2015; 126: 62-9.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.028] [PMID: 25933523]
[106]
Jabeen N, Ahmad R. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J Sci Food Agric 2013; 93(7): 1699-705.
[http://dx.doi.org/10.1002/jsfa.5953] [PMID: 23197363]
[107]
Liaqat F, Eltem R. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr Polym 2018; 184: 243-59.
[http://dx.doi.org/10.1016/j.carbpol.2017.12.067] [PMID: 29352917]
[108]
Muanprasat C, Chatsudthipong V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol Ther 2017; 170: 80-97.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.013] [PMID: 27773783]
[109]
Anraku M, Kabashima M, Namura H, et al. Antioxidant protection of human serum albumin by chitosan. Int J Biol Macromol 2008; 43(2): 159-64.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.04.006] [PMID: 18514811]
[110]
Anraku M, Tanaka M, Hiraga A, et al. Effects of chitosan on oxidative stress and related factors in hemodialysis patients. Carbohydr Polym 2014; 112: 152-7.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.078] [PMID: 25129729]
[111]
Fujii H, Nakai K, Fukagawa M. Role of oxidative stress and indoxyl sulfate in progression of cardiovascular disease in chronic kidney disease. Ther Apher Dial 2011; 15(2): 125-8.
[http://dx.doi.org/10.1111/j.1744-9987.2010.00883.x] [PMID: 21426501]
[112]
Ouyang QQ, Zhao S, Li SD, Song C. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s disease. Mar Drugs 2017; 15(11): 15.
[http://dx.doi.org/10.3390/md15110322] [PMID: 29112116]
[113]
Qiao J, Liu Y, Jiang Z, Yang Y, Liu W, Han B. Preparation and renoprotective effects of carboxymethyl chitosan oligosaccharide on adriamycin nephropathy. Carbohydr Polym 2018; 201: 347-56.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.109] [PMID: 30241828]
[114]
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci 2019; 263: 131-94.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[115]
Zivanovic S, Li J, Davidson PM, Kit K. Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules 2007; 8(5): 1505-10.
[http://dx.doi.org/10.1021/bm061140p] [PMID: 17388625]
[116]
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 2010; 144(1): 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[117]
Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects--an update. J Pharm Pharmacol 2001; 53(8): 1047-67.
[http://dx.doi.org/10.1211/0022357011776441] [PMID: 11518015]
[118]
Tarsi R, Muzzarelli RA, Guzmán CA, Pruzzo C. Inhibition of Streptococcus mutans adsorption to hydroxyapatite by low-molecular-weight chitosans. J Dent Res 1997; 76(2): 665-72.
[http://dx.doi.org/10.1177/00220345970760020701] [PMID: 9062560]
[119]
Liu P, Piao XS, Kim SW, et al. Effects of chito-oligosaccharide supplementation on the growth performance, nutrient digestibility, intestinal morphology, and fecal shedding of Escherichia coli and Lactobacillus in weaning pigs. J Anim Sci 2008; 86(10): 2609-18.
[http://dx.doi.org/10.2527/jas.2007-0668] [PMID: 18502883]
[120]
Xiao D, Wang Y, Liu G, et al. Effects of chitosan on intestinal inflammation in weaned pigs challenged by enterotoxigenic Escherichia coli. PLoS One 2014; 9(8) e104192
[http://dx.doi.org/10.1371/journal.pone.0104192] [PMID: 25090447]
[121]
Xiao D, Tang Z, Yin Y, et al. Effects of dietary administering chitosan on growth performance, jejunal morphology, jejunal mucosal sIgA, occludin, claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli. Int Immunopharmacol 2013; 17(3): 670-6.
[http://dx.doi.org/10.1016/j.intimp.2013.07.023] [PMID: 24007779]
[122]
Wan X, Chen J, Cheng C, et al. Improved expression of recombinant fusion defensin gene plasmids packed with chitosan-derived nanoparticles and effect on antibacteria and mouse immunity. Exp Ther Med 2018; 16(5): 3965-72.
[PMID: 30402146]
[123]
Yeo H, Betel D, Abelson JS, Zheng XE, Yantiss R, Shah MA. Early-onset colorectal cancer is distinct from traditional colorectal cancer Clin Colorectal Cancer 2017; 16: 293- 99e6.
[http://dx.doi.org/10.1016/j.clcc.2017.06.002]
[124]
Chung WSF, Meijerink M, Zeuner B, et al. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol 2017; 93(11): 93.
[http://dx.doi.org/10.1093/femsec/fix127] [PMID: 29029078]
[125]
Kelly D, Yang L, Pei Z. Gut microbiota, fusobacteria, and colorectal cancer. Diseases 2018; 6(4): 6.
[http://dx.doi.org/10.3390/diseases6040109] [PMID: 30544946]
[126]
Van Raay T, Allen-Vercoe E. Microbial interactions and interventions in colorectal cancer. Microbiol Spectr 2017; 5(3): 5.
[PMID: 28643625]
[127]
Bornet FR, Brouns F. Immune-stimulating and gut health-promoting properties of short-chain fructo-oligosaccharides. Nutr Rev 2002; 60(10 Pt 1): 326-34.
[http://dx.doi.org/10.1301/002966402320583442] [PMID: 12392149]
[128]
Gomes SD, Oliveira CS, Azevedo-Silva J, et al. The role of diet related short-chain fatty acids in colorectal cancer metabolism and survival: prevention and therapeutic implications. Curr Med Chem 2018. Epub ahead of print
[129]
J Abell GC, Christophersen CT, McOrist AL, Clarke JM. GC JA Dietary resistant and butyrylated starches have different effects on the faecal bacterial flora of azoxymethane-treated rats. Br J Nutr 2011; 105(10): 1480-5.
[http://dx.doi.org/10.1017/S0007114510005349] [PMID: 21255474]
[130]
Sairenji T, Collins KL, Evans DV. An Update on Inflammatory Bowel Disease. Prim Care 2017; 44(4): 673-92.
[http://dx.doi.org/10.1016/j.pop.2017.07.010] [PMID: 29132528]
[131]
Kelsen JR, Sullivan KE. Inflammatory bowel disease in primary immunodeficiencies. Curr Allergy Asthma Rep 2017; 17(8): 57.
[http://dx.doi.org/10.1007/s11882-017-0724-z] [PMID: 28755025]
[132]
Kapoor A, Bhatia V, Sibal A. Pediatric inflammatory bowel disease. Indian Pediatr 2016; 53(11): 993-1002.
[http://dx.doi.org/10.1007/s13312-016-0975-0] [PMID: 27889728]
[133]
Benjamin JL, Hedin CR, Koutsoumpas A, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut 2011; 60(7): 923-9.
[http://dx.doi.org/10.1136/gut.2010.232025] [PMID: 21262918]
[134]
Casellas F, Borruel N, Torrejón A, et al. Oral oligofructose-enriched inulin supplementation in acute ulcerative colitis is well tolerated and associated with lowered faecal calprotectin. Aliment Pharmacol Ther 2007; 25(9): 1061-7.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03288.x] [PMID: 17439507]
[135]
Mao B, Gu J, Li D, et al. effects of different doses of fructooligosaccharides (FOS) on the composition of mice fecal microbiota, especially the bifidobacterium composition. Nutrients 2018; 10(8): 10.
[http://dx.doi.org/10.3390/nu10081105] [PMID: 30115879]
[136]
Schokker D, Fledderus J, Jansen R, et al. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development. J Anim Sci 2018; 96(6): 2139-53.
[http://dx.doi.org/10.1093/jas/sky110] [PMID: 29800418]
[137]
Kelly G. Inulin-type prebiotics: a review. (Part 2). Altern Med Rev 2009; 14(1): 36-55.
[PMID: 19364192]
[138]
Mensink MA, Frijlink HW, van der Voort Maarschalk K, Hinrichs WL. Inulin, a flexible oligosaccharide. II: Review of its pharmaceutical applications. Carbohydr Polym 2015; 134: 418-28.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.022] [PMID: 26428143]
[139]
Vandeputte D, Falony G, Vieira-Silva S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 2017; 66(11): 1968-74.
[http://dx.doi.org/10.1136/gutjnl-2016-313271] [PMID: 28213610]
[140]
Singh RS, Singh T, Larroche C. Biotechnological applications of inulin-rich feedstocks. Bioresour Technol 2018; 273: 641-53.
[PMID: 30503580]
[141]
Vogt L, Ramasamy U, Meyer D, et al. Immune modulation by different types of β2→1-fructans is toll-like receptor dependent. PLoS One 2013; 8(7) e68367
[http://dx.doi.org/10.1371/journal.pone.0068367] [PMID: 23861894]
[142]
Kelly G. Inulin-type prebiotics--a review: part 1. Altern Med Rev 2008; 13(4): 315-29.
[PMID: 19152479]
[143]
Wilson B, Whelan K. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol 2017; 32(Suppl. 1): 64-8.
[http://dx.doi.org/10.1111/jgh.13700] [PMID: 28244671]
[144]
Bindels LB, Delzenne NM, Cani PD, Walter J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol 2015; 12(5): 303-10.
[http://dx.doi.org/10.1038/nrgastro.2015.47] [PMID: 25824997]
[145]
Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125(6): 1401-12.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy